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Paolo’s Requests

1. Artificial Intelligence

– How can we integrate AI into 
INCNANO/IRDS?

2. 3D and Architecture

– Paolo’s slide deck on ITRS is not smooth 
scaling, but discrete jumps or inflection points

• High-K and FinFET

– Can I tell the story of the next inflection point?

• 3D and architecture
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1. Rebooting Computing to 
Support Next “Killer App”

Capability

Human-level

Not good enough Self-driving car.
Flaw: Gets into accidents.

Killer app.

Mobile
Resources
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1. Rebooting Computing to 
Support Next “Killer App”

New “Killer Apps”

• We can program mobile 
killer app candidates on 
supercomputers

Applications pull

• Reduce a 100 kW cluster 
to a 1 W mobile.

• 10× devices, 10× 3D, 
1,000× architecture

Capability

Human-level

Not good enough Self-driving car.
Flaw: Gets into accidents.

AlphaGo
Go-playing AI.
Flaw: high power 
consumption and limited 
market.

Killer app.

Supercomputer Mobile
Resources
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Backup: AI Roadmaps Based 
on Functional Milestones

• These are
levels of
application

• function

https://www.slideshare.net/AliMaleki2/cti-presentation-48709481
(claimed to be public domain)
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Backup: But use Intense 
Technology

• Can we fuse
functions with
technology?

http://www.cnx-software.com/2015/12/07/renesas-r-car-h3-deca-core-processor-and-
driverless-car-roadmap/
From Internet
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Link Function to Technology

AI Milestone Task Description Year

Full Self-drive Drive car from 
sensors and 
visual cues

20yy 
(safely)

Power
Ops

50 W
10y

Technology/
Architecture

GPU
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Link Function to Technology

AI Milestone Task Description Year

Driver assist Identify cars in 
other land when 
driver activates 
turn signal

2000-
2009

Full Self-drive Drive car from 
sensors and 
visual cues

20yy 
(safely)

Fully 
autonomous 
mini-robot

Plan, move, and 
carry out 
missions

Power
Ops

50 W
10x

50 W
10y

50 mW
10z

Technology/
Architecture

CPU

GPU

Neuro-
morphic?

20zz

10



2. 3D and Architecture

Moore’s Law

• Projection
– I know Devices  Performance

– Figure 3 in Moore’s article

What Happened

• Device performance didn’t 
translate to system level

Performance

Time (year)

Original
Moore’s
Law

Log 
device 
count

Year
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Backup: How Much Scaling 
Didn’t Get to the System Level?

Binary Throughput

• BIT rate
– Gates per cm2 chip ×

– Max rate/chip

• Doubled each year

Green 500

• Benchmark for energy 
efficient computing

• Rated in flops/watt

• Doubles each 2 years
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Graph 500 #1

Double/2 years

Gap grew about √2 per year, for a long time!

Axes log 
scale but 
uncalibrated



https://motherboard.vice.com/en_us/article/memory-is-holding-up-the-moores-law-progression-of-processing-power
Says “Source SYNOPSIS” ?

Backup: Performance Gap
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1

von Neumann Bottleneck

Definition of axes:

Execution efficiency 

relative to the von 

Neumann architecture
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Problem space

von Neumann 

bottleneck

von Neumann architecture 

Execution efficiency 

relative to the von 

Neumann architecture

1

Molecular Dynamics (Anton*) Sparse matrix multiply

von Neumann Bottleneck

Definition of axes:
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Problem space

Special purpose

accelerator

von Neumann 

bottleneck

von Neumann architecture 

Execution efficiency 

relative to the von 

Neumann architecture

1
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von Neumann Bottleneck

*Anton = Molecular dynamics ASIC 

by D. E. Shaw research 16



 Superstrider

Problem space

von Neumann 

bottleneck

von Neumann architecture 

Execution efficiency 
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• Accelerate the von 
Neumann bottleneck, 
to make is less so

 Superstrider
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von Neumann 
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von Neumann Bottleneck
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by D. E. Shaw research

von Neumann/Superstrider hybrid
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 Superstrider
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von Neumann 
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Underlying Source of the von Neumann 
Bottleneck and How To Fix It With 3D

