
SAND2017-5287C

Thank you for attending NIWeek 2017.

ni.com

A software-centric platform that accelerates the development and
increases the productivity of test, measurement, and control systems.

ni.com

Tim Vargo

Instrumentation Engineer

tdvargo@sandia.gov

Owner

ravi@binarypalette.com

Ravi Beniwal

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Exceptional service in the national interest

Tried & True, Conventional Debugging Tools
… which still work very well, but with limitations

Built-in Debug Tool Pros Cons

Execution Highlighting Visualizes data flow Slows execution speed
(impedes discovery of
timing problems)

Single Stepping One operation at a
time

Slows execution speed
(impedes discovery of
timing problems)

Breakpoints Pause execution at this
exact point
(useful for beginning
execution highlighting and
single stepping)

Persistent
(must remember to remove
them before deployment)

Probes !!!

 Generic (default) Probes
 Retain Wire Values

 Custom Probes
 Custom Probes Conditional (native)

 Custom Probes Controls (look Mom, no code!)

 Custom Probes New… (roll your own)

 An awesome suite of custom probes
 by Saphir, 3rd party, Free, ViBox – Probes

 Variant Probe
 Courtesy of LAVA member Ton Plomp

Tried & True, Conventional Debugging Tools
… which still work very well, but with limitations

Built-in Debug Tool Pros Cons

Default Probes Peek at wire values
throughout execution

Difficult to place in
clones, Non-persistent

Conditional Probes + “pause if value” logic Not available for all
datatypes

Custom Probes + custom view
and/or actions

Per LV version

Often forgotten, overlooked,
or just plain ol’ “huh,	I-never-knew-about-that”

Suspend when called
 Access this from “SubVI Node Setup”
 Suspends a subVI when called and waits for user interaction

 Allows changes to input values, then re-execute

 Allows changing the output, then return to caller

 A poor-man’s (yet extremely effective) unit testing

 Video Demo: https://youtu.be/AgXcyf2Ta_A

There are many Free, 3rd-party Debugging Tools
These two will retain information even if LabVIEW crashes!

 WinDebugLogging

 Write debug strings to the Windows debug
interface

 Dr. Damien (DFGray), Nov-2008
 DebugView (from Sysinternals [Microsoft])

 WinDebugLogProbe
 Tim Vargo

More NI debugging tools

 Event Inspector

 Introduced with LabVIEW 2013, the Event Inspector added an ability to gain new
understandings into the inner workings of our event structures

Built-in to LabVIEW

More NI debugging tools

 VI Analyzer

 VI Analyzer does its job well, but it intends to perform a static analysis of VIs, not a
dynamic analysis of code while running

Toolkits for extra cost (but worth it, IMHO)

More NI debugging tools

 Desktop Execution Trace Toolkit (DETT)

 The DETT product is very good at what it was designed to do

 dynamic execution traces provide a fantastic wealth of evidence when event timing and/or
sequence information is critical

 … but they don’t provide non-event related information

Toolkits for extra cost (but worth it, IMHO)

Some impediments to advanced troubleshooting …

 All of these built-in tools are extremely useful during
troubleshooting of individual VIs or small collections of VIs
 particularly when we already know which VIs are the troublesome

ones

 but the LabVIEW IDE still lacks a debugging tool to provide insights
with a "bigger picture" view of an entire project

Some impediments to advanced troubleshooting …

 Using only the native troubleshooting tools
 reentrant VIs are especially difficult to debug, since each

preallocated clone will have its own data space in memory

 shared clones can be even more complex, since they share data
space

 Dynamically launched VIs, even if not reentrant, present their
own particular frustrations during a debug session, since the
developer is unable to place probes BEFORE executing the
code.

As LabVIEW enthusiasts, we all love visuals

… but THESE visuals make our faces cringe, and our sphincters tighten

WHAT?! There are still VIs running?!

What to do when debugging becomes too complex ???

