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ABSTRACT

Beyond considering uncertainty in model parameters and experimental data when quantifying predic-
tive uncertainty, accounting for insufficiencies in the form of models has become an area of emphasis.
Insufficiencies in the model form cause what is known as model form uncertainty, or the discrepancy
between model predictions and the truth. Methods of accounting for model form uncertainty vary widely
and no one method has been accepted across the VVUQ community. Model form uncertainty is known to
cause identifiability issues when calibrating model parameters. Such issues have led many researchers to
incorporate model validation activities prior to making predictions. Is it best to use the same approach to-
wards accounting for model form uncertainty when making interpolations and extrapolations and should
extrapolations in the parameter space be treaded in the same manner as extrapolations to new data types?
The type of prediction that the model form uncertainty is influencing may impact how characterizing the
uncertainty is approached and what methods should be applied. By differentiating and defining types of
prediction problems, a analysis structure for considering methods of approaching model form uncertainty
for each prediction type can be better understood.

Using the 1D viscous Burgers’ equation as an application example, a survey of a few methods of
addressing model form uncertainty will be considered. Inadequacy in the model form for the example
problem is introduced by using the linear convective diffusion equation as the model form, while the data
is generated by the Burgers’ equation. Implications on predictions for data types similar to that used for
calibration as well as extrapolations to different data types will be considered. Methods considered in this
analysis include those with Bayesian foundations as well as engineering bounds based. Through applying
a diverse set of methods to a single test problem, analysis of the application and results can illuminate
strengths and weaknesses of current approaches.
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model form uncertainty issues / problem types
conceptual approaches to model form uncertainty problems

problem types of interest

overview of approaches considered / main approach concepts

Burgers’ equation as analysis canvas

current thoughts on problem
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Model Form Uncertainty Issues
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- the uncertainty attributed to the model form representing the truth in

ess than perfect fashion

models are imperfect, the extent to which this impacts the

desired predictions determines if the model form uncertainty is
considered when making predictions

methods of addressing this issue must also address parameter
uncertainty and its propagation leading to identifiability issues

Hypotheses

- many different types of problems include an element of model form
uncertainty

- different types of model form uncertainty problems will benefit from
different solution strategies
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Output Space (Y)

Extrapolation Problem Type 1
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Output Space (Y2) Output Space (Y1)

Extrapolation Problem Type 2
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Interpolation Extrapolation Type 1

Extrapolation Type 2 Extrapolation Type 1 & 2
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Many Conceptual VUQ Approach Options

propagate uncertainty = validation model =) predict
propagate uncertainty = characterize bias =) predict
calibrate parameters = predict

calibrate parameters =p characterize bias =) predict

predict

convert datatypes =) calibrate parameters = predict
®
@
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Overview of Conceptual Approaches

X — model parameters 0 — input conditions
(type A output)
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YA,true(e) — MA(Ha X) + bm,A
YA,true(e) — dA(Q) + bd,A + €

Ma(0,X) =da(0) +ba +e

bA — bm,A + bd,A

m}}n (Ma(0,X)—da(0) +¢€)

H;%n (MA(0,X)+bs—da(0)+ ¢

Ma(0,X) —da(0) =ba + €
(M40, X)—da(0)| < threshold

YA,pred(e) = M4 ((97 X)

YA,pred (0) — MA(@, XA,Cal.)
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Overview of Conceptual Approaches

model relation between model outputs to translate between
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relation Mp(0,X) = f(Ma(0,X))

VUQ activities Mp(0,X) = f(da(0) +ba +¢)
=dp(0) + b + €

calibration
®
®
validation ®

pl’edICtIOn YB,pred(H) — MB (‘97 XA,Val.)
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Types of Problems Our Group is Interested in Solving

want quantified uncertainties from models
need to establish model credibility

hierarchy of system complexity / multiple levels of modeling

data poor at top hierarchical levels, expensive validation
experiments near space of desired predictions

predictions of quantities outside of measurable conditions

physics models with unknown credibility
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Methods of Tackling Problems of Interest: ) .
Focusing on Model Form Issues

multiple flavors of Bayesian approaches

- explicit bias/correction term (Kennedy & O"Hagan 2001)
- calibrate parameters with reduced influence from bias

* rollup into parameter uncertainty based upon validation

performance (Sankararaman & Mahadevan 2015)
- correction of parameter calibration based upon validation

direct application of validation metrics on parameter
space to locate validated subspaces
- interval predictor models (IPM), random predictor
models (RPM), and Bounds to Bounds (B2B)

- locate parameter subspace enveloping data/uncertainty  (Crespo 2014)
- locate parameter subspace enveloped by data/uncertainty (Feeley 2004)
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Methods of Tackling Problems of Interest: ) .
Focusing on Model Form Issues

use of partial least squares to create meta-model for (Hiis 2013)
predicting uncertainty in prediction space

* linear combination of validation results weighted by
sensitivity similarity with prediction used to estimate bias

- weighting driven to get same sensitivity as prediction
model

explicit propagation of all uncertainties, including bias,
to prediction (P-box descriptions) (Roy & Oberkampf 2011)

* no calibration, conservative estimates

» transparent propagation of uncertainties
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Distillation of Methods

1. construct bias correction term from validation results
- identification problem with parameter calibration