2D/von Neumann

• Inefficient: repetition of
{ memory access from 
large pool + logic }

logic 
CMOS

memory 
DRAM

logic 
CMOS

memory 
DRAM 
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Underlying Source of the von Neumann 
Bottleneck and How To Fix It With 3D

2D/von Neumann

• Inefficient: repetition of
{ memory access from 
large pool + logic }

3D and New Architectures

• Micron-level layer shift 
reduces delay and energy

• Enables placement

• Some algorithms  
become more efficient

logic 
CMOS

memory 
DRAM

logic 
CMOS

memory 
DRAM 

Data dependency diagram for 
Bitonic merge
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3. Superstrider Test Case
Sandia/Ga Tech

Architecture

• An accelerator for the von 
Neumann bottleneck
– To make it less of a 

bottleneck, not more

• Implements “associative 
arrays,” which are pretty 
general

– Kepner, Jeremy, and John Gilbert, eds. 
Graph algorithms in the language of 
linear algebra. Society for Industrial 
and Applied Mathematics, 2011.

Simulation

• Simulated scaling 
scenario
– 50× today with High 

Bandwidth Memory

– 250× with N3XT

thermal

thermal

thermal
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https://cdn.shopify.com/s/files/1/0222/0474/files/champagne-
tower-2_grande.jpg?11735

Legend:

Red less than pivot

Green more than pivot

1 Glass

½ Glass 

¼ Glass 

½ Glass 

Champagne Sort I
(Superstrider Core Algorithm)

• Glass is DRAM row

• Addition changes 
just about every 
DRAM row in the 
system

• Inefficient

Physical model (scalar): Scalar implementation:
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Legend:

Red less than pivot

Green more than pivot

OR

1 Glass

½ Glass 

¼ Glass 

½ Glass 

1 Glass

1 Glass1 Glass

Champagne Sort I
(Superstrider Core Algorithm)

• Only have to walk 
down one side

• Reduces effort a lot

Key points: Scalar implementation: Superstrider (parallel):
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https://cdn.shopify.com/s/files/1/0222/0474/files/champagne-
tower-2_grande.jpg?11735
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(Superstrider Core Algorithm)

Physical model (scalar): Scalar implementation: Superstrider (parallel):

25



Backup: Champagne Sort II
(Superstrider Core Algorithm)

• In words

– Input is a series of records of form

• { key, value }

– Superstrider sorts by the key

– Superstrider also groups of records with the 
same key and compresses them into a single 
record

• { key,  values }

– or a different compression operation than add
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Backup: Champagne Sort III
(Superstrider Core Algorithm)

Matrix multiply

• Definition
– For matrices A, B, and C

– Cij = k Aik*Bkj

• Superstrider
– Input is Cij

(k) = Aik*Bkj in 
random order

– “Sort” all Cij
(k) to the same 

Champagne class, 
compressing the value to 
Cij = k Cij

(k)

Backpropagation (neural nets)

• Definition
– For weight matrix W and 

vectors a and b

• W’ij = Wij + ai*bj

• Superstrider
– Create Tji = { Wij, ai }

– Create W’ij = f(Tji, bj) where 
f({w, a}, b) = w + a*b
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Scale-up with Progressively 
“Tighter” 3D Integration I

Begin State: HBM (High Bandwidth Memory)

128

Rank

16,384 

bits

Data

Logic Layer
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Scale-up with Progressively 
“Tighter” 3D Integration I

End State: N3XT

thermal

thermal

thermal

Read reg. (FIFO)

Write reg. (FIFO)

Accumulator

16,384

Data movement 
and processing 
network
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Scale-up with Progressively 
“Tighter” 3D Integration I

Begin State: HBM (High Bandwidth Memory) End State: N3XT

thermal

thermal

thermal

Read reg. (FIFO)

Write reg. (FIFO)

Accumulator

HBM Row: 16384 bits = Bus width      × Cycles Network size
(HBM) 128 bits 128 8 = 4 × 2

256 64 24 = 8 × 3

512 32 64 = 16 × 4

1024 16 160 = 32 × 5

(N3XT) 16,384 1 4608 = 512 × 9

128 16,384

Data movement 
and processing 
network

Rank

16,384 

bits

Data

Logic Layer
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Scale-up with Progressively 
“Tighter” 3D Integration II

• HBM (High Bandwidth Memory)

