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Paolo’s Requests

1. Artificial Intelligence

— How can we integrate Al into
INCNANO/IRDS?

2. 3D and Architecture

— Paolo’s slide deck on ITRS is not smooth
scaling, but discrete jumps or inflection points

« High-K and FinFET

— Can | tell the story of the next inflection point?
« 3D and architecture



1. Rebooting Computing to
Support Next “Killer App”

Capability
Human-level 4 Kil![er app.
Not good enough Self-driving car.
Flaw: Gets into accidents.
> Resources

Mobile
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1. Rebooting Computing to
Support Next “Killer App”

New “Killer Apps” Applications pull
 We can program mobile  Reduce a 100 kW cluster
Killer app candidates on toa 1 W mobile.
supercomputers « 10x devices, 10x 3D,
Capability 1,000% architecture
Human-level AAIphaGo — Killer app.
Go-playing Al. T
Flaw: high power
consumption and limited

market.

Not good enough Self-driving car.

Flaw: Gets into accidents.

» Resources
Supercomputer Mobile



Backup: Al Roadmaps Based
on Functional Milestones

* These are NHSTA Driving Automation Definitions | = 3
levels of
application B> i

\w
¢ fu n Ctl O n \ . OCne or more specific control functions; e.g. electronic stability control or pre-

Function- charged brakes
spacific Automation

\ {Level 1)
- Two or more functions designed to work in unison; e.g. Adaptive Cruise Contral in
Combined Function combination with Lane Centering
Automation
({Level 2):

/

The driver is in complete and sole control of the primary vehicle controls - brake,
steering, throttle, and mative power - at all times

Driver able to cede full control of all safety-critical functions under certain traffic or

: environmental conditions, where changes in those conditions require transition back
e to driver control

Automation

‘MW

Full Selt-Driving
Automation

(Level 4)

All driving functions performed by system. The driver only provides destination or
navigation input

https://www.slideshare.net/AliMaleki2/cti-presentation-48709481
(claimed to be public domain)



Backup: But use Intense
Technology

« Can we fuse
functions with
technology?

No release permission hnci

''''''''

=1

http://www.cnx-software.com/2015/12/07/renesas-r-car-h3-deca-core-processor-and-
driverless-car-roadmap/
From Internet
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Link Function to Technology

Al Milestone

Task Description Technology/ Power Year
Architecture Ops

Driver assist

Full Self-drive

Fully
autonomous
mini-robot

|dentify cars in
other land when
driver activates
turn signal

Drive car from
sensors and
visual cues

Plan, move, and
carry out
missions

CPU

GPU

Neuro-
morphic?

50 W 2000-
10 2009
S0 W  20yy

10Y (safely)

50 MW 20zz

107
10



2. 3D and Architecture

Moore’s Law What Happened
* Projection * Device performance didn’t
— | know Devices = Performance translate to system level
— Figure 3 in Moore’s article
Log i
device e send Of
count / Purpo’ Law’
R DA Performance Moore S
RRaBgRaaERERERREE Year AOriginal
Moore's v/
Law e
n
(forma
Sys‘em pe
>
Time (year)
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Backup: How Much Scaling
Didn’'t Get to the System Level?

Binary Throughput Green 500

« BIT rate « Benchmark for energy
— Gates per cm?2 chip X efficient computing
— Max rate/chip « Rated in flops/watt

* Doubled each year  Doubles each 2 years

Gap grew about V2 per year, for a long time!

1000000

100000 ——Double/year trend
——Gates/Gate delay

Axes |Og 10000 /
scale but 1000 Graph 500 #1
uncalibrated 100 / / —Double/2 years

1995 2000 2005 2010 2015
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Backup: Performance Gap

Moore’s law effect

100000 | / BO0%/\r
o 10000
o
5
E 1000 No release permission
T
2 100 — T%lyr

10 |t
Time

https://motherboard.vice.com/en_us/article/memory-is-holding-up-the-moores-law-progression-of-processing-power
Says “Source SYNOPSIS” ?
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von Neumann Bottleneck

