
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

An approach to Air-gapped Deployment

Joseph Gonzalez

Sandia National Laboratories

SAND2017-5348C

What Am I Covering?

 How we are deploying Chef in an air-gapped environment
 (Guidance from a couple of smart Chefs)

 The development process(currently)

 How/Why

How Am I Covering

 Who Am I?

 About me

 Our Project

 Architecting The Solution

 Organization Deployment(Chef-Countertop)

 Cookbook Pipeline

 Related Development

 Advice For New Developers

 Closing

WHO AM I?

About me

 From California

 Bachelors in Computer Engineering

 California State University Sacramento

 Alumni 2016

 Professional Experience

 Hewlett Packard Enterprise

 Sandia National Laboratories (Solutions Architect)

 New to Devops

 New to Chef

Interests

 3D printing

 Arduino, Pi, CNC

 Building software

 Apps, games, scripting

 Lifelong student

What is Sandia?

 Part of the U.S. Laboratory System (NNSA)

 NM, CA

 WWII Manhattan project (1948)

 Government agencies, industry, and academic institutions

 Primary Mission: “The synergy and interdependence between our
nuclear deterrence mission and broader national security
missions forge a robust capability base and empower us to solve
complex national security problems” – Sandia

 Missions that support national security

LETS BEGIN

Why Does This Matter

 Deployment

 Troublesome – Internet Dependent

 ChefDK, Chef-Server, Chef-Node packages

 Target environments are restricted

 Corporate restrictions

 Proxy

 Certificates

 Limited Internet

 Air-gapped networks

Why Does This Matter

 Automation & Configuration management

 ease system setup

 Adds visibility

 Adds traceability (as code)

 Can add network dependencies

 No internet access!!

 Issues moving Infrastructure code

 Development - > Production

 No magic, things don’t just work out

 How do we get to were we want to be?

 Automate configuration, install packages, setup our systems(machines)

OUR PROJECT

Project Deliverable

 Full stack delivery
 infrastructure-> runtime->applications

 Machines
 Run in a private facility

 Air-gapped environment

 Build traceability

 No manual machine installation

 Code traceability

 Installed on-site

 No internet delivery

Why did we choose Chef?

 Complex

 Installation and software need automation

 Operations

 System state

 Keeps systems in predictable states

 Test environments confidence

 Reproducible machine states

 Two forms of delivery

 Machines as Chef Orgs (Large updates/Machine VM upgrades,
NICS etc.)

 Cookbooks to upload (minor updates)

 REPODUCIBILITY REPODUCIBILITY REPODUCIBILITY
REPODUCIBILITY !!

My Role

 To Architect the way we use Chef

Automate with Chef & Pipelines (CI/CD)

 Probably more roles 

Obvious Issues

Chef Components

Provisioning Gems
– Disparate workstations

Putting an Org together
 Bootstrapping w/knife requires internet connection

– Proxy is now an issue

 SSL issues

Getting around issues

Assume air-gapped
 Stop “insecure”

 Stop adding your internal proxies to deliverable products!
(Don’t do that)

 For recipes
 Dependencies into cookbook

Simplify (No Berkshelf)

Don’t hand off responsibility

Avoid resources using drivers

ARCHITECTING THE SOLUTION

Components of Development

1.Chef-Countertop (Deployer)

2.Cookbook Pipeline

Chef-Countertop (Deployer)

 Goal
 Turns a machine into a chef machine(server, node, workstation)

 Includes packages
 server, node, chefDK artifacts

 Artifacts inside cookbook

 Doesn’t rely on Artifactory/Nexus/FTP Servers

For now…

 Comparable solution to what is shown by Chef

 Utilizes chef’s “machine” resource
 Calling options for “converge_only”

 ^ Does not install chef

CHEF-COUNTERTOP

Chef-Countertop

VM 3VM 1 VM 2
Local
Machine

Run : “chef-client -z”SCP: Chef rpm

1.1.1.1 3.3.3.32.2.2.2

Chef RpmExec: Install Chef

Chef

Node
Check-in To Server

Chef-Countertop

Client.rb
Chef
Zero

Server

Converging…
• Installs Chef Server
• Configures Chef

Server
• Cut the Cord (Client)

Chef
Server

Production Server
• Be what you were meant to

be!!!!!!!

Production Workstation
• Very similar process for the setup
• Connect as a Node
• Checks in & caches Cookbook
• Converges

• Installs ChefDk
• Configures connection to the

new Chef-Server
• Cuts the cord(Client)
• Connects to new server
• Grabs Productions artifacts

from cache
• Pushes Production cookbooks
• Pushes Production Policies

Node

Chef-Countertop

Chef-Countertop

Production
Cookbooks

Policy FIles

Chef
Workstation

The production workstation is up!
• Is a normal workstation
• Use it like one
• Can be used to update cookbooks or

policies later
• Or can be destroyed and re-

provisioned

Production Nodes
• Very similar process for the setup
• Local machine installs chef on

target
• Connect to local machine as a Node
• Checks in & caches Cookbook
• 1st Convergence

• Client.rb -> New Server
• Server location
• Policy

• Iptables configure
• 2nd Convergence

• Production convergence
• Checks into production server
• Executes its production role

Chef
Node

Skelton Machines - > Production Set!!!