– Maybe 50×

– Immediately
actionable

• N3XT (Stanford viewgraph)

– Maybe 250×

– Long-term
vision

• (Compared to
CPU + HBM)

numSort=512Normalized Speedup

0.00

50.00

100.00

150.00

200.00

250.00

300.00

128 1024 16384

PARTITIONED/8 PARTITIONED/64
FCFS_GREEDY/8 FCFS_GREEDY/64
FULL

Source: Seshan
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Future Directions I

• Accept Top Down Applications Pull

– Still Moore’s law, just shift to Fig. 2 from Fig. 3 
in his article

• Moore, Gordon E. "Cramming more components onto integrated circuits, Reprinted 
from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff." IEEE Solid-State 
Circuits Society Newsletter 20.3 (2006): 33-35.

Fig. 2 Fig. 3
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Future Directions II

• IRDS, INC, IEEE Rebooting Computing, and 
governments should adopt top-down application 
drive in lieu of bottoms-up technology push
– Note US Government PCAST report uses term 

“moonshots” rather than “killer apps”

• Roadmap architectures that can extend scaling
– in addition to architectures that can enable productive 

use of new devices

• Superstrider could be developed further
– Sandia seems interested, but I’m soliciting others
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Thank You

See my Rebooting Computing

Column in IEEE Computer

•April ‘16 Boolean Logic Tax

•June ’16 Learning Machines

•August ’16 Search for Secretariat

•October ’16: Help Wanted Turing

•December ’16 (see first page) 

•February ’17 Redefine Moore’s Law

•April ’17 Architecture’s Role

•June ‘17 Reversible Computing
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Panel Discussion Questions

• Which technologically enabled innovations will impact society 
most in the next 10 years?
– All panelists, 2 foils max

• Which breakthroughs do you anticipate will occur in the next 
10 years in AI, computer architecture, devices, technology or 
any other technical field?
– Each panelist should select the subjects they like best, 2 foils 

max

• Which subjects do you think should be addressed by INC in 
2018?
– Each panelist, 2 foils max.

• Which changes (number of days, format, visits, locations etc.) 
would you like to see in future INC conferences?
– Each panelist, 2 foils max.
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Which tech. innovations will impact 
society most in the next 10 years?

• AI-class
– Mobile – introduced by self-driving car but 

proliferating to other robotics
• Could be big benefit or create massive unemployment

– Non-mobile – There is a huge amount of digital 
data in natural languages (English, Japanese, 
etc.) that has not been parsed. This could be a 
big boon for productivity, with an impact on 
society.

• USG proposes non-commercial “moonshots”
• Other apps?

– Yeah, but I don’t have an inventory.
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PCAST Sample Moonshots

• Bioelectronics for sensory replacement 
and implantable neuro-stimulation for 
control of chronic conditions.

• Threat Detection Network

• Distributed Electric Grid

• Global Weather Forecasting

Executive Office of the President, President’s Council of Advisors on  Science and Technology, Ensuring Long-Term U.S. 
Leadership in Semiconductors, January 2017, 
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_ensuring_long-
term_us_leadership_in_semiconductors.pdf
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Which breakthroughs in
next 10 years?

• AI will make progress
– Self-driving cars will become safe from existing

threats but open new paths for malfeasance 
exploiting limitation in “IQ” of machines

• Computer architectures will diversify
– The sequence CPU, FPGA, GPU, KNX, Neural 

accelerator (e. g. True North) will be extended.
– Machine learning will start to make architecture an 

implementation detail

• Devices: 3D proliferates. New memories (e. g. 
RRAM) will enter production. Better transistors by 
up to 10×.
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INC in 2018?

• If Japanese sponsors like AI/self-driving 
cars, have conference cover applications 
pull for advances in hardware, 
architecture, and software

– If not AI, there are other areas

39



Format for INC 2018

• I’m a Rebooting Computing guy
– How about INC 2018 join the “Rebooting Computing 

family of advanced computing initiatives”?

• Format from a non-INC guy
– There is a choice about peer-reviewed papers. INC 

has not been peer reviewed, but IEEE can help

– Night before reception, end at noon on second or 
third day.

– If Japan is the country, I must profess inadequate 
knowledge of cities

– Visits would be a nice option
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