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Gradient-Enhanced Polynomial Chaos Methods
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1 Introduction

Sensitivity analysis and uncertainty quantification (UQ) are important capabilities
for circuit simulation. In this paper, sensitivities refer to the derivatives of an objec-
tive function with respect to parameters. These parameter sensitivities give a local
indication of the important parameters governing a response at a particular point.
UQ allows one to understand the probability distribution of the response, given
probability distributions on the input parameters.

Sampling methods are commonly used to perform UQ. While sampling is an at-
tractive approach for several reasons (e.g it is repeatable given a particular seed, it
is fault tolerant in the sense one can drop failed sample evaluations, and it is easy
to understand), sampling suffers from the curse of dimensionality. A large number
of samples are required to estimate the output statistics, especially to resolve small
tail probabilities. The accuracy of the mean estimate obtained form a set of random
samples exhibits 1/y/N convergence, meaning that on average one needs to quadru-
ple the number of sample points N to halve the error. Although many improvements
on sampling schemes have been developed to overcome these limitations, such as
Latin Hypercube Sampling [1,2] and space-filling designs, the essential limitations
of sampling still remain.
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A recent interest in the computational simulation community is the use of more
“embedded” UQ methods, in which the UQ algorithm is intrusively built into the
simulator. As an example, in reference [3], an intrusive Galerkin based polynomial
chaos expansion (PCE) method was demonstrated in a circuit simulator. However,
the implementation required heavy instrumentation of the device models, which
would be impractical in most production simulators.

There are categories of UQ method which require some simulator modification,
but for which the required modifications are less burdensome than those neces-
sary for fully intrusive Galerkin-based PCE. Specifically, if a simulator has been
instrumented to efficiently produce parameter sensitivities [4-6], these can be used
to enhance both the accuracy and runtime of several nominally non-intrusive UQ
methods [7].

We outline the formulations for this UQ method, and demonstrate the computa-
tional savings that can be gained when using accurate sensitivities from an applica-
tion code in the UQ process. The approaches and algorithms described in this paper
are in implemented in two software frameworks: Xyce [8], a parallel circuit sim-
ulator developed at Sandia National Laboratories, and Dakota [9], an optimization
and UQ toolkit also developed at Sandia. Both are open-source software packages
available at https://info.sandia.gov/xyce and https://dakota.sandia.gov, respectively.
However, it should be emphasized that the algorithms and approaches presented
here are general, and applicable in other computational domains.

2 Transient Sensitivities

Many UQ techniques can be enhanced if the application code is able to produce
parameter sensitivities with respect to objective functions of interest. In this paper, a
high-level overview of direct and adjoint transient sensitivities are given. For a more
detailed description the reader is encouraged to look at references [4—6]. For this
work, our interest is in transient dynamical systems represented by the differential-
algebraic equation (DAE) form:

dq(x(t,p),p)

F('x)t7p): dt

+j(x(t,p),p)—b(t,p)=0, (D
where x € R™ is the DAE solution, which will satisfy F = 0 for all p. In circuit
simulation, x consists of nodal voltages and branch currents. p € R is a set of
input parameters. ¢ and j are functions representing the dynamic and static circuit
elements respectively, and b(¢) € R™ is the input vector. In circuit analysis, ¢ mostly
contains capacitor charges, j contains resistance terms and b contains independent
current and voltage sources. As such ¢, j and b are populated by the various circuit
element models (also referred to as “compact models”) supported by the circuit
simulator. Transient analysis of Eq. (1) requires an implicit time integration method
such as Backward Euler (BE) or the trapezoid rule. F € R™ is the residual equation
vector that is minimized by Newton’s method at each time step to solve for x.
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We are also interested in objective functions of the dynamical system, O(x, p) €
R"0. For circuit simulation, the objective function could be a circuit output voltage,
or something more complex, such as a signal delay. A sensitivity is the derivative of
O with respect to p, which can be expressed using the chain rule giving:

do 80(8F>'8_F 20

- Ox 819—‘_8197

2= )

where x and F have the same meaning as in Eq. (1). The right-hand side of Eq.
(2) contains the product of several matrices, which each have different dimensions.
d0/dx is of dimension g X n,. The Jacobian matrix dF /dx is of dimension n, X ny,
and will generally be available in any simulator that solves Eq. (1) using implicit
methods. The derivative vector dF /dp is referred to as the “function derivative”, is
of dimension n, X n,, and must be populated by the various compact device models.
In modern circuit simulators, with complicated device compact models, computing
dF /dp can be challenging and may only be practical with automatic differentiation
(AD). For this Xyce uses the Sacado AD library [10].

