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What is a hermetic connector? ) 5,

= Barrier to gas/liquid transfer
between environments.

= Allow electrical transmission

= Designed for extreme conditions

= Thermal

= Pressure
= Shock/vibration

Metal Housing

= Compression glass-to-metal seal
= Housing CTE >> Glass/Contact CTEs
= Plastic deformation of metals

Amorphous or Ceramic
Glass Preform

Electrical Contact

= Long term residual stress in glass



Why Do We Care About Long ) e,
Term Performance?

= Connectors must remain hermetic for many years.
= Once installed, difficult/impossible to replace.
= Hermetic failure of a connector may fail entire systems.

= Testing parts years after manufacturing is not always possible.
= Produce extra parts to sit on shelf, test fielded connectors, etc.

= Want to know NOW if design needs a re-design.

= Recent 3-pt bend tests on glass coupons showed measureable
creep at room temperature after 6 months.

.....

= Can glass aging effect residual stress at longer times?




Hermetic Seal FEA Model ) i,

RED - 304L Shell

\{SHXell'J— Inorganic sealing glass
GREEN - Alloy 52 Pins

half symmetry view

* no glass menisci or pin details

304L: 17 ppm / °C « simplified shell (no threads, rounds, chamfers)
compression sealy Glass: 10-11 ppm /°C - contiguously meshed interfaces
Alloy 52: 10-11ppm /°C  « yniform temperature boundary condition



Material Constitutive Models ) =,

= |norganic sealing glass, alkali-barium—silicate (viscoelastic)
= Simplified Potential Energy Clock (SPEC) Model [1]

= Predicts behavior of thermorheologically simple materials

= Thermosets [2], thermoplastics, elastomers, and inorganic glasses [3]
= stress relaxation, physical aging, creep

= 304L (viscoplastic)

= Bammann, Chiesa, Johnson (BCJ) Model [4]

= Rate/temperature dependent yield, hardening, and post yield creep
= Alloy 52 Contacts (elastic-plastic)

= Temperature dependent yield and hardening (not rate dependent)

1. Adolf, Douglas B., Chambers, Robert S., Neidigk, Matthew A., “A simplified potential energy clock model for glassy polymers.” Elsevier Polymer
50 (2009): 4257-4269.

2. Adolf, Douglas B., Chambers, Robert S., Caruthers, James M., “Extensive validation of a thermodynamically consistent, nonlinear viscoelastic
model for glassy polymers.” Elsevier Polymer 45 (2004): 4599-4621.

3. Chambers, Robert S., Tandon, Rajan, Stavig, Mark E., “Characterization and calibration of a viscoelastic simplified potential energy clock model
for inorganic glasses.” Elsevier Journal of Non-Crystalline Solids 432 (2016): 545-555.

4. Bammann, D. J., M. L. Chiesa and G. C. Johnson, “Modeling Large Deformation and Failure in Manufacturing Processes,” Proceedings of the

19th International Congress of Theoretical and Applied Mechanics, ed. T. Tatsumi, E. Watanabe and T. Kambe, pp. 359-376, Elsevier Science
Publishers, Amsterdam, 1997
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Manufacturing of Compression Seal
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Aging of Compression Seal
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Structural Relaxation During Aging ®&=.
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Structural Relaxation During Aging &=
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Structural Relaxation During Aging
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Structural Relaxation During Aging &=
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Residual Stress Due to Complex )
Thermal Histories
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Residual Stress Due to Complex )
Thermal Histories
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Thermal Histories
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Residual Stress Due to Complex
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Thermal Histories
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Residual Stress Due to Complex ) i
Thermal Histories
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Aging Testing ) i,

= 10 connectors tested after receiving from supplier
= Approximately 2 days after manufacturing

= 10 connectors tested 6 months after receiving

= 10 cycles, then ultrasonic scan through glass thickness
1. -50°C—->150°C
2. -50°C—> 180°C
3. -50°C—->200°C
4. -50°C > 220 °C (oven low/high limits)
= 10/10 connectors tested shortly after receiving did not crack
after all thermal cycles.

= 7/10 shells tested 6 months after receiving did not crack after
the cycles.
= 3/10 cracked after the -50 °C = 220 °C thermal cycles.




Ultra Sound after 220 °C cycle ) .
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Conclusion )

" Glass structural relaxation is predicted to occur far below T..

= FEA predictions and data suggest that even short amounts of
time may be changing the stress state of the hermetic seal.

= May stabilize quickly...application dependent? TBD!

= Competing effects (glass relaxation and metal plasticity) make
for a non-intuitive residual stress after aging.

= More experiments are necessary to validate long term aging
predictions of the SPEC model.

= FEA can help determine what experiments will be most useful.

= FEA model predicted the location of crack initiation.

= Still working on a failure metric.




QUESTIONS?




References ) i,

1. Adolf, Douglas B., Chambers, Robert S., Neidigk, Matthew A., “A
simplified potential energy clock model for glassy polymers.” Elsevier
Polymer 50 (2009): 4257-4269.

2. Adolf, Douglas B., Chambers, Robert S., Caruthers, James M., “Extensive
validation of a thermodynamically consistent, nonlinear viscoelastic
model for glassy polymers.” Elsevier Polymer 45 (2004): 4599-4621.

3. Chambers, Robert S., Tandon, Rajan, Stavig, Mark E., “Characterization
and calibration of a viscoelastic simplified potential energy clock model
for inorganic glasses.” Elsevier Journal of Non-Crystalline Solids 432
(2016): 545-555.

4. Bammann, D. J., M. L. Chiesa and G. C. Johnson, “Modeling Large
Deformation and Failure in Manufacturing Processes,” Proceedings of
the 19th International Congress of Theoretical and Applied Mechanics,
ed. T. Tatsumi, E. Watanabe and T. Kambe, pp. 359-376, Elsevier Science
Publishers, Amsterdam, 1997




BACKUP SLIDES




Residual Stress from Sealing Process ~ [®i:.

/ compression during cool down \
/plastic strain in metah

\ residual tensile stress /




Glass Creep at Room Temperature @&
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History Dependent Predictions 2
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History Dependent Predictions .
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History Dependent Predictions
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Constitutive Model Comparison ~ [@E.

- GtM Seal Constitutive Model Comparison
EP Shell, Elastic Glass (stress at pin-glass interface)
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