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recombination Energy (eV) due to photoemission. These cause significant O, detachment region near the dielectric corner the dielectric corner along the cathode (see
oV e are swept out of the gap and supply initial e in the high- and leads to 2" positive excitation. below) and then the e- avalanche to the anode
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Conclusions / Future Work

" Unlike prior simulations that artificially seed electrons, current model results in initiation and excited state buildup near the cathode when a dielectric
particle is present in the gap. A positive streamer was still observed for an empty gap initialized via seed electrons from O, detachment.

= At=5%x10"s (wpe ! ~ 1072 8; v~ 1072 s; At ~ 10719 s)
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- Zoomed in region

=  Activate isotropic, 260 nm UV LED light source for 10 ns with no
applied potential. Intensity of 1.6 m\W/cm? on axis.
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- The presence of field enhancement at the dielectric corner allowed for earlier production of the initial seed electrons and thus the gap with a dielectric

260nm LED at particle broke down earlier in time given the same voltage rise time.

X=550um
Y=150um
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- Electrons diffuse through the background neutral gas and attach
to O, through 3-body collisions

e Gives initial density distribution for e & O, which varies with
random number seed

- Run multiple simulations (and vary O,:N, ratio) and observe variance in breakdown time for the empty gap vs. a gap with a dielectric particle

References

[1] C. Moore et al., “Development of Kinetic PIC-DSMC Model for Breakdown in the Presence of a Dielectric”’, ICOPS, Banff, 2016

[2] C. Moore et al., “Development and Validation of PIC/DSMC Air Breakdown Model in the Presence of Dielectric Particles,” Pulsed Power Conference, Austin, TX, 2015.

[3] A. Fierro et al., “Discrete Photon Implementation for Plasma Simulations,” Physics of Plasma, 23, 013506, 2016.

[4] H. Hjalmarson et al., “Calculations of Photoemission from Rutile,” APS Meeting, San Antonio, TX, 2015.

[5] A. Ponomarev and N. Aleksandrov, “Monte Carlo simulation of electron detachment properties for O, ions in oxygen and oxygen:nitrogen mixtures,” PSST 24, 035001, 2015.

le+12

le+11

L
L

: Turn off LED after 10ns and ramp the anode voltage at 250 kV/us

Hmm! mmEniii R R R A1 nnatii [m

1.0e+10

45 U.S. DEPARTMENT OF

JENERGY

TYAT o34
IV A" R4

National Nuclear Security Administration

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC:, a wholly
owned subsidiary of Honeywell internationat, inc., for the U.SDepartment of Energy's National Nuclear Security: Administration under contract DE-NAG003525:




