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Silicate weathering & biogeochemical cycle @& () e,
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Silicate glass dissolution: knowns & unknowns ™ ...
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Oscillatory dissolution/precipitation Ocvers (i) .,

Borosilicate glass at pH =~0, T = 150 °C
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Oscillatory silicate mineral dissolution ERERGY () e,
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pH-dependent dissolution rate
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Positive feedback in silicate dissolution @ciErRsy ()
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Mathematical model ENERGY ()
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where
C’ — Cation concentration within the boundary layer
C, — Cation concentration in the bulk solution (outside the altered zone)
D, - Diffusion coefhicient of cations in the altered zone
Co D, - Diffusion coefficient of dissolved silica in the altered zone
L, - Thickness of the boundary layer at the dissolution interface
S L, - Thickness of the altered zone
k; — Reaction rate constant for silicate material dissolution
k, — Reaction rate constant for silica mineral precipitation
n — Order of silicate dissolution reaction with respect to cation
5§ - Silica concentration within the boundary layer
S, — Silica concentration in the bulk solution

57 — Equilibrium silica concentration for material dissolution

Ly S; - Equilibrium silica concentration for silica precipitation

t - Time

v — Molar ratio of cations (mainly Na*) to Si** in the pristine silicate material

/3 — Positive constant characterizing the catalytic effect of cations on silicate material dissolution
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Nonlinear dynamics of silicate dissolution ERERGY () e,
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Predicted time scale: hours to years
Predi ial le: -micron to tens of micron
edicted spatial scale: sub-micron to tens o crons Wang et al., 2016, Scientific Reports

Archeologic study of ancient Roman glass shows that each
band might have formed over a year.




Self-sharpening & morphologic instability of a @:icrey @;:
. Nuclear Energy Laboratories
reaction front

Pristine glass Alteration products
| Catalytic
Ca @ 1{;;', U&) | effect of e
2| S\N\< . cations S
i ® ® i Y Qf
c - &
So o '
=] ”
I
)
o
(a1
Silicate glasssdi scalution
i PHier
pH
dL, D D DL, |
2
—E = £ Ry, =L — v k;Cpp(Si — §|1 + 8| L=
d I " I md —~1EPLYd e
t g g [EP™g

Morphologic instability arises from the same
positive feedback.

Dohmen et al. (2013)
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Eventually, the dissolution rate overtakes the mass exchange rate, leading
to a “runaway” situation with a sharp increase in the cation concentration
at the interface and therefore the dissolution rate.
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Waste durability: Chemical composition and @ iiicrsy @;:
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Implication to weathering eiERsy (i)
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Concluding remarks Oy (i) =,

= Complex silicate material dissolution behaviors can emerge
from a simple positive feedback between dissolution-induced
cation release and cation-enhanced dissolution kinetics.

" This mechanism enables a systematic prediction of the
occurrence of sharp dissolution fronts, oscillatory dissolution
behaviors and multiple stages of glass dissolution.

= |t provides a new perspective for predicting long-term silicate
weathering rates in actual geochemical systems and
developing durable silicate materials for various engineering
applications.
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