2. rollup uncertainty found in validation results into
parameter uncertainty

- poor validation results still mean little confidence in prediction
- parameter descriptions then model specific

3. use validation results to add uncertainty to predictions

- conservative answer that may still be wrong

4. locate parameter subspace able to meet validation criteria

- relies on minimal model form error
- combine calibration and validation into uncertainty description



Burgers’ Equation Example ) 2
incorrect

-> p=1 is linear conv.-diffus. egn
correct

-> p=2 is diffusive Burgers’ egn

‘u(t, az)‘ - velocity distribution over time and space

c,d - advection and diffusion coefficient (uncertain parameters)
D - model form parameter
additional model output - Aux = cuP — d@
Ox
0.5, =<1
r—0.9 1<2x<?2
u(z,0) = 1.5, 2<x <3 initial conditions
45—z 3<z<4
0.5, 4<zx

u(0) = u(20) boundary conditions
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Burgers’ Equation Model Form Uncertainty Problems

- incorrect model was fit to data with least squares

2.0 - — = truth
=4 —— Wrong physics

I
———m 0.5_’ I \ AN N

o 2 4 6 8 10 0 2 4 6 8 10
time time
Interpolation

can make u(x=6, t) predictions given u(x=4, t) and u(x=8, 1)

Type 1 Extrapolation
can make u(x=8, t) predictions given u(x=4, t) and u(x=6, t)

Type 2 Extrapolation
can make flux(x=6, t) predictions given u(x=4, t) and u(x=6, 1)



Sandia
National
Laboratories

Interpolation
c=038 c=1.46
d=0.05 d=0.20
know true parameter values calibrated
| | | xI dataI I_ 2.o_l | | xl data | |
- = truth - = truth

— Wrong physics — Wrong physics

blue and red are conditions where data exists

green is where prediction is necessary



Interpolation
c=0.8 know true parameter values calibrated c=1.46
_ 1.0 - | | | | I 1.0~ | | | | I_ d — 0.20
d=0.05 0.8- I\ - 0.8 - -
- Xx=6 - x=6
0.6 - : —_— x=8 0.6- — X=8
o 0a-|\, . >
c C
g o2-f|! : g
oL _ y
@] ' U
% ~0.2- - %
—-0.4- - —-0.4- -
—0.6 - \ - —0.6- -
_0-8_| I I I I I~ _O 8_| I I I I I~
0 2 4 §) 8 10 0 2 4 §) 8 10
time time

bias term should allow good interpolation, but calibration may not
be physical unless bias form is known a priori

rollup of validation performance into parameter uncertainty or
characterizing with error term will be reasonable

no single set of parameters able to capture data well, but bounding
parameter subspace should be able to capture interpolation
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Type 1 Extrapolation : In Parameter Space

c=038
d=0.05

know true parameter values

20- X data
— = truth

— Wrong physics

c=1.41
d=0.19

calibrated

20 - X data
— = truth

x=4 — Wrong physics

blue and green are conditions where data exists

red is where prediction is necessary
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Type 1 Extrapolation : In Parameter Space

c=0.8 know true parameter values calibrated c=1.41
_ 1_O_| [ [ [ [ I_ 1.0_| [ [ [ [ I_ d — 0.19
d=0.05 0.8- 0.8- -
0.6 - 0.6 - -
S 02- ]
Y 0.0- L
O O
% —0.2- % .
—0.4- —0.4- -
—0.6- —0.6- .
—0.8—| I I I I I~ _0-8_| I I I I I~
0 2 4 6 8 10 O 2 4 6 8 10
time time

use of bias term becomes questionable for larger extrapolations

rollup of validation results may not be conservative if discrepancy
changes across parameter space

similar issue for characterized validation error

bounded parameter subspace may not capture extrapolations
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Type 2 Extrapolation : New Qol

know true parameter values
c=0.38

20- X data

d = 0.05 - - twh

—  Wrong physics

blue and green
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Type 2 Extrapolation : New Qol

c=038
d=0.05

c=1.46
d=0.20

flux

flux

know true parameter values
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Type 2 Extrapolation : New Qol

know true parameter values . Icalilbralted |
1.5- | | | | - T
10- "‘ 1.0-
(© Q.
g 0.0- =] § 0.0-
O _os5- N © -05-
—1.0-
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time
translation of bias to flux has issues due to baseline discrepancy
not present in velocity, but captures trends

rollup of validation may have issues with extent of model form error

quantified validation error will perform better if good initial
parameter uncertainty

mixed calibration/validation will not translate well to new Qol
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Current Hypothesis from Analysis

If converting datatype, parameters should be validated in
initial datatype space at a minimum

construct and characterize bias term for interpolations
simultaneously calibrate bias and parameters if bias form known

shy away from constructing bias term for extrapolations in
parameter space unless bias form well known

converting bias to new datatype may work if the datatype
relation is believed to be well characterized/understood

identifiability issue may cause validation only or validation
iInclusive schemes to be more sound (safe and conservative)

combining calibration and validation may be unsuccessful
when significant model form issues are present



Ongoing Work

» considering how methods of rolling up uncertainty and
dealing with model form uncertainty impact resource
allocation decisions

- comparing differences in interpretation of methods results
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