 How to defeat these shortcomings, and many other debugging related
challenges …

 have long been the topics of many user community discussions

 several ad-hoc solutions and processes, although usually quite limited in scope, have
been developed over the years by the user community

 but they lack the coherence of a unified tool

 Introducing the

LabVIEW Task Manager

 Providing a dynamic & big-picture view of all VIs currently in memory

 by delivering new comprehensions into your running code

 Conquering those difficulties concerning reentrancy, clones, dynamic launching,
finding & aborting hung VIs, and other sticky complications

 by enabling interaction with individual or groups of VIs in many various ways,
providing significant benefits while troubleshooting

The LabVIEW Task Manager seeks to be that missing unified debugging tool

Application Instance

The LabVIEW Task Manager (LVTM) detects all open LabVIEW application instances, but
discovers and displays VIs for only the selected instance

Menu: View

The View menu provides options to set an update speed for refreshing the view and a
few view options

Menu: View>>Group By Library

Group By Library displays all VIs in the selected application instance grouped by
the library they belong to. All VIs that are not part of any library are shown under
<no parent library>.

Menu: View>>Group By Folder

Group By Folder displays all VIs in the selected application instance with their
folder hierarchy on disk. This view makes it easy to see where all the project
dependencies live on disk.

Menu: View>>Flat List

Flat List displays all VIs in the selected application instance as a list. This view
can help sorting the view by different properties of the VIs, by clicking on the
column headers.

Menu: Filters

The Filters menu items provide several settings for
filtering out items from view

 Filtering out VIs that you don’t currently care about can tremendously
improve performance of the LVTM

 Certain dynamic properties of all VIs are occasionally checked and updated. The
more VIs that need to be checked, the more resources are tied up, and the longer
each update cycle takes.

 Also helps the user to de-clutter the view

Menu: Filters>>Extensions

Select (√) the file extensions that you want to filter out of the view. All files with
the selected extensions will be ignored.

Menu: Filters>>Types

Select (√) the VI types that you want to filter out of the view. All VIs of the
selected type will be ignored.

Shortcut Menu: Filter Out …

 While in the Group By Folder view, right click any folder and select Filter Out This Folder, adding that
folder to an exclusion list

 Or you can select Filter Out All But This Folder, which will add all remaining folders to the exclusion list

 Any VIs in these filtered out folders will no longer show up in the tree

Although filtered paths can
only be added or removed
while in the Group By
Folder view, the hidden
paths will also persist in
other views. This helps
the user to de-clutter the
view, and can also greatly
improve performance.

Menu: Filters>>Paths

 If one or more paths have been filtered out, they will show up under the
Filters>>Paths menu. Clicking any of these paths will remove it from the
exclusion list.

 Selecting Remove All will remove all filtered out paths, effectively disabling path
based filtering.

Progress Update

 Any time changes are made to the filters or to the view, the view is refreshed

 A progress bar, in the status bar at bottom right, shows the discovery and
update progress

Toolbar
LVTM provides several operations that can be performed on one or more selected VIs in the tree.
These operations may be invoked from the toolbar buttons at the bottom of the screen.

These same operations may also be invoked from the right click shortcut menu.

• Open Front Panel(s)
• Close Front Panel(s)
• Open Block Diagram(s)
• Close Block Diagram(s)
• Highlight Execution(s)
• Do Not Highlight Execution(s)
• Pause Execution(s)
• Resume Execution(s)
• Toggle Execution(s)
• Abort VI(s)

Helper Functions

Clone Beacon – Drop this VI into any asynchronously called reentrant VI,
to force it to be seen by LabVIEW Task Manager.

LVTM Pause – Drop this function into any VI you wish to pause, on the
condition that you are currently troubleshooting; as it will only pause if the
LabVIEW Task Manager is also running (so this pause will NOT occur if
you are not troubleshooting).

There are helper functions available to assist with your debugging efforts, and
these are available from the Functions Palette

And now for the

LIVE
DEMO
!!!!!!!!!!!!!!!!!!!!!!!

Demo Agenda
• …\examples\Industry Applications\Temperature Monitoring\Temperature Monitoring.lvproj

• Demonstrate what the LVTM shows when a couple of (async?) processes didn’t properly shut down after
the main application shut down. Unfortunately, these process refuse to abort, so continue looking for a
different example that would.

• ???

• Demonstrate remotely closing a modal front panel, which has caused all LabVIEW application instances
(including LVTM) to hang.

• ???

• Demonstrate
• ???

• Demonstrate
• ???

• Demonstrate
• ???

• Demonstrate

How to GET the tool …

https://lavag.org/files/file/245-labview-task-manager

How to CONTRIBUTE to the tool …

https://bitbucket.org/lavag/labview-task-manager

QUESTIONS?

ni.com

We must avoid “drawing vast conclusions from half-vast data”

— Jerry R. Ehman, SETI Astronomer

Before you go,
take the survey.

LabVIEW Task Manager