Sensitivities can be computed using two different methods; the direct method
and the adjoint method. The difference between direct and adjoint is related to the
order in which the terms of Eq. (2) are computed. For problems with large num-
bers of parameters 7, and a small number of objectives np, the adjoint method is
usually more efficient. For the opposite case, the direct method is a better choice.
Transient direct and adjoint sensitivities are briefly described in Sections 2.1 and
2.2 respectively.

2.1 Transient Direct Sensitivities

Transient direct sensitivities can be derived by following the approach described by
Hocevar [4]. For any integration method, a transient direct sensitivity DAE equa-
tion can be derived by differentiating the original DAE (Eq. (1)) with respect to a
parameter, p:

dF(x,t,p) _ d [dq(x(t),p)

dp  dp o~ +i0(0),p) = b(tp)| =0 3

A numerical solution to Eq. (3) is obtained using an implicit time integration
method. If using BE, the expanded direct sensitivity DAE equation is determined
by substituting the BE formula for dg/dt and expanding the ¢ and j derivatives
using the chain rule (for example dq/dp = dq/dx- dx/dp+ dq/dp). This gives:

Jacobian Function Derivative Chain Rule term

—~
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where i is the time step index, and A; is the time step size going from step i — 1
to step i. Similar formulas can be derived for other integration methods. Eq. (4) is
solved at each time step once the Newton loop for the original DAE has converged.
The Jacobian matrix on the left-hand side of Eq. (4) is the same Jacobian as the one
used in the original DAE solve, so it can simply be reused. Note that the “function
derivative” on the right-hand side of Eq. (4) is equivalent to dF /dp in Eq. (2), and
the Jacobian in Eq. (4) is the equivalent to dF /dx from Eq. (2).

2.2 Transient Adjoint Sensitivities

Transient adjoint sensitivities [5, 6] can be broadly classified into two categories:
discrete adjoint sensitivities (in which one applies the adjoint operator after dis-
cretizing the direct sensitivity DAE) and continuous adjoint sensitivities (in which
one applies the adjoint operator first, and then discretizes). For the sake of brevity,
this paper describes the discrete adjoint form [5].

For the discrete transient case, it is convenient to consider the entire transient in
block matrix form. If a transient simulation consists of N time points, then all the
time points can be considered in a single block matrix equation:

F=Q+J-B=0, 5

where F is the block residual vector given by F = [Fy, Fy, ..., Fy]”. The other terms
in the equation: X,Q, J, and B are block analogies of the original DAE equation
terms: x, g, j, and b, respectively. For conventional time integration methods, the
block Jacobian is a lower triangular block matrix:

R
9xo
JF JF]
o) | (52) (5) ©
X : C ’
()
3xN
where the block linear system is:
JOF oF
—0=— 7
X op’ @)

and where ® = [6,,0),..., @N]T is the derivative of the solution X = [xo,x{, ..., xy]”
with respect to a parameter value p. e.g., ©y = dFy/dp. The block matrix is banded
and upper triangular. Intuitively, solving this block linear system requires one to start
with the upper left-hand corner of the matrix (at the first time point), and use forward
substitution to solve the system. Doing this is analogous to integrating forward in
time. For BE, the equivalent equation corresponding to block row i in Eq. (6) is:
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8E 8xi 8F, 8x,~,1 8E

) + 5 ®)

dx; ) dp oxi_1/) Odp dap
Eq. (8) is equivalent to Eq. (4), when the residual F is expanded using the BE for-
mula. dF;/dx; is the Jacobian, dF;/dp the function derivative and dF;/dx;_; the
block matrix off-diagonal, or “chain rule term”.

One can obtain the discrete adjoint form by taking the transpose of the Eq (6).
The resulting block Jacobian has the form of an upper triangular matrix:

aR\" (or\"
6x0 6x0
9F;

EyL o ®

JX ’ :
_ (32) )

where the block linear system is:

JF\" . 90,
(8_X> O =X (10)

and where @~ is often referred to as the adjoint. There is a unique adjoint solution
for each time point k. Similarly, the local objective function O at each time point k is

considered to be a unique objective function, so O, is % = [O, 0,..., %—fk’f, s, 0, 0} T.
The matrix in Eq. (9) is upper triangular, so the solution requires a backsolve, start-
ing in the lower right-hand corner at the final time point. This corresponds to inte-
grating backward in time. As with direct methods, a variety of integration methods
can be used to compute ®*. The BE form, corresponding to a single block row of

the transposed block system, is given by:

' T a7 T
{]aq%@] ei*z[ : aq’“] ei:1+(a—0) . (11)

hi dx; | Ox; hiy1 OXiy ox;

Eq. (11) is evaluated in a loop stepping backward from the final time to the initial
time.

