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Data source: 
Renewable Energy Policy Network for 21st centry (REN21)
U.S. Energy Information Administration

• Increased consumption on 
renewable energy.

• Biomass remains the major 
contribution of renewable 
energy.

Biomass

Total renewable

Hydroelectric
Wind
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• Convert sugar/polyol by Pt-
Re catalyst. (Sorbitol as an 
example)

R. M. West, et al., Catalysis Today, 147, 115 (2009)

• Heterocyclic compounds is 
one category of products 
derived from the catalytic 
conversion.
 Solvents

 Blending agents in 
transportation fuels

• Tetrahydropyran is a basic 
structure of heterocyclic 
compounds.
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• Monoether analog of 
cyclohexane and core structure 
of sugars and polysaccharides.

-H +O2

OH, HO2

B. Rotavera, et al., Proc. Combust. Inst., 36, 597 (2017)

A. M. Knepp et al., Phys. Chem. Chem. Phys., 9, 4315 (2007)
R. X. Fernandes et al., Phys. Chem. Chem. Phys., 11, 1320 (2009)

• How oxygenation affect oxidation 
chemistry (and why)?

• Cyclohexane oxidation was 
studied previously combining OH 
/ HO2 measurements and theory.

• Tetrahydropyran (THP) oxidation 
was studied recently by 
monitoring the alkene 
production.

• Quantitative, direct laser 
diagnostic method to explore the 
key intermediates formation in 
the low temperature combustion 
regime
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� ∫ ����������� �� ����

�
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�����

�
+ � ∫ �������� �� ��� �����

�
*

* ��� = � � − ��� ≈ �� � − ���

Assume:

*J. D. DeSain, E. P. Clifford, and C. A. Taatjes, J. Phys. Chem. A, 105, 3205 (2001)

cyclohexane & methanol tetrahydropyran (THP) & methanol
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List of Rate Coefficients

Reaction Rate coefficient (cm3/molecule/s) Ref.

HO2 + HO2 → O2 + H2O2 2.2 × 10��� × �
���

� + 7.0 × 10��� × �
�����

�
(1)

HO2 + C6H11OO → C6H11OOH + O2 2.61 × 10��� × �
����

�
(1)

HO2 + OH → O + H2O
4.8 × 10��� × �

���
�

(1)

OH + OH → O + H2O
1.65 × 10��� ×

�

298

�.��

× �
���

�
(1)

OH + C6H12 → C6H11 + H2O
3.97 × 10��� ×

�

298

�.��

× �
��
�

(1)

OH + C5H10O → C5H9O + H2O
7.8 × 10��� × �

���
�

(2)

(1) A. M. Knepp et al., Phys. Chem. Chem. Phys, 9, 4315 (2007)
(2) J. Moriarty et al., J. Phys. Chem. A, 107, 1499 (2003)
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Cyclohexyl + O2 Reaction PES

A. M. Knepp et al., Phys. Chem. Chem. Phys., 9, 4315 (2007)
R. X. Fernandes et al., Phys. Chem. Chem. Phys., 11, 1320 (2009)
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Reduced Model – HO2

�
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��
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��

• Alkylperoxy-chemistry-centered reduced model.
• Solvable differential equations
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Solution of Differential Equations
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Reduced Model – OH
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• Temperature-sensitive slow 
HO2 formation timescales. 
Mainly governed by sequential 
HO2 formation.
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Cyclohexyl + O2: Fast/Slow HO2 Formation 
Ratio
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• HO2 integral profile correction 
includes HO2 + HO2 / OH / 
cyclohexyl peroxy.

• Good agreement with ratios 
computed from theoretical 
rate coefficients.

• At 750K, internal energy of 
reactants are high enough to 
make two timescales less 
distinguishable.

��� � = �� 1 − ����� + �� 1 − �����
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Cyclohexyl + O2: OH Formation Timescales
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• Experimental and theoretical 
timescales have good 
agreement.
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Cyclohexyl + O2: OH Formation Yield
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• Two distinct OH formation 
timescales started to appear 
at 650K and above.

• Sequential OH formation 
becomes major OH source at 
high temperature.

• Total OH yield doesn’t exceed 
3%.
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THP-yl + O2: HO2 Formation Timescales
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• Both fast and slow HO2

formation timescales are 
temperature in-sensitive.

• Ineffective PES adjustment*
based on cyclohexyl + O2 or 
insufficient pathways involved 
in reduced model.

*PES adjusted from cyclohexyl + O2 model by +2kcal/mol for ROO and -2kcal/model for TS.

��� � = �� 1 − ����� + �� 1 − �����
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THP-yl + O2: Fast/Slow HO2 Formation Ratio

 experimental ratio of fast HO
2
 formation.

 experimental ratio of slow HO
2
 formation.

• Unlike cyclohexyl + O2, the two 
HO2 formation timescales are 
switching their importance at 
550K.

• The two HO2 formation 
timescales are 
undistinguishable at 750K.

*PES adjusted from cyclohexyl + O2 model by +2kcal/mol for ROO and -2kcal/model for TS.

��� � = �� 1 − ����� + �� 1 − �����
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• OH formation shows two 
distinct timescales at 600K and 
above.

• The slow OH formation 
timescale has positive 
temperature dependence.

*PES adjusted from cyclohexyl + O2 model by +2kcal/mol for ROO and -2kcal/model for TS.

�� � = �� 1 − ����� + �� 1 − �����
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THP-yl + O2: OH Formation Yield
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• The slow OH formation 
reaches peak at 600K when 
the OH time trace shows two 
distinct formation timescales, 
but becomes lower as 
temperature increased.

• The max OH yield is ~30% 
among all temperatures, 
roughly 10 times higher than 
the OH production yield from 
cyclohexyl + O2.
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Conclusions

• Quantitative HO2 and OH formation timescales from Cl-initiated 
cyclohexane and tetrahydropyran oxidation have been measured by 
our IR absorption flow system.
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Conclusions

• Alkylperoxy-centered chemistry is proposed for a reduced model, 
and applied to analyze the experimental results.

� + ��

���
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Conclusions

• Major differences of THP oxidation have been observed by measuring 
key intermediates, and compared with cyclohexane oxidation:
 Slow (sequential?) HO2 formation timescales is temperature-insensitive.

 Contribution of slow (sequential?) HO2 production is high at lower 
temperatures and suppressed at higher temperatures.

 Slow (sequential) OH formation branching ratio has negative temperature 
dependence, after reaching the peak OH yield at 600K.

� + ��

��� ��� + ������

�� + ����������

��

���

cyclohexane

tetrahydropyran

cyclohexane

tetrahydropyran

cyclohexane
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Conclusions

• The OH formation kinetics seems to influence the HO2 formation 
kinetics. – But the temperature-dependent OH formation doesn’t 
explain the temperature-independent sequential HO2 formation.

Conclusions

� + ��
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�� + ����������

��

���
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Current and Future Works

• Some theoretical calculations may help to narrow down the possible 
pathways opened in the tetrahydropyran oxidation.

• Experimentally, we can test the change of HO2/OH quantity from 
excess O2 reacting with reactive intermediates. (Second O2 addition)

• Insights from combination of laser & mass spectrometer 
experiments.
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Frequency Modulation – Basic Layout
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Frequency Modulation - Spectroscopy
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Two-Tone Frequency Modulation – Basic 
Layout
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Two-Tone Frequency Modulation –
Spectroscopy
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