Chef-Countertop

 Setup to be a custom
resource

 Gets called from an
organization cookbook

 Defines your project setup

Lessons Learned

 Chef-Ingredient Cookbook

 Internet

 SRC similar process

 Creating machines

 Easier to have machines pre-provisioned (stood-up)

 Vagrant-Vmware adds more layers

 Chef calls Vagrant -> Vagrant -> Vmware

 Hand-off

 Dissimilar result machines are great for deploying to different
environments

– Dockers, AWS…

 Not necessary

COOKBOOK PIPELINE

Cookbook Pipeline

 Gitlab-Runner

 3 Classes of cookbooks

Classes

Resource CookbookResource Cookbook

Role CookbookRole Cookbook

Organization CookbookOrganization Cookbook

Cookbook Pipeline

 Components

Workstati
on

Workstati
on

NodeNode

ServerServerCookbookCookbook
CookbookCookbook

CookbookCookbook

Cookbook Pipeline

Deploy
To Target

Org

Deploy
To Target

Org

InspecInspec
Reinstate

Org

Reinstate

Org

• Knife-Vsphere destroy temp org if
successful

• Knife-Vsphere Boot up original chef-org
• Was this a successful run ?

• Runner runs Inspec against node
• Do they pass?

• Code is pushed
• Gitlab-Runner picks up cookbook
• Runner uses Knife-Vsphere to clone

running chef-org
• Turns the original chef-org off
• Uploads cookbook to chef-server
• Places policyfile on node
• Invokes Run

Upload

to

Chef-Server

Lessons Learned

 Machine Persistence

 Running cookbooks on the pipeline org puts the machine into
unknown state

 Kitchen style provisioning

 Create machine, run cookbook , destroy it

 Fresh machine, in a known state

 Larger scale w/Vmware Vsphere using special images similar to production
images

 Cookbook Dependencies

 Role cookbooks have dependencies

 1 chef server for all of our work

 Validated -> push

 Cloning a real org eliminates the dep problem (Custom cookbooks)

– The cloned server now has all the cookbooks that have passed the pipeline

– No supermarket (Needs more investigation)

 Dependency Management !!

Lessons Learned

 Enforce Cookbook order
 Cookbook dependent order

 Cookbook needs to exist on server

 Separate developers from accessing chef server
 People are not uploading broken code (layer of safety)

 No need to link knife to a server

 Easier because we have proxies and certificate authorities that
bypass

 Knife-Vsphere
 Very handy

 Easy to script from gitlab-runner

 Recommended for provisioning datacenters

RELATED DEVELOPMENT

Application Pipeline

 Gitlab

 2 Repos per application component

 Complimentary repos work together

 Automated build process

 Committing code to application repo triggers new Docker image builds

 Passes build artifacts

 Cross project pipelining

App
Repo

Docker
Repo

Container

Why ?

 Automation

 Docker single artifact

 Chef ->App->single artifact

 Single Recipe Install

 Chef add registry polling

Artifacts

 Cached Artifacts from Dev->Prod

 Artifacts not stored within Cookbook

 Separates Cookbooks logic from data

Continued Development

Chef-Countertop Pipeline

 How do we test this?

 Very similar to regular cookbook pipeline

 Stages

 1 . Stand up clones in Vsphere per target machine

 2. Using chef org in Vsphere (3 from ealier) scp cookbook to workstation

 3. From workstation run chef-zero

 4. Destroy clones

 Target machines will become a chef production organization

 Machines in our case should not have chef on them

 Organization-cookbooks should install chef/ then install production cookbooks

Chef-Countertop Pipeline

 Organization cookbook developed last

 All production cookbooks(Role cookbooks) are zipped into Org-cookbooks

 Therefore they should be done developing

 This cookbook will run from local workstation to standup production environment
machines from ground-up (0 -> production ready)

P
ro

je
c
t

–
A

-S
e
t

P
ro

je
c
t

–
A

-S
e
t

Nexus
cookbook

Nexus
cookbook

Database
Cookbook
Database
Cookbook

Firewall
cookbook
Firewall

cookbook

ADVICE FOR NEW DEVELOPERS
..and maybe some current

Virtual Machines

 Attach enough NICS

 Separate NICs per responsibility

 1st NIC for Chef connections

 2nd NIC for Operational functionality

 Nth NIC for other management VNC/SSH

 Why?

 Separate connection downtime

 If production operation changes IP/Downtime chef will stay up

 Breakage during operations ->FIX it with chef!

 Create iptables/routing to ensure strictness

Virtual Machines

 Single NIC
 Recipe to change IP could break connection to chef server

 Using Chef-Countertop requires constant connection to workstation
 Will fail if connection times-out

Pipelines

 Gitlab-runner/Jenkins

 Runner logic wait before Inspec

 Resetting IP recipes/service

 Transient Machines

 Much easier to start fresh on new copies than to guess state

 Script this …obviously......seriously.....

 Containerize software

 Application layer can be easily deployed with Docker

 Makes chef scripts simpler separates application settings/system configuration

Recap

 Architecting The Solution
 Organization Deployment(Chef-Countertop)

 Assume airgapped for also development

 Countertop contains all dependencies

 Bootstraps without knife (recipes)

 Utilizes machine resource “converge_only”

 Organization cookbook per project
– Defines your project

– Traceability of machines

– Versioning machines

 Cookbook Pipeline

 Hard classification of types of cookbooks

 Similar process to kitchen

 Large scale

 Chef organization sitting in vsphere

 CI controls all mechanisms

 Cloneable org

 NO ONE UPLOADS TO CHEF-SERVER !!!!!!!!!!

Closing

 Interesting Techniques

 Chef newbie

 Included as much as I could to help you be successful

 Pipelines

 Restricted internet

 Development process is still evolving

 Learning more everyday

 Glad to be allowed to explore this immense world

 Very immense

Thank you!