Once Oy has been computed for a specific time point , it can be used to obtain
dOy/dp by taking the dot product with JF/dp. In block matrix form this is given
by:

F
@ = @/: . 8_ (12)

dp ap
The derivative JF/dp is the function derivative. In the special case where O =
x, then % =[0,0,...,1, ...,O,O]T and equation (12) provides dx/dp for a specific

time point. If computing dx/dp for multiple time points, then a separate reverse
integration and dot product evaluation is required for each one.
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For transient adjoint sensitivities, it is necessary to completely solve the original
DAE (Eq. (1)) for the entire time range first, before solving the adjoint equations to
obtain sensitivities. Information must be saved during the forward solve in order to
populate the Jacobians in Eq. (9), and the function derivatives in Eq. (12). For long
transients this can require a lot of storage, a drawback of transient adjoints.

3 Polynomial Chaos Expansion Methods

Stochastic expansion UQ methods approximate the functional dependence of the
simulation response on uncertain model parameters by expansion in a polynomial
basis [11, 12]. The polynomials used are tailored to the characterization of the un-
certain parameters. PCE is based on a multidimensional orthogonal polynomial ap-
proximation.

In PCE, the output response is modeled as a function of the input random vari-
ables using a carefully chosen set of polynomials. For example, PCE employs Her-
mite polynomials to model Gaussian random variables, as originally employed by
Wiener [13]. Dakota implements the generalized PCE approach using the Wiener-
Askey scheme [11], in which Hermite, Legendre, Laguerre, Jacobi, and generalized
Laguerre orthogonal polynomials are used for modeling the effect of continuous
random variables described by Gaussian, uniform, exponential, beta, and gamma
probability distributions, respectively. These orthogonal polynomial selections are
optimal for these distribution types since the inner product weighting function cor-
responds to the probability density functions for these continuous distributions.

To propagate input uncertainty through a model using PCE, Dakota performs
the following steps: (1) input uncertainties are transformed to a set of uncorrelated
random variables, (2) a basis such as Hermite polynomials is selected, and (3) the
parameters of the functional approximation are determined. The general PCE for a
response O has the form:

J
O(p)~ Y o;¥(p), (13)
j=0

where each multivariate basis polynomial ¥;j(p) involves products of univariate
polynomials that are tailored to the individual random variables. The response O
is analogous to the objective function O described in Section 2, except that here the
input parameters p are considered to be random variables and in Section 2 they are
considered deterministic. If a total-order polynomial basis is used (e.g. a total order
of 2 would involve terms whose exponents are less than or equal to 2, such as p;2,
p22, and p;p, but not p;%p;?), the total number of terms N in a PCE of arbitrary
order k for a response function involving n uncertain input variables is given by:
(n+k)!/(n'k!). If on the other hand, an isotropic tensor product expansion is used
with order k in each dimension, the number of terms is (k+ 1)". If the order k of the
expansion captures the behavior of the true function, PCE methods will give very
accurate results for the output statistics of the response.
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In non-intrusive PCE, as in Dakota, simulations are used as black boxes and
the calculation of the expansion coefficients ¢; for response metrics of interest is
based on a set of simulation response evaluations. To calculate these response PCE
coefficients, two primary classes of approaches are used: spectral projection and
regression. The spectral projection approach projects the response against each ba-
sis function W;j(p) using inner products and employs the polynomial orthogonal-
ity properties to extract each coefficient. Each inner product involves a multidi-
mensional integral over the support range of the weighting function, which can be
evaluated numerically using sampling, tensor-product quadrature, Smolyak sparse
grid [14], or cubature [15] approaches. One advantage of PCE methods is their con-
vergence rate [12]. For smooth functions (i.e., analytic, infinitely-differentiable) in
L, (i.e., possessing finite variance), exponential convergence rates can be obtained
under order refinement for integrated statistical quantities of interest such as mean
and variance. A disadvantage of non-intrusive PCE methods is that they may not
scale well to high dimensions. Recent research in adaptive refinement and sparse
recovery methods strives to address this limitation [16].