Execution efficiency
relative to the von
Nelimann architecture

1

Definition of axes:
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von Neumann Bottleneck

Execution efficiency
relative to the von
NeLAJmann architecture

1

von Neumann architecture M
von Neumann

bottleneck
Problem space

>
Molecular Dynamics Sparse matrix multiply

Definition of axes:
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von Neumann Bottleneck

Execution efficiency
relative to the von
NeLAJmann architecture

1 .
von Neumann architecture P /\€ Superstrider
von Neumann
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von Neumann Bottleneck

Execution efficiency e Accelerate the von
relative to the von Neumann bottleneck,
Neumann architecture to make is less so

von Neumann/Superstrider hybrid

/X— Superstrider

von Neumann

von Neumann architecture M

bottleneck
Problem space

Molecular Dynamics (Anton) Sparse matrix multiply

"Anton = Molecular dynamics ASIC
by D. E. Shaw research 18



von Neumann Bottleneck

A
Execution efficiency e Accelerate the von
relative to the von Neumann bottleneck,
Neumann architecture to make is less so

von Neumann/Superstrider hybrid

/X— Superstrider

von Neumann

von Neumann architecture P

Special purpose
<accelerator

Molecular Dynamics (Anton) Sparse matrix multiply

bottleneck
Problem space

Definition of axes:

"Anton = Molecular dynamics ASIC

by D. E. Shaw research 19




Underlying Source of the von Neumann
Bottleneck and How To Fix It With 3D

2D/von Neumann

 |nefficient: repetition of
{ memory access from
large pool + logic }

memory logic
DRAM CMOS
logi memory

CMOS DRAM




Underlying Source of the von Neumann
Bottleneck and How To Fix It With 3D

2D/von Neumann

 |nefficient: repetition of
{ memory access from

large pool + logic }

memory
DRAM

logic
CMOS

logi
CMOS

memory
RAM

3D and New Architectures

* Micron-level layer shift
reduces delay and energy

« Enables placement

« Some algorithms

become more efficient

Data dependency diagram for
Bitonic merge _—
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3. Superstrider Test Case
Sandia/Ga Tech

Architecture Simulation
* An accelerator for the von <+ Simulated scaling
Neumann bottleneck scenario
— To make it less of a — 50x today with High
bottleneck, not more Bandwidth Memory
« Implements “associative — 250x with N3XT
arrays,” which are pretty

general

— Kepner, Jeremy, and John Gilbert, eds.
Graph algorithms in the language of
linear algebra. Society for Industrial
and Applied Mathematics, 2011.

thermal

22



Champagne Sort |
(Superstrider Core Algorithm)

Physical model (scalar): Scalar implementation: Key Points:

1 Glass

% Glass % Glass

Y4 Glass

Legend:
Red less than pivot

Green more than pivot

~ ey

https://cdn.shopify.com/s/files/1/0222/0474/files/champagne-
tower-2_grande.jpg?11735

Glass is DRAM row

Addition changes
just about every
DRAM row in the

system
Inefficient

23



Champagne Sort |
(Superstrider Core Algorithm)

Key points: Scalar implementation:  Superstrider (parallel):

e Only have to walk

down one side 1 Glass

1 Glass

e Reduces effort a lot
% Glass

o ! !

OR

% Glass

Legend:
Red less than pivot

Green more than pivot

1 Glass 1 Glass
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Champagne Sort |
(Superstrider Core Algorithm)

Physical model (scalar): Scalar implementation:  Superstrider (parallel):

1 Glass 1 Glass

% Glass

o ! !
OR

Green more than pivot

% Glass

Legend:
Red less than pivot

-1 e

https://cdn.shopify.com/s/files/1/0222/0474/files/champagne-
tower-2_grande.jpg?11735

1 Glass 1 Glass
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Backup: Champagne Sort Il
(Superstrider Core Algorithm)

* In words
— Input is a series of records of form
 { key, value }
— Superstrider sorts by the key

— Superstrider also groups of records with the
same key and compresses them into a single
record

* { key, X values }
— or a different compression operation than add

26



Backup: Champagne Sort Il
(Superstrider Core Algorithm)

Matrix multiply
» Definition
— For matrices A, B, and C
— Cj= Z A" By
» Superstrider
— Inputis C;¥ = Ay*By; in
random order

— “Sort” all C;¥ to the same
Champagne class,
compressing the value to
Cj= X C¥

BaCkprOpagation (neural nets)

« Definition
— For weight matrix W and
vectors a and b

W= W; +a’b
» Superstrider
— Create T;={ W, a;}

— Create W; = f(T;, b)) where

fw, a}, b) = w + a*b

27



Scale-up with Progressively
“Tighter” 3D Integration |

Begin State: HBM ... e wemon)

1

1%’
g _ Tp128




Scale-up with Progressively
“Tighter” 3D Integration |

Data movement
and processing
network

End State: N3XT

Accu

mulator

13

V2

Write reg. (FIFO)

16,384 QrRead reg. (FIFO)

29



Scale-up with Progressively
“Tighter” 3D Integration |

Data movement

Beg i n State: H B M (High Bandwidth Memory) E nd State . N3XT and processing

network
16,384 | | | _ eet=2ee,.
 bits__ T
Accumulator
it 12
‘g Write reg. (FIFO) =N
’ —Th-128 16384 {Lr_Read reg. (FAFO)
HBM Row: 16384 bits = Bus width x  Cycles Network size
(HBM) 128 bits 128 8 -4x2
256 64 24 -5x3
512 32 64 - 164
1024 16 160=32x5
(N3XT) 16,384 1 4608 -512x9

30



Scale-up with Progressively
“Tighter” 3D Integration |

e HBM i sanguinmemon) numSort=512Normalized Speedup

— Maybe 50x

— Immediately
actionable 250.00

200.00
* N 3XT (Stanford viewgraph) 1 5 O . OO
— Long-term 50.00 III I I
vision 0.00 ] ] e nEn

300.00

* (Compared to 128 1024 16384
CPU + HBM) B PARTITIONED/S PARTITIONED/64
M FCFS_GREEDY/S B FCFS_GREEDY/64
B FULL

Source: Seshan
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Future Directions |

* Accept Top Down Applications Pull

— Still Moore’s law, just shift to Fig. 2 from Fig. 3
in his article

NOTIONS I
| BT g .
i 2
[
.
Mz ’
e ~ 5
.
i
. H Ta

DD — O W W0 O SO — 0T D
) D 10 U D D 4D 4D 10 U0 LD P e e e P P
mmmmmmmmmmmmmmmmm

* Moore, Gordon E. "Cramming more components onto integrated circuits, Reprinted
from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff." IEEE Solid-State
Circuits Society Newsletter 20.3 (2006): 33-35.
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Future Directions I

« IRDS, INC, IEEE Rebooting Computing, and
governments should adopt top-down application
drive in lieu of bottoms-up technology push

— Note US Government PCAST report uses term
“moonshots” rather than “killer apps”

 Roadmap architectures that can extend scaling

— In addition to architectures that can enable productive
use of new devices

« Superstrider could be developed further
— Sandia seems interested, but I'm soliciting others

33



Thank You

See my Rebooting Computing

Column in IEEE Computer
*April ‘16 Boolean Logic Tax

«June 16 Learning Machines
*August 16 Search for Secretariat
*October '16: Help Wanted Turing
December '16 (see first page) -2
*February '17 Redefine Moore’s Law
*April 17 Architecture’s Role

«June ‘17 Reversible Computing

REBOOTING COMPUTING

Computational
Complexity and

New Computing

Approaches

Erik P. DeBenedictis, Sandia National Laboratories

Computational complexity analysis allows us to
quantify energy-efficiency scaling potential—an
Important task for assessing research options.

swe search for new ways to Increase both com-

puter performance and energy efficiency, it

would be helpful to be able to predict long-term

potential in advance. Here, I'll show how com-
putational complexity theory can quantify the energy of
ficiency potential of analog computing. The method could
be applied to ather computing approaches.

