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ABSTRACT

Beyond considering uncertainty in model parameters and experimental data when quantifying predic-

tive uncertainty, accounting for insufficiencies in the form of models has become an area of emphasis.

Insufficiencies in the model form cause what is known as model form uncertainty, or the discrepancy

between model predictions and the truth. Methods of accounting for model form uncertainty vary widely

and no one method has been accepted across the VVUQ community. Model form uncertainty is known to

cause identifiability issues when calibrating model parameters. Such issues have led many researchers to

incorporate model validation activities prior to making predictions. Is it best to use the same approach to-

wards accounting for model form uncertainty when making interpolations and extrapolations and should

extrapolations in the parameter space be treaded in the same manner as extrapolations to new data types?

The type of prediction that the model form uncertainty is influencing may impact how characterizing the

uncertainty is approached and what methods should be applied. By differentiating and defining types of

prediction problems, a analysis structure for considering methods of approaching model form uncertainty

for each prediction type can be better understood.

Using the 1D viscous Burgers’ equation as an application example, a survey of a few methods of

addressing model form uncertainty will be considered. Inadequacy in the model form for the example

problem is introduced by using the linear convective diffusion equation as the model form, while the data

is generated by the Burgers’ equation. Implications on predictions for data types similar to that used for

calibration as well as extrapolations to different data types will be considered. Methods considered in this

analysis include those with Bayesian foundations as well as engineering bounds based. Through applying

a diverse set of methods to a single test problem, analysis of the application and results can illuminate

strengths and weaknesses of current approaches.



Outline

model form uncertainty issues / problem types

conceptual approaches to model form uncertainty problems

problem types of interest

Burgers’ equation as analysis canvas

overview of approaches considered / main approach concepts

current thoughts on problem



• the uncertainty attributed to the model form representing the truth in 
a less than perfect fashion

• all models are imperfect, the extent to which this impacts the 
desired predictions determines if the model form uncertainty is 
considered when making predictions

• methods of addressing this issue must also address parameter 
uncertainty and its propagation leading to identifiability issues

Hypotheses

• different types of model form uncertainty problems will benefit from 
different solution strategies

• many different types of problems include an element of model form 
uncertainty

Model Form Uncertainty Issues
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Extrapolation Type 1 & 2Extrapolation Type 2



propagate uncertainty      validation model             predict

propagate uncertainty      characterize bias            predict

calibrate parameters        predict

calibrate parameters        characterize bias            predict

predict

convert datatypes             calibrate parameters      predict

Many Conceptual VUQ Approach Options



Overview of Conceptual Approaches
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min
X

(MA(✓,X)� dA(✓) + ✏)

min
X

(MA(✓,X) + bA � dA(✓) + ✏)