In this work, we use regression-based PCE. Regression-based PCE approaches
aim to solve the linear system:

Ya~R (14)

for a set of PCE coefficients @ that best reproduce a set of response values R. The
regression approach finds a set of PCE coefficients o; which best match a set of
response values obtained from a sampling study (e.g. a design of computer experi-
ments producing an unstructured grid of sample points sometimes called collocation
points.) on the density function of the uncertain parameters [17]. The convergence
of regression-based PCE approaches has been studied. It is possible to bound the
number of samples necessary to identify the coefficients in the PCE expansion by
using the bounds on the spectral radius of a random matrix consisting of the sam-
ple points [18]. Convergence analyses focus on the number of samples and sampling
approaches for stable and accurate solution recovery. The concept of a coherence pa-
rameter is used, which is a bound on the realized spectral radius of W%, where W is
a diagonal, positive definite matrix. Solution recovery of the PCE coefficients using
regression PCE can be guaranteed with a number of samples that is proportional
to the coherence times logarithmic factor in J, the total number of basis polynomi-
als. In some cases, the number of samples required to recover the PCE coefficients
scales linearly or nearly-linearly with the number of basis polynomials [18].
Additional regression equations can be obtained through the use of derivative
information (gradients and Hessians) from each collocation point, which can aid
in scaling with respect to the number of random variables, particularly for adjoint-
based derivative approaches. This idea is the main subject investigated in this paper.
The derivative equations are added to the set of regression equations as follows:

do(p) < d¥(p)
s NZ(x, TR (15)
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Eq. (15) is simply the derivative of the PCE response equation (Eq. (13)) with re-
spect to the random variables of the UQ analysis. The left-hand side is ideally pro-
vided by sensitivity calculations performed by the simulator, such as described in
Section 2.

Various methods can be employed to solve Eq. (14). The relative accuracy of
each method is problem-dependent. Traditionally, the most frequently used method
has been least squares regression. However when ¥ is under-determined, mini-
mizing the residual with respect to the L, norm typically produces poor solutions.
Compressed sensing methods have been successfully used to address this limita-
tion [19, 20]. Such methods attempt to only identify the elements of the coefficient
vector @& with the largest magnitude and enforce as many elements as possible to be
zero. Such solutions are often called sparse solutions.

The convergence of gradient-enhanced regression PCE has been studied re-
cently [21], where the authors show that the inclusion of derivative information and
appropriate normalization will almost-surely lead to improved conditions for suc-
cessful solution recovery. Reference [21] presents theoretical, probabilistic bounds
regarding solution recovery for regression-based Hermite PCE with derivative in-
formation. This work suggests that adding gradients to the regression formulation
will improve the solution recovery at a lower overall computational cost.

Dakota provides several algorithms that solve the regression formulations for
PCE, including orthogonal matching pursuit, least angle regression (LARS), least
absolute shrinkage (LASSO), basis pursuit, and a standard least squares. Typically,
we recommend using least squares for over-determined systems and compressed
sensing methods for under-determined systems, which is the case when the basis
functions are augmented with additional basis functions representing gradient terms.
Details of these methods are documented in the Linear Regression section of the
Dakota Theory Manual [22].

4 Results for CMOS Inverter Circuit

In this section, we demonstrate the use of gradient-enhanced PCE methods on a
five-stage CMOS inverter (Fig. 1). This circuit uses 10 instances of the BSIM6 [23]
compact model, which in Xyce is instrumented with AD [10] to provide analytical
parameter sensitivities (the “function derivative” term described in Section 2). The
only other circuit element is a step input voltage source. The system to be solved is
has 60 unknowns, most of which are nodal voltages. The dq/dx Jacobian is singular,
so the system is a pure DAE system. The transistor models all include nonlinear ca-
pacitances. The capacitances from the first inverter form loops with the ideal voltage
source input, meaning the circuit has a DAE index of two [24,25].

In digital circuits signal delay is an important performance metric. Capacitive
effects are significant delay contributors, and in this circuit example each inverter
stage adds to signal delay primarily through the gate oxide capacitors. Gate ox-
ide thickness (referred to here as ) is thus a critical uncertain parameter, and is



Gradient-Enhanced Polynomial Chaos Methods for Circuit Simulation 9

specified as a parametric input to the BSIM6. For the purposes of this study, all 5
NMOS devices are assumed to have the same Jy and all 5 PMOS devices are as-
sumed to have the same Jp, giving 2 uncertain scalar parameters. We model these as
Gaussian-distributed uncertainties, centered around a nominal value with a standard
deviation of 10% of nominal. The means of 8y and dp were 1.74E-9m and 2.34E-
9m, respectively. The other non-uncertain transistor parameters we used are taken
from the BSIM6 benchmark tests.

<
o
o

vdd vdd

g% gw

agﬂ

=
| S
— L,
TV Lag

Fig. 1: CMOS circuit with five inverters.

