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INTRODUCTION AND MOTIVATION: 
CHALLENGES AND OBJECTIVES

• High pressure ( ~ 1 ATM and beyond) plasma is 
challenging environment.
• Higher densities.
• Chemically complex environments
• Smaller length scales.
• Shorter lifetimes.
• Optically thicker environments.

• Investigate diagnostics methods to access this 
challenging environment
• Extend laser-collision induced fluorescence 

(LCIF)
• Examine suitability of ultrafast-short pulse 

lasers for use

Overall goal is to match potential opportunities offered by short-pulse 
lasers to challenges offered by high pressure plasmas.
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STRATIGIES USED TO DEVELOP LCIF AT 
HIGHER PRESSURES

• Helium is utilized as interrogated species. 
• Relatively “simple” system to start with.
• Relevant workhorse at higher pressures!

• Short-pulse (<100 fs, ~ 10 nm) laser excitation.
• Excitation times << decay times to simplify 

interpretation.
• Stepping stone for other methods.

• Generation and manipulation of plasma in 
controlled environment.
• Stable at target pressures (~ 1 ATM).
• Well characterized and easily manipulated.

Much of the work was built on previous 
experience gained at lower pressures.
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OVERVIEW OF CHALLENGS OF EXTENDING 
LCIF TO HIGH PRESSURE

• Observed LCIF is superposition of several 
complex processes.
• In general need a good model to describe 

the redistribution. 

"Electron mixing" "Photon mixing""Neutral mixing"
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Simplifications likely not to be so forthcoming at 
higher pressures
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NEUTRAL INTERACTIONS KEY SOURCE OF 
INCREASED COMPLEXITY

• Neutral-impact redistribution can play dominant role at higher 
pressures
• More-types and evolving nature of neutrals (dimers).
• “Book keeping” can require sophisticated models.
• Uncertainties in species and cross-sections limit accuracy.
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LIFETIMES OF EXCITED STATES BECOME VERY 
SHORT AT HIGHER ELECTRON DENSITIES

• Physics of electron-impact redistribution is not expected to change at 
higher pressures.
• Sheer number of electrons increase probability of redistribution.
• Effective Lifetimes become reduced because of redistribution.
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KEY CHALLENGE: GENERATING AND 
MANIPULATING WELL CHARACTERIZED PLASMA
• Previous experience in developing LCIF indicated that setup is key.

• Plasma generation in 640 Torr He.
• Double pulse method to separate generation and interrogation.
• Spectrometer to identify, camera to image.
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significantly as it is “heated”.



UTILIZE CURRENT-VOLTAGE TRENDS TO 
BOUND PLASMA PARAMETERS
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700 0.6 19.10 5 1.00E+06 1.19E+14

Anticipated plasma parameters

• Published drift data (Phelps) is used to bound E/N with heating voltage.
• Knees in current correspond to knees in drift velocities.
• Electron density remains roughly constant at lower E/N values.

Delay between first pulse and second pulse - Density
Magnitude of second voltage pulse – E/N

J. Pack et al. JOAP, 71 (11) p5363, 1992 



RATIO OF LCIF LINES ARE UTILIZED TO 
IDENTIFY SCALING TRENDS

• Benchmark scaling of 33D LCIF.
• Averaged from central region of the discharge.

Electron Density (e/cm3)

1012 1013 1014

[5
88

nm
]/[

38
9 

nm
]

0.1

1

10

Anticipated neutral limit

23S

23P

33D

33P

~ 0.07 eV

Pathway Scaling of LCIF

LCIF provides strong signals and easily detectable 
over broad range of conditions

E/N ~ 5 Td
Applied Voltage

0 500 1000 1500

[5
88

 n
m

]/[
38

9 
nm

]

0

2

4

6

8

ne ~ 2x1013 e/cm3

~ 0.1 Td ~ 5 Td~ 1 TdE/N:
Ionization

-5 0 5

5

10

Radius (mm)

H
ei

gh
t (

m
m

) Averaged 
domain



DEMONSTRATION OF SPATIAL 
RESOLUTION PROVIDED BY LCIF 

• Radial structure observed for various E/N.
• Initial peak electron density of 2x1013 e/cm3

Observations consistent with initial 
assertions made
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DEMONSTRATION OF SPATIAL 
RESOLUTION PROVIDED BY LCIF 

• Streak-like images of plasma initiation.
• Radial profiles at center of discharge.

LCIF captures spatial and temporal 
evolution of plasma formation. 
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CONCLUSIONS

• Ultra-fast  LCIF shows promise for interrogating high pressure 
plasma systems.
• Outlined pitfalls that might be encountered at higher-pressure 

systems.
• Can be extended to other systems of interest (Ar, N,...).

• Short-pulse lasers show promise for other measurements of interest.
• Atomic species, collision rates and lifetimes..

Thank you for attention!
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SHORT-PULSE LASER IS USED FOR 
INITIATION LCIF EVENT

• Ti:Sapphire, regenerative laser used to generate excitation pulse.
• Tuned amplifier to 780 nm – doubled in BBO for ~ 390 nm.
• ~ 100 fs pulse with 10 nm bandwidth (~ 100 cm-1).

• Short-pulse laser well suited to interrogate short lifetimes (< 10 ns) 
and broad absorption profiles (~ 1 nm) associated with high pressure.
• Still realize “step-like” populating process.
• Sample most or all of the probed states.

DOE Plasma Science Center
Control of Plasma Kinetics
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UTILIZE CURRENT-VOLTAGE TRENDS TO 
BOUND PLASMA PARAMETERS

First Vd Knee
E/N ~ 0.08 Td
VD ~ 105 cm/s

Second Vd knee
E/N ~ 5 Td

VD ~ 106 cm/s
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Published drift data
J. Pack et al. JOAP, 71 (11) p5363, 1992 

J. Pack et al. JOAP, 71 (11) p5363, 1992 



RATIO OF LCIF LINES ARE UTILIZED TO 
IDENTIFY SCALING TRENDS

Yu. Ralchenko, Atomic Data and Nuclear Data Tables 94, 603 (2008)
B. Dubreuil, J. Phys. B: At. Mol. Opt. Phys. 18,  4597 (1985).

Pathway and Rates

LCIF from the 33D demonstrates linear 
response with ne.
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DELAY BETWEEN FIRST AND SECOND PULSE 
CONTROLS ELECTRON DENSITY

• Plasma density decays after termination of the first pulse.
• Sweep amplitude of heating pulse to assess location of knees.
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Good control of density spanning 2+ orders.
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