Analog computers are one option o restore growth in
the computer industry. Such growth requires families of
computers that can solve problems more cost-elfectively
time, which roday means improving energy effi-
cy. The improvement rate for the energy eficiency
I computers has slowed, raising the question of
whetheranalog computers could overtake them

If analog and digital are viewed broadly as alternative
computer implementations, then they should be subjeer

BO  COMPUTER PUsLISHED Y THE KEE

to the same general principles. How-
ever, a specific digital computer’s ef-
fectiveness depends on its architec.
ture and the algorithms running on
it. These correspond to the circuitry
ofan analog computer.

Here, I'll analyze digital and an
alog "neuromorphic” caleulations
using a computational complexity
theory first developed for digital
computer algorithms, The analysis
doesn't find a winner but provides
new Insights into which approach has more potential,

COMPARING A COMMON FUNCTION

Meaningful comparison of analog and digital requires a
computing task amenable to both approaches. I'll focus
on artificial neural networks, where the comparison is
batween a digital implementation such as deep learning®

and an analog neuromorphic implementation such as the
ohmic weave circnit based on memristors

Biological neurons, which Bll a role similar 1o N-input
logic gates, mathemarically evaluate the compurtarional
primitive called dotorinner product. N "presynaptic” neu
rons generate signals that become inputs of the N-input
neuron under consideration. Hach of the N signals v; is
multiplied by a synapse weight w; and the products added
tobecome the neuron's ourput. A digital implementation

3]
X
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Panel Discussion Questions

Which technologically enabled innovations will impact society
most in the next 10 years?

— All panelists, 2 foils max

Which breakthroughs do you anticipate will occur in the next
10 years in Al, computer architecture, devices, technology or
any other technical field?

— Each panelist should select the subjects they like best, 2 foils
max

Whicg subjects do you think should be addressed by INC in
2018

— Each panelist, 2 foils max.

Which changes (number of days, format, visits, locations etc.)
would you like to see in future INC conferences?

— Each panelist, 2 foils max.

35



Which tech. innovations will impact

society most in the next 10 years?

Al-class

— Mobile — introduced by self-driving car but
proliferating to other robotics
« Could be big benefit or create massive unemployment
— Non-mobile — There is a huge amount of digital
data in natural languages (English, Japanese,
etc.) that has not been parsed. This could be a
big boon for productivity, with an impact on
society.

USG proposes non-commercial “moonshots”
Other apps?

— Yeah, but | don’t have an inventory.

36



PCAST Sample Moonshots

 Bioelectronics for sensory replacement
and implantable neuro-stimulation for
control of chronic conditions.

 Threat Detection Network
* Distributed Electric Grid
* Global Weather Forecasting

Executive Office of the President, President’s Council of Advisors on Science and Technology, Ensuring Long-Term U.S.
Leadership in Semiconductors, January 2017,
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/PCAST/pcast_ensuring_long-
term_us_leadership_in_semiconductors.pdf

37



Which breakthroughs in
next 10 years?

* Al will make progress

— Self-driving cars will become safe from existing
threats but open new paths for malfeasance
exploiting limitation in “IQ” of machines

« Computer architectures will diversify

— The sequence CPU, FPGA, GPU, KNX, Neural
accelerator (e. g. True North) will be extended.

— Machine learning will start to make architecture an
Implementation detail

* Devices: 3D proliferates. New memories (e. g.

RRAM) will enter production. Better transistors by
up to 10x.

38



INC in 20187

* If Japanese sponsors like Al/self-driving
cars, have conference cover applications
pull for advances in hardware,
architecture, and software

— If not Al, there are other areas

39



Format for INC 2018

* I'm a Rebooting Computing guy
— How about INC 2018 join the “Rebooting Computing
family of advanced computing initiatives™?

* Format from a non-INC guy

— There is a choice about peer-reviewed papers. INC
has not been peer reviewed, but IEEE can help

— Night before reception, end at noon on second or
third day.

— If Japan is the country, | must profess inadequate
knowledge of cities

— Visits would be a nice option

40



