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= Design & Fabrication

= Characterization by Swept Source Interferometry
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Arrayed Waveguide Grating ) =

Functionality of an Arrayed Waveguide Grating
Star-Coupler Star-Coupler  carriers

=) ‘| | s (] §le—

= Arrayed waveguide gratings provided integrated spectral
filtering
= Bending optical path creates highly compact devices
= Applications
= RF signal processing

= Wavelength division multiplexing
= Spectral and Temporal Pulse Shaping




Arrayed Waveguide Grating ) S

Functionality of an Arrayed Waveguide Grating

Star-Coupler Star-Coupler  carrier &

side bands
Optical carrier with separated
RF side bands
(=

==

U State of-the-art

1GHz, 16 Channel Silica on Silicon— A ~ 44 cm? [K. Takada, et. al. J. Lightwave Tech. 20, 850 (2002)]
= 25GHz, 512 Channel SOl —A ~ 1.8 cm? [S. Cheung, et. al. J. Sel. Top. Quant. Electronics 20, 8202207 (2014)]
= 10GHz, 100 Channel InP — A ~ 10 cm?[F. M. Soares, et. al. Photonics J. 3, 975 (2011)]
= 25GHz, 400 Channel Silica — A ~ 80cm? [Y. Hida, et. al. Proc. Opt. Fiber Comm. Conf. 3, WB2-1 (2001)]

= Cutting-Edge Result (this work):

= 1GHz, 11 Channel SOl - A~ 1.1 cm? [M. Gehl, et. al. Opt. Express 25, pp. 6320-6334 (2017)]




Optical Phase Errors ) i,

Functionality of an Arrayed Waveguide Grating

Star-Coupler Star-Coupler  carrier s
S|de bands

Optical carrier with
RF side bands | | | | {{

= Fabrication imperfections create random phase perturbations
= Perturbations in waveguide width (éw)
= Perturbations in material index (6n)

= Phase uncertainty increases with waveguide length and index contrast
a?(6¢p) = L? (A A3 -0%(6w) + B - 02(671)) A (ngore — nglad)

= Light no longer “focuses” to a single waveguide B 2N ore
= |ncreased insertion loss
= |ncreased cross-talk



Methods of Phase Correction )

= Passive Methods

= Static Phase Correction

= Benefit — No power required to maintain correction

= Disadvantage — Irreversible, Challenging implementation
= UV lrradiation [K. Takada, et. al. Electron. Lett. 36, 60 (2000)]

= Photo-Elastic Effect [H. Yamada, et. al. Electron. Lett. 32, 1581 (1996)]

= Phase Compensating Plate [H. Yamada, et. al. Electron. Lett. 33, 1698 (1997)]
= Active Methods

= Dynamically Applied Phase Correction
= Benefit — Reversible, Allows active tuning and spectral shaping
= Disadvantage — Requires constant power
= Electro-Optic [W. Jiang, et. al. Laser & Electro-Optics Society, p. 52 (2008)]

= Thermo-Optic [H. Yamada, et. al. Electron. Lett. 31, 360 (1995)], [This Work]




Silicon Photonics Platform )

Pad Opening

Silicon Photonic Process at the MESA Oxide

Facility

« 6 in. SOl wafers, 250nm device layer, 3
Mm buried oxide layer

Fully or partially etched silicon for rib or
ridge waveguides

225nm low loss silicon nitride
waveguide layer

. - - Vertical
Selective area germanium epitaxy for Junction

photodiodes

4-6 ion implantation steps Silicon Handle

1-2 aluminum metal layers



AWG Design o

12 mm

= Serpentine waveguides for

compactness
= Largest—12mmx 9 mm = 1.1 cm?

= 35 Arrayed waveguides

= 1,10 & 50 GHz channel
spacing

= Resistive thermal phase
shifter for each waveguide

= Thermo-optic effect changes

effective path length of the QI
= Phase shift approximately W NN
proportional to applied power ' '
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a | 11 Channels
1 GHz Spacing
35 Arrayed Waveguides
35 Integrated Phase Shifters
1.1 cm? Total Area
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Interferometric Characterization ) =,
= Swept source interferometer

= Reference MZI to trigger data acquisition
= Al =~ 11.278fm — Av ~ 1.406 MHz
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Interferometric Characterization A 2,

= FFT of interferogram provides phase and amplitude
transmission of each optical path through device
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Interferometric Characterization A 2,

= From this we can accurately extract waveguide loss and
group index
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Interferometric Characterization A 2,

= From this we can accurately extract waveguide loss and

group index
Fully Etched Partially Etched
481 8 o Wafer #4
%< 4.6 o Wafer #5 ><4.1' > 3
L —e—Simulated o o
c44 <8 c 47
o o O Wafer #4
5 4.2 8 5 3.97 V\fafer #5
O 4l © Q) —— Simulated
38 i \\a
3.87 )
| ' ' 3.7 | ' |
0 1 2 3 0 1 2 3
Waveguide Width (xm) Waveguide Width (xm)
Width Width
—

G
Fully
Etched Partially Etched




Interferometric Characterization A 2,

= Phase information provides accurate calibration of phase
shifters and thermal cross-talk
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Optimization & Performance
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Applications — RF Signal Processing (i)
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Applications — RF Signal Processing
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Applications — Spectral Shaping i)

= Gerchberg-Saxton Algorithm can be used to modify spectral
transmission

= |terative algorithm which provides a target phase offset for each
waveguide

= Possible shapes limited by number of arrayed waveguides
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Applications — High Power Handling (i

= Resonant structures (i.e. micro-disks) have power limitations
due to enhanced non-linearity

= AWG is non-resonant and can handle high powers
= Observed shift of 28 MHz/mW
= Could be compensated for by a temperature shift of only 0.003°C/mW
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Conclusion )

= Silicon photonic arrayed waveguide
gratings provide compact and high
resolution spectral filtering

= \We have demonstrated <1GHz
resolution through active thermo-
Opt'C phase tuning <-15 dB Optical Cross-Talk

1.1 cm2 Total Area

<1 GHz Resolution

= Demonstrated RF Channelization
and Spectral Shaping

= |Improvement of thermal isolation
and phase shifter efficiency will
improve performance
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Silicon Photonics for RF Processing @&,

Integrated Photonic Chip for Reduced SWaP-C

Arrayed Waveguide Grating High Speed Ge Photodiode
i -

e (el
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P _ : : Signal Processing
P W) R (e.g. Filtering,
/// i_ f ™ : Phase & Amplitude Control)

| s, Sg AEERDY i
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Optimization & Performance )

= [terative optimization necessary to account for thermal cross-

talk 10 GHz Channel Spacing
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Thermal Considerations

= Temperature change creates a linear phase shift across each

waveguide

= Results in a shift in the peak transmission of 11 GHz/°C

= [Initial phase optimization requires demanding stability
= Can be avoided with more advanced signal processing

= Significant phase shifter heat (>1.5 W) which needs to be removed
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Qutput intensity at a fixed wavelength can be pictured as phasor addition
of each arrayed waveguide

= Phase errors cause random walk in phasor addition

= Rotating a single waveguide phase by 2r causes a sinusoidal variation in
the output power

= Choosing the phase which maximizes output power for each waveguide
individually will straighten out the random walk
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Optimization — Brute Force )

= Benefits

= Simple Implementation — Single fixed wavelength laser and power meter
= High Contrast Ratio

= Easy to shift peak wavelength
= Challenges

= [ntensity oscillation amplitude is less than 1/(# of channels)
= Thermal cross-talk complicates simple phasor addition picture
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