calibration
``` with bias

MA(✓,X)� dA(✓) = bA + ✏

|MA(✓,X)� dA(✓)| < threshold

validation

YA,pred(✓) = MA(✓,X)

YA,pred(✓) = MA(✓,XA,cal.)

prediction

MA(✓,X) = dA(✓) + bA + ✏

bA = bm,A + bd,A

YA,true(✓) = dA(✓) + bd,A + ✏experiments

VUQ basis

YA,true(✓) = MA(✓,X) + bm,Amodeling



model relation between model outputs to translate between 

Overview of Conceptual Approaches
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MB(✓,X) = f(MA(✓,X))

MB(✓,X) = f(dA(✓) + bA + ✏)

= d⇤B(✓) + b⇤B + ✏⇤

YB,pred(✓) = MB(✓,XA,val.)prediction

VUQ activities

relation

calibration

validation



Types of Problems Our Group is Interested in Solving

predictions of quantities outside of measurable conditions

physics models with unknown credibility

data poor at top hierarchical levels, expensive validation 
experiments near space of desired predictions

hierarchy of system complexity / multiple levels of modeling

want quantified uncertainties from models

need to establish model credibility



Methods of Tackling Problems of Interest: 
Focusing on Model Form Issues

multiple flavors of Bayesian approaches
• explicit bias/correction term

• rollup into parameter uncertainty based upon validation 
performance

direct application of validation metrics on parameter 
space to locate validated subspaces
• interval predictor models (IPM), random predictor 

models (RPM), and Bounds to Bounds (B2B)

(Kennedy & O`Hagan 2001)

(Sankararaman & Mahadevan 2015)

(Crespo 2014)
(Feeley 2004)

- calibrate parameters with reduced influence from bias

- correction of parameter calibration based upon validation

- locate parameter subspace enveloping data/uncertainty
- locate parameter subspace enveloped by data/uncertainty



use of partial least squares to create meta-model for 
predicting uncertainty in prediction space

explicit propagation of all uncertainties, including bias, 
to prediction (P-box descriptions)

(Hills 2013)

(Roy & Oberkampf 2011)

• no calibration, conservative estimates

• linear combination of validation results weighted by 
sensitivity similarity with prediction used to estimate bias

• transparent propagation of uncertainties

• weighting driven to get same sensitivity as prediction 
model

Methods of Tackling Problems of Interest: 
Focusing on Model Form Issues



 Distillation of Methods
1. construct bias correction term from validation results

2. rollup uncertainty found in validation results into 
parameter uncertainty

3. use validation results to add uncertainty to predictions

4. locate parameter subspace able to meet validation criteria

- identification problem with parameter calibration

- poor validation results still mean little confidence in prediction

- conservative answer that may still be wrong

- relies on minimal model form error

- parameter descriptions then model specific

- combine calibration and validation into uncertainty description
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Burgers’ Equation Example

initial conditions

boundary conditions

u(t, x)

c, d

p

- velocity distribution over time and space

- advection and diffusion coefficient (uncertain parameters)

- model form parameter

incorrect
->  p=1 is linear conv.-diffus. eqn

correct     
->  p=2 is diffusive Burgers’ eqn

flux = cu

p � d

@u

@x

additional model output -



can make u(x=6, t) predictions given u(x=4, t) and u(x=8, t)

can make u(x=8, t) predictions given u(x=4, t) and u(x=6, t)

can make flux(x=6, t) predictions given u(x=4, t) and u(x=6, t)

Burgers’ Equation Model Form Uncertainty Problems

Interpolation

Type 1 Extrapolation

Type 2 Extrapolation

- incorrect model was fit to data with least squares
truth
wrong physics



Interpolation

know true parameter values
x data

truth
wrong physics

calibrated
x data

truth
wrong physics

c = 0.8
d = 0.05

c = 1.46
d = 0.20

blue and red are conditions where data exists

green is where prediction is necessary



know true parameter values calibrated

Interpolation

bias term should allow good interpolation, but calibration may not 
be physical unless bias form is known a priori

rollup of validation performance into parameter uncertainty or 
characterizing with error term will be reasonable

no single set of parameters able to capture data well, but bounding 
parameter subspace should be able to capture interpolation

c = 0.8
d = 0.05

c = 1.46
d = 0.20



Type 1 Extrapolation : In Parameter Space

know true parameter values
x data

truth
wrong physics

x data
truth
wrong physics

calibrated

c = 1.41
d = 0.19

c = 0.8
d = 0.05

blue and green are conditions where data exists

red is where prediction is necessary



know true parameter values

Type 1 Extrapolation : In Parameter Space
calibrated

use of bias term becomes questionable for larger extrapolations

rollup of validation results may not be conservative if discrepancy 
changes across parameter space

similar issue for characterized validation error

bounded parameter subspace may not capture extrapolations

c = 1.41
d = 0.19

c = 0.8
d = 0.05



Type 2 Extrapolation : New QoI

c = 0.8
d = 0.05

c = 1.46
d = 0.20

know true parameter values
x data

truth
wrong physics

x data
truth
wrong physics

calibrated

blue and green 
data exists for u

no data exists 
for flux

model form 
issue causes 

gap



Type 2 Extrapolation : New QoI
know true parameter values

c = 0.8
d = 0.05

c = 1.46
d = 0.20

calibrated
truth
wrong physics
transfered

true
transfered

truth
wrong physics
transfered

difference between 
incorrect model and truth

difference between 
transferred data 

and truth



translation of bias to flux has issues due to baseline discrepancy 
not present in velocity, but captures trends 

rollup of validation may have issues with extent of model form error

quantified validation error will perform better if good initial 
parameter uncertainty

mixed calibration/validation will not translate well to new QoI

Type 2 Extrapolation : New QoI
know true parameter values calibrated



if converting datatype, parameters should be validated in 
initial datatype space at a minimum

construct and characterize bias term for interpolations

shy away from constructing bias term for extrapolations in 
parameter space unless bias form well known

converting bias to new datatype may work if the datatype 
relation is believed to be well characterized/understood

identifiability issue may cause validation only or validation 
inclusive schemes to be more sound (safe and conservative)

Current Hypothesis from Analysis

combining calibration and validation may be unsuccessful 
when significant model form issues are present

simultaneously calibrate bias and parameters if bias form known



Ongoing Work

• considering how methods of rolling up uncertainty and 
dealing with model form uncertainty impact resource 
allocation decisions

• comparing differences in interpretation of methods results
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