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Energy (kcal mol')

* Monoether analog of
cyclohexane and core structure
of sugars and polysaccharides.

* Cyclohexane oxidation was
studied previously combining OH
/ HO, measurements and theory.

 Tetrahydropyran (THP) oxidation
was studied recently by
monitoring the alkene
production.

e Quantitative, direct laser
diagnostic method to explore the
key intermediates formation in
the low temperature combustion
regime

* How oxygenation affect oxidation
chemistry (and why)?

A. M. Knepp et al., Phys. Chem. Chem. Phys., 9, 4315 (2007)
R. X. Fernandes et al., Phys. Chem. Chem. Phys., 11, 1320 (2009)
B. Rotavera, et al., Proc. Combust. Inst., 36, 597 (2017) a




IR Absorption Experiment

Total density of molecules = 2.6-3.9x10'” molecules/cm3
Temperature = 500-750K

[Fuel] = 1x10%°> molecules/cm?3
[Cl], = 8103 molecules/cm*® (From OxCl or Cl, photolysis)
[0,] = 4x10%® molecules/cm?
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IR Absorption Experiment — Direct
Absorption Measuring OH
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IR Absorption Experiment — Two-Tone
Frequency Modulation Measuring HO,
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Integral Profile Correction — HO,

Ryemoval (t,) [Hoz]tdt' *

[HO,1%dt’ + « fot

= I(t) + Zakself fot

Rproduction (t,)dt,

t
0

a|

tetrahydropyran (THP) & methanol

cyclohexane & methanol

=)
=)

&

on

react

=

= AS
=

==

=)

&

=)
wvmww\ﬂ@@

=7

5=
o)

S

& cyclohexane

+ OH & ROO & HO,

2

corrected for HO

loI/°OHI

IoI°OH]

t (ms)

Assume

*[ROO] = [R] , — [HO,] = [Cl]o — [HO,]

Cre

*]. D. DeSain, E. P. Clifford, and C. A. Taatjes, J. Phys. Chem. A, 105, 3205 (2001)



[OHJ/[CI],

[OHY/[CI],

Integral Profile Correction — OH

t
af Rproduction (t,)dt, = I(t) + 2Ov'kselff
0 0

700K

cyclohexane

700K

t

[OH12dt’ + a f Ryomovat (ED[OH1,d¢"

0

correct with OH+cyclohexane/HO,/OH/ROO

correct with OH+cyclohexane/HO,/OH

correct with OH+cyclohexane
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correct with OH+tetrahydropyran/HO,/OH
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List of Rate Coefficients

HO, +HO; = 0, + H,0, 2.2x 10713 x eg +7.0x 10710 x eﬂ
HO, + C¢H,;,00 - C,H,,00H + O, ) 61 x 10-1% x 222
1O O OO 48X 1071 x T
OH+OH > 0+H,0 1.65X10_12X(L)mee_Tso
298
OH + CgHy, & CgHy; + H,0 207 x 10-12 x (;78)1.64 . e$

OH + CsH140 = CsHgO + H,0 78 % 10-12 x o

(1) A. M. Knepp et al., Phys. Chem. Chem. Phys, 9, 4315 (2007)
(2) J. Moriarty et al., ). Phys. Chem. A, 107, 1499 (2003)
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Cyclohexyl + O, Reaction PES

Energy (kcal mol-1)
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Reduced Model — HO,

R+0,T

Pseudo-first-order approximation

ky, k,

By integral profile correction

K_p

ke
ROO/—_> HO, + Alkene

Alkylperoxy-chemistry-centered reduced model.
Solvable differential equations




Solution of Differential Equations

Timescales of HO, Formation
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Reduced Model — OH

Pseudo-first-order approximation

ks, ky




Fitting Examples (Cyclohexane Oxidation)
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Cyclohexyl + O,: HO, Formation Timescales

[HOZ]t — Al(l - e_klt) + Az(l - e_kzt)

14 | W Fitted fast, HO, + HO, corrected
i @ Fitted slow, HO, + HO, corrected
12 b O Fitted fast, HO, + HO, / OH / ROO corrected
i O Fitted slow, HO, + HO, / OH / ROO corrected
10 L — = synthetic fast HO, formation timescales from ME calculation
. | synthetic slow HO, formation timescales from ME calculation
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ratio of fast and slow HO, formation (%)

Cyclohexyl + O,: Fast/Slow HO, Formation

Ratio
[HO,]; = A1 (1 — e Fat) + Ay (1 — e7Fz2t)
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O experimental ratio of fast HO, formation.
O experimental ratio of slow HO, formation.
— — theoretical ratio of fast HO, formation.

theoretical ratio of slow HO2 formation.

* HO, integral profile correction
includes HO, + HO, / OH /
cyclohexyl peroxy.

* Good agreement with ratios
computed from theoretical
rate coefficients.

e At 750K, internal energy of
reactants are high enough to
make two timescales less
distinguishable.



In(timescale)

Cyclohexyl + O,: OH Formation Timescales

[0H], = A1 (1 — e7F1t) + A4,(1 — e~ F2t)

fitted single-exponential timescale, OH + OH / HO,, corrected

fitted fast bi-exponential timescale, OH + OH / HO, corrected

fitted slow bi-exponential timescale, OH + OH / HO,, corrected

fitted single-exponential timescale, OH + OH / HO, /ROO corrected

fitted fast bi-exponential timescale, OH + OH / HO, /ROO corrected

fitted slow bi-exponential timescale, OH + OH / HO, /ROO corrected

= = «theoretical fast OH formation timescale
— theoretical slow OH formation timescale
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agreement.
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Cyclohexyl + O,: OH Formation Yield

[0H], = A1 (1 — e7*1t) + A,(1 — e7F2t)
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OH + OH / HO, corrected

@ experimental single-expnential OH formation branching ratio
A experimental fast OH formation branching ratio
WV experimental slow OH formation branching ratio

OH + OH / HO, /ROO corrected

O experimental single-expnential OH formation branching ratio
A experimental fast OH formation branching ratio
V experimental slow OH formation branching ratio

e Two distinct OH formation
timescales started to appear
at 650K and above.

