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INTRODUCTION AND MOTIVATION:
CHALLENGES AND OBJECTIVES

e High pressure (~1 ATM and beyond) plasma is
challenging environment.

Higher densities.
Chemically complex environments
Smaller length scales.
Shorter lifetimes.
e Optically thicker environments.
e Investigate diagnostics methods to access this

challenging environment catsions \ "
e Extend laser-collision induced fluorescence Albumped ’7 |
(LCIF) IR,
e Examine suitability of ultrafast-short pulse &5 LIF

lasers for use

Overall goal is to match potential opportunities offered by short-pulse
lasers to challenges offered by high pressure plasmas.
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STRATIGIES USED TO DEVELOP LCIF AT
HIGHER PRESSURES

Collision driven

e Helium is utilized as interrogated species. redistribution  »
. . . ':. 43D
e Relatively “simple” system to start with. 30_ao N 33D
. 3%
e Relevant workhorse at higher pressures! /

e Short-pulse (<100 fs, ~ 10 nm) laser excitation.

e Excitation times << decay times to simplify
Interpretation.

e Stepping stone for other methods.

e Generation and manipulation of plasmain
controlled environment.

e Stable at target pressures (~ 1 ATM).

National
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OVERVIEW OF CHALLENGS OF EXTENDING
LCIF TO HIGH PRESSURE

e Observed LCIF is superposition of several Feckon I/“‘_ AN
complex processes. Monpes 2. S BN
e In general need a good model to describe l
the redistribution. & TLr
"Electron mixing" "Neutral mixing" "Photon mixing"
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@ Sandia Simplifications likely not to be so forthcoming at
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NEUTRAL INTERACTIONS KEY SOURCE OF
INCREASED COMPLEXITY

e Neutral-impact redistribution can play dominant role at higher
pressures

e More-types and evolving nature of neutrals (dimers).
e “Book keeping” can require sophisticated models.
e Uncertainties in species and cross-sections limit accuracy.

Neutral mixing Bounds on detection
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National bound of electron detection.
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LIFETIMES OF EXCITED STATES BECOME VERY
SHORT AT HIGHER ELECTRON DENSITIES

e Physics of electron-impact redistribution is not expected to change at
higher pressures.

e Sheer number of electrons increase probability of redistribution.
o Effective Lifetimes become reduced because of redistribution.
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National short (<5 ns) at target conditions.

Sandia Lifetime of excited states are quite
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KEY CHALLENGE: GENERATING AND
MANIPULATING WELL CHARACTERIZED PLASMA

e Previous experience in developing LCIF indicated that setup is key.

e Plasma generation in 640 Torr He.
e Double pulse method to separate generation and interrogation.
e Spectrometer to identify, camera to image.

High pressure configuration Observed Filament

ICCD

Spectrometer

{ N~

Current probe

ICCD

Structure of the filament does not change

@ ﬁg{}gﬁm significantly as it is “heated”.
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UTILIZE CURRENT-VOLTAGE TRENDS TO
BOUND PLASMA PARAMETERS

e Published drift data (Phelps) is used to bound E/N with heating voltage.

e Knees in current correspond to knees in drift velocities.
e Electron density remains roughly constant at lower E/N values.

Extracted Current Anticipated plasma parameters
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RATIO OF LCIF LINES ARE UTILIZED TO
IDENTIFY SCALING TRENDS

A" Tk e

e Benchmark scaling of 33D LCIF.
e Averaged from central region of the discharge.
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DEMONSTRATION OF SPATIAL
RESOLUTION PROVIDED BY LCIF

e VT LSl

e Radial structure observed for various E/N.
e Initial peak electron density of 2x10%e/cm?
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DEMONSTRATION OF SPATIAL
RESOLUTION PROVIDED BY LCIF sk
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e Streak-like images of plasma initiation. T
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CONCLUSIONS

e Ultra-fast LCIF shows promise for interrogating high pressure
plasma systems.

e QOutlined pitfalls that might be encountered at higher-pressure
systems.
e Can be extended to other systems of interest (Ar, N,...).
e Short-pulse lasers show promise for other measurements of interest.

e Atomic species, collision rates and lifetimes..

Thank you for attention!

This work was supported by the Department of Energy Office of Fusion
Energy Science
Contracts DE-SC0001939 and DE-AC04-94SL85000
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SHORT-PULSE LASER IS USED FOR
INITIATION LCIF EVENT

e Ti:Sapphire, regenerative laser used to generate excitation pulse.

e Tuned amplifier to 780 nm — doubled in BBO for ~ 390 nm.
e ~ 100 fs pulse with 10 nm bandwidth (~ 100 cm?).

e Short-pulse laser well suited to interrogate short lifetimes (< 10 ns)
and broad absorption profiles (~ 1 nm) associated with high pressure.

o Still realize “step-like” populating process.
e Sample most or all of the probed states.
Anticipated absorption profiles Estimates of linewidths
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UTILIZE CURRENT-VOLTAGE TRENDS TO
BOUND PLASMA PARAMETERS

Published drift data

J. Pack et al. JOAP, 71 (11) p5363, 1992
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RATIO OF LCIF LINES ARE UTILIZED TO
IDENTIFY SCALING TRENDS

Pathway and Rates
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DELAY BETWEEN FIRST AND SECOND PULSE
CONTROLS ELECTRON DENSITY

e Plasma density decays after termination of the first pulse.
e Sweep amplitude of heating pulse to assess location of knees.

Observed Filament Electron Density
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Good control of density spanning 2+ orders.
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