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Deep Crystalline Drilling
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Basement Conceptual Profiles =
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Observed Profiles

Salinity Increases with Depth
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Bulk Permeability Increases with Scale
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Scale of Measurement
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Characterization Borehole (CB) =
= Sampling During Drilling

= Borehole Geophysics
= Flowing Borehole Salinity Log
= Sample-based Profiles

High-permeability
wireline packer test
and sampling

o V -
Sedimentary Overburden (2 km)

* Fluid density/temperature/major ions

]
= Compositional samples T \/“'I\ S
/7 | >~ ~ N
. . . <o BT S Sl T
" |In Situ Testing-based Profiles wiEglh @ s
TS5 &l NS W AN vy
. . . m o l >7\1_ N l/ /\/ —
= Formation hydraulic/transport properties Ny oy ‘/Azj’gl%r&gesumﬁgﬁg{y £
W =\l - ; A
0 ' S w7 AR S RN PR 12
In situ stress (hydrofrac + breakouts) Sadrea mﬂ/ydmﬁagm A
. SVEMWER 7\ stress measurement' | §
= Exploring TRL of Methods LS ol L g, >§
/NP AN ANELl 2
. . . . . “}\ Ny /] ONE >'7\I/1L>£\/| L>7\\ =
= Not exhaustively testing a site for licensing NS 0GR B SRSV |
. \1/7/\\L - /)\E ] ‘ >\\|Tﬁlﬂ/droffadtﬁr\e in situ | O
= Workable at 50 Mpa / 150°C / 4 km tubing? _/L/\'f\ WA fﬁrfi?éefvir’?%iseﬁrﬁge"t
< N L~ ~ _\V I \
m i iti i N < @ AY, 4 lITA7‘\{/\
Compare methods under field conditions v AE N PUSTATE NN
)\\\\// /7/ (\l\T\ Low-permeability
{,\,ig P\ !;’ //\'N/\' packer pulse t(\ast




CB Characterization During Drilling T

= Mud logging (~continuous)

= |on chromatograph (liquid)
= Gas chromatograph (gas)
= XRD/XRF rock flour (solids)

= Fluid sampling (each ~30 m)
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CB Testing After Drilling =
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In Situ Packer-Based Testing

In Situ Packer Test
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Characterization Comparison

KTB Reference

Laborato ore Testi n Rauen, A. and Winter H., 1995, Petrophysical Properties, 1995, inEmmermann R., Althaus, E., Giese, P and Stockhert, B. Eds. KTB
ry 9 Report 95-2: Results of Geoscientific Investigation in the KTB Field Laboratory Final Report 0-9101 m.

Kontiny etal., 1997, Formation of ore minerals in the metamorphic rocks of the German continental deep drilling site (KTB), J. Geophys.

Res. 102, 18323-18336.

Roeckhel, T., and Nateu O., 1995, ,in Emmermann R., Althaus, E., Giese, P and Stockhert, B. Eds. KTB Report 95-2: Results of
Geoscientific Investigation in the KTB Field Laboratory Final Report 0-9101 m.

Borehole Imaging and Bram, K., et al., 1995, The KTB Borehole - Germany's Superdeep Telescope into the Earth’s Crust. Oilfield Review, 7:4-22

Caliper Logs

Kessels, W. Objectives and execution of the hydraulic testing in the KTB-Oberfalz borehole within the long-term measurement and test
programme, Scientific Drilling, 2, 287-298.

High and Low-k Packer Tests

Vertical Seismic Profile Rabbel, W., et al., 2004, Superdeep vertical seismic profiling at the KTB deep drill hole (Germany): Seismic close-up view of a major thrust
zone down to 8.5 km depth. J. Geophys. Res. 109, B09309, 20p.

Luschen, E., K. et al., 1996, Nature of seismic reflections and velocities from VSP- and borehole at the KTB-

deep drilling site in SE-Germany, Tectonophysics 2, 64, 309-326.

Pechnig etal., 1997, Integrated log interpretation in the German Continental Deep Drilling Program: lithology porosity and fracture zones.
J. Geophys. Res., 102, 18363-18390.

Gamma Density Log
Full-Waveform Sonic L
Spontaneous Potential Log

Jones AG and Holliger K., 1997, Spectral analyses of the KTB sonic and density logs using robust nonparametric methods, J. Geophys.
Res., 102, 18391-18403.

ELEKTB Group, 1997, KTB and the electrical conductivity of the crust, J. Geophys. Res., 102, 18289-18305.

Clauseretal., 1997, The thermal regime of the crystalline continental crust: Implications from the KTB, J. Geophys. Res. 102, 18417-
18441.

Pechnig etal., 1997, Integrated log interpretation in the German Continental Deep Drilling Program: lithology porosity and fracture zones.
J. Geophys. Res., 102, 18363-18390.

Neutron Porosity Log
Borehole Gravity Log
Induced Polarization Log

Photoelectric Effect L.

Bosum, W., et al., 1997, Three-dimensional interpretation of the KTB gravity and magnetic anomalies. J. Geophys. Res., 102, 18307-
18321.