The output of interest is the output voltage V,,, and a result from a forward Xyce
calculation is plotted in Fig. 2. The left plot shows transient voltages for the input
node, the third inverter output node, and the fifth inverter output node (V). In an
ideal circuit, there would be no delay between the input and output transitions, but
in this more realistic circuit that is not the case. The output voltages transition from
the high state to low with some time delay after the step input, and each inverter
adds additional delay to the signal. The V,,, sensitivity with respect to 8y and Jp is
shown on the right. Both are sharply peaked near the V,,, transition. In this example
n, = 2, so the direct method (Section 2.1) was used to compute the sensitivities.
However, an adjoint method (Section 2.2) produces identical results.

To quantify delay, we used a generalized Elmore delay [6] as our objective func-
tion. If g(t) = V,,, is the transient response of a node in an electrical network to a
step input, the delay Tp is approximated as the centroid of its time derivative g'(r):

W) -t-di _ [7g(1)-1-dt

Tp = (16)
[Eg@wde— g(B)—g(A)
The parameter derivative formula for 7p is given by:
d !
dTp  J3 G5 (0)1-di = Tol [3(B) — g(A)] -

dp g(B)—g(A)

The quantities Tp, dTp/dSy and dTp/ddp are computed with Egs. (16) and (17)
using Xyce-computed values of Vs, dVpyu /dOy and dV,, /dSp for a sequence of
time steps. The integrals are approximated numerically using trapezoid rule. The
time points A and B are simply the initial and final times of the simulation.
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Fig. 2: Behavior of CMOS circuit exhibiting signal delay

We performed UQ on the CMOS circuit using a variety of UQ techniques. As a
baseline, we performed LHS with 100 and 1000 samples. Then, we performed PCE
using a full tensor product quadrature of order 5 for each of the two input param-
eters, requiring 25 sample points. Finally, we performed two types of regression-
based PCE. In the first, we used 30 samples without gradients. In the second, we
used 10 samples, where each sample included two gradient values, d7p/dy and
dTp/ddp. Thus, the last PCE calculation used 30 pieces of information comparable
to the 30 sample regression PCE with no gradients, but only required 10 samples.

| === LHS 100 Samples
L LHS 1000 Samples
0.8} PCE 25 Quadrature
| PCE 30 Regression 7
PCE 10 Regr + Deriv | -/

Table 1: Various UQ Method Results

Number of samples Tp Tp
and UQ method Mean Std Dev.

100 LHS 2.0781E-7|6.6309E-9
1000 LHS 2.0782E-7|6.6935E-9
i 25 PCE Quadrature|2.0783E-7|6.6954E-9
] 30 PCE Regression |2.0783E-7(6.7131E-9
10 PCE Regression |2.0782E-7|6.7035E-9

with derivatives

CDF

T -
2.2E-07

L
2E-07 21E-07
Elmore Delay (seconds)

Fig. 3: CDFs for inverter delay (7p)

The use of sensitivities in performing uncertainty analysis is highlighted in Fig.
3 and Table 1. As shown in the figure, the cumulative distribution function (CDF),
which gives the probability that 7p is less than a particular value, is almost the same
for an LHS sample of size 1000 and all of the PCE methods. The CDF curves for
LHS 1000 and for all of the PCE variants overlay each other. The only one that is
noticeably different is the 100 sample LHS result. Table 1 shows that the mean 7p
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values are very similar, differing only in the fifth significant digit. Finally, the stan-
dard deviations show a little more variability, but again are reasonably close. We
conclude that a PCE using sensitivities from Xyce (the 10 PCE regression case) per-
forms comparably to 1000 LHS samples. Including gradients increases the cost per
sample, but this additional cost is negligible for small problems. For small n,, linear
solves are less than 10% of total runtime. As a result, the two extra linear solves for
each direct sensitivity time step do not incur much computational expense.

5 Conclusions

This paper explored a new approach to circuit level UQ, based on gradient-enhanced
PCE. PCE is a non-sampling, projection-based technique, in which parametric
uncertainties are approximated using an expansion of orthogonal polynomials.
Regression-based PCE can be enhanced by parametric sensitivities from the sim-
ulator, which offers the possibility of similar accuracy with fewer samples. In this
paper, transient sensitivities are described, and the successful application of these
sensitivities to gradient-enhanced PCE has been demonstrated.

Acknowledgements The authors gratefully acknowledge the anonymous reviewers for their care-
ful reading of the manuscript and their valuable suggestions to improve various aspects of this

paper.
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