* Sequential OH formation
becomes major OH source at
high temperature.

* Total OH yield doesn’t exceed
3%.



THP-yl + O,: HO, Formation Timescales

[HOZ]t — Al(l - e_klt) + Az(l - e_kzt)

B Fitted fast, HO, + HO, corrected
14 L @ Fitted slow, HO, + HO, corrected
i O Fitted fast, HO, + HO, / OH corrected
12 O Fitted slow, HO, + HO, / OH corrected
— = synthetic fast HO, formation timescales from adjusted ME calculation
10 synthetic slow HO, formation timescales from adjusted ME calculation
o
5 8 * Both fast and slow HO,
N - . .
° formation timescales are
= temperature in-sensitive.
- 4

- e Ineffective PES adjustment*
°r based on cyclohexyl + O, or
insufficient pathways involved
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*PES adjusted from cyclohexyl + O, model by +2kcal/mol for ROO and -2kcal/model for TS.
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THP-yl + O,: Fast/Slow HO, Formation Ratio

[HO,], = A1(1 — e™F18) + A, (1 — e7*2t)

100

;\; O experimental ratio of fast HO, formation.
T;/ O experimental ratio of slow HO, formation.
o
g S * Unlike cyclohexyl + O,, the two
=3 ° i HO, formation timescales are
2 °r 5 switching their importance at
§ & . 8 ) 550K.
2 T ) | * The two HO, formation
g timescales are
5 r o undistinguishable at 750K.
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THP-yl + O,: OH Formation Timescales

In(timescale)

[0H], = A1 (1 — e7F1t) + A4,(1 — e~ F2t)

12

[(e]

»

@ fitted single-exponential timescale, OH + OH / HO, corrected

¢ A fitted fast bi-exponential timescale, OH + OH / HO, corrected
V fitted slow bi-exponential timescale, OH + OH / HO, corrected

e OH formation shows two
distinct timescales at 600K and

above.
* The slow OH formation

timescale has positive
temperature dependence.
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[0H], = A1 (1 — e7*1t) + A,(1 — e7F2t)

40
Q
2 30 -
o
C) w
£
e
S W
© 20 T T
O
C
S
T T
£
§ 10 Y
T A a o
o I, 4 o
v
0 ] 1 ] 1 ] 1 ]
0.0014 0.0016 0.0018 0.0020
1T (K™
(00
OH vield Aq or A, ; T
yie = = r-=—
Cl r—1.2A
[Clo o N\

@

Y

THP-yl + O,: OH Formation Yield

OH + OH/ HO, corrected

O experimental single-expnential OH formation branching ratio
A experimental fast OH formation branching ratio
V experimental slow OH formation branching ratio

* The slow OH formation
reaches peak at 600K when
the OH time trace shows two
distinct formation timescales,
but becomes lower as
temperature increased.

* The max OH yield is ~30%
among all temperatures,
roughly 10 times higher than
the OH production yield from
cyclohexyl + O,.



Conclusions

* Quantitative HO, and OH formation timescales from Cl-initiated
cyclohexane and tetrahydropyran oxidation have been measured by
our IR absorption flow system.
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Conclusions

R+ 0,

\

ROO

 Alkylperoxy-centered chemistry is proposed for a reduced model,
and applied to analyze the experimental results.
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Conclusions

cyclohexane
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+ coproducts

* Major differences of THP oxidation have been observed by measuring
key intermediates, and compared with cyclohexane oxidation:
= Slow (sequential?) HO, formation timescales is temperature-insensitive.

= Contribution of slow (sequential?) HO, production is high at lower
temperatures and suppressed at higher temperatures.

= Slow (sequential) OH formation branching ratio has negative temperature
dependence, after reaching the peak OH yield at 600K.
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Conclusions

)

H,0
R+ 0, \ NH
ROO HO, + Alkene

OH + coproducts

* The OH formation kinetics seems to influence the HO, formation
kinetics. — But the temperature-dependent OH formation doesn’t
explain the temperature-independent sequential HO, formation.
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Current and Future Works
H,0

&
R+0,= RH

* Some theoretical calculations may help to narrow down the possible
pathways opened in the tetrahydropyran oxidation.

* Experimentally, we can test the change of HO,/OH quantity from
excess O, reacting with reactive intermediates. (Second O, addition)

* Insights from combination of laser & mass spectrometer

experiments.
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Frequency Modulation — Basic Layout
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Frequency Modulation - Spectroscopy

E,(t) = Eget@ot z J.(B)e™@it + ¢ c.
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Two-Tone Frequency Modulation — Basic
Layout

i E,(t E>(t) E3(t)
Single Frequency 1(8) Phase 2' 3 InGaAs Detector
laser Modulator Reactor
+ RF
RF Power Pp— 1O Mixer
Amplifier
IF
1 *
Ch. 2
Low Noise
IF Amplifier
Signal Ch.1 Waveform
Generator > LO RF  je——t Generator
(HP 8647A) (Agilent 33500 B)
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Oscilloscope
(LeCroy 6030A)




Two-Tone Frequency Modulation —

Spectroscopy

intensity (a.u.)

E,(t) = Ege'®ot z Jn(Br)ement z Jm(B2)e™@2t + c.c.
n=—oo m=—0oo
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