Bram, K., et al., 1995, The KTB Borehole - Germany’s Superdeep Telescope into the Earth's Crust. Oilfield Review, 7:4-22.

Pechnig etal., 1997, Integrated log interpretation in the German Continental Deep Drilling Program: lithology porosity and fracture zones.
J. Geophys. Res., 102, 18363-18390.

Fluld Density or Downhole Huenges, et al., 1995, Formation pressure down to a depth of 8.7 km in the Kontinentale Tiefbohrung (KTB) Scientific Drilling, 5, 17-21.

Pressure Log Hueng

tal, 1997, The crust: down to 9101 m depth. J. Geophys. Res., 102, 18255-18265.

Zoback, M.D. and Harjes H.-P., 1997, Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site,

Hydrau“c FraCturmg Tests Germany. J. Geophys. Res., 102, 18477-18491.

Brudy, M. etal., 1997, Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: Implications for crustal

strength. J. Geophys. Res., 102, 18453-18475.

Shapiro, S., et al., 1997, Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int.
131, F15-FI8.

Resi stivity Lo g ELEKTB Group, 1997, KTB and the electrical conductivity of the crust, J. Geophys. Res., 102, 18289-18305.

Hueng

tal., 1997, The crust: ic properties down to 9101 m depth. J. Geophys. Res., 102, 18,255-18,265

Open Borehole Dynamic
Fluid Logging

Soultz Reference
Genter, A and Traineau, H., 1992. Borehole EPS1, Alsace, France: preliminary geological results from granite core analysis for Hot Dry Rock Research. Scient. Drill. 3,
205-214.

Genter, A., and Traineau, H., 1996, Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-I, Soultz-sous-Forets, France J. Volcanol. and
Geotherm. Res. 72 121-141.

Genter, A., et al., 1997. Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir
(France). J. Geophys. Res. 102 (B7), 15,419-15,431.

Genter, A., et al.,1991. Application of FMS and BHTV tools for evaluation of natural fractures in the Soultz geothermal borehole GPK1. Geotherm. Sci. Tech. 3, 69-82.

Jung, R., 1991, Hydraulic fracturing and hydraulic testing in the granitic section of borehole GPK-1 Soultz sous Forets. Geotherm. Sci. & Tech.3, 149-198.
Sausse, J et al.,, 2010, 3D model of fracture zones at Soultz-sous-Forets based on geological data, image logs, induced microseismicity and vertical seismic profiles, C.

R. Geoscience 342, 531-545.

GenterA. etal., 1997, Synthesis of geological and data at Soult:

Foret (France). Rapport BRGM R 39440, 36 p.

GenterA. etal., 1997, Synthesis of geological and geophysical data at Soultz-sous-Foret (France). Rapport BRGM R 39440, 36 p.

GenterA. etal., 1997, Synthesis of geological and data at Soult:

Foret (France). Rapport BRGM R 39440, 36 p.

GenterA. and Tenzer, H., 1995, Geological Monitoring of the GPK-2 borehole 1420-3880 m (Soultz-sous-Forets, France), Rapport BRGM R 38629, 46p.

Spichak V., et al., 2010, Deep temperature extrapolation in the Soultz-sous-Forets Area using magnetotelluric data. In Proceedings, Thirty-Fifth Workshop on
Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3,2010.

GenterA. etal., 1997, Synthesis of geological and data at Soult: Foret (France). Rapport BRGM R 39440, 36 p.

data at Soult;

GenterA. et al., 1997, Synthesis of geological and Foret (France). Rapport BRGM R 39440, 36 p.

Sausse, J., et al., 2006, Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis. Geothermics, 35, 544-560.
Megel, T, et al., 2005, Downhole Pressures Derived from Wellhead during Hydraulic i Pi ings World Congress 2005
Antalya, Turkey, 24-29 April 2005.

Rummel F. and BaumggrtnerJ. 1991, Hydraulic fracturing stress measurements in the GPK-1 borehole, Soultz-sous-Forets. Geotherm. Sci. & Tech. 3, 119-148.

Klee, G., Rummel, F., 1993. Hydrofrac stress data for the European HDR research project site, Soultz-sous-Forets. Int. J. Rock Mech. Min. Sci. 30, 973-976.

GenterA. etal., 1997, Synthesis of geological and data at Soult:

Foret (France). Rapport BRGM R 39440, 36 p.

Aquilina, L. and Brach, M. 1995, Cl of the Soultz

1borehole. Geochem. Sci. & Tech. 4, 239-251

: WELCOM (well chemical on-line monitoring) appied to deepening of GPK-




Characterization Differences 1)
= DBFT Effort is Different from:

= Qil/gas or mineral exploration (low perm., low porosity rocks)
= Geothermal exploration (low geothermal gradient)
= Shallow drilling/testing (high p, high o, deep, breakouts)

= DBFT Characterization Approach
= Not exhaustive permeability characterization (scaling)

= Seeking geochemical evidence of system isolation b
= DBFT Goals
= Drill straight large-diameter boreholes to 5 km depth

SAND2010-6048

= Demonstrate sample collection (cores + formation fluid)
" Enough samples

* Low enough contamination level

= Demonstrate in situ testing at depth (3 to 5 km)



