SAND2016- 4436C

An Atomic Mix Closure for Stochastic Media Transport Problems

Shawn D. Pautz and Brian C. Franke

Sandia National Laboratories: Albuquerque, NM, 87185-1179, {sdpautz,bcfrank}@sandia.gov

INTRODUCTION

The accurate modeling of stochastic media in radiation
transport calculations remains on ongoing research
challenge. The Levermore-Pomraning (LP) closure for the
statistical transport equation is simple and inexpensive, but
it is often inaccurate [1-2]. More accurate closures have
been proposed, but they can be prohibitively expensive [3].
In this work we present a relatively inexpensive closure that
we have observed to be more accurate than LP in almost all
cases studied.

DESCRIPTION OF THE ACTUAL WORK

The statistical transport equation governing transport in
binary stochastic media is given by (adapted from [2]):
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This equation is formally exact for arbitrary mixing
statistics. Unfortunately an additional set of equations is
needed to relate the two types of conditional averages.

In [3] we proposed a family of closures of the following
form:
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To determine R we proposed a set of subsidiary calculations

to relate [<\|I Y>] and [<l//>] to boundary fluxes [l// b]:
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These subsidiary calculations involve a deterministically-
generated ensemble of geometric realizations; weighted
transport calculations on this ensemble yield numerical
approximations to R. Depending on the problem this
ensemble can be quite large.

We note that the LP closure uses the identity matrix for
R in Equation (2).
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New Closure

In order to develop our new model for R we depict an
arbitrary realization in Figure 1 for a stochastic transport
problem in one-dimensional slab geometry. In the regions
centered around location » we explicitly note the distinct
materials at the extremities and on either side of r; there
may be material interfaces within these regions (not
depicted). These are surrounded by “buffer” regions
extending to the problem boundary in which we replace
distinct material regions with atomically mixed material.
The motivation for the atomic mix layers is to reduce the
number of explicit material regions and interfaces that we
will eventually need to computationally model; we assume
that material distribution details near » are more important.
We depict the (known) boundary fluxes and the (unknown)
fluxes at . This is a generalization of the approach we took
in [3], which did not include any atomic mix layers and was
specialized for the “rod” (two-point angular quadrature)
problem.
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Fig. 1. General slab-geometry stochastic transport model.

With the above description of the problem we can relate the
conditionally-averaged interior fluxes to the boundary
fluxes as a function of the material distributions:
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The various response functions R in Equation (4) are
derived from ensemble-averages of the conditional interior
fluxes depicted in Figure 1 and are in general unknown.

In [3] Equation (4) was approximately solved by
creating a finite ensemble of realizations, performing
transport calculations on each realization for each boundary
flux, and then using the computed interior fluxes to obtain
R. We had intended (and still do intend) to perform a
similar process in the present work, which we hope will
obtain reasonable accuracy at reduced computational cost.
However, we have discovered an interesting limit which has
proved quite fruitful and is the main topic of this paper.

If we allow Ax;, — Ax,, — 0 and the atomic mix
buffer regions to grow accordingly, we find that
m; —m,, and m, —>m,, . In this limit we find that
Equation (4) simplifies to
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where the first two equations define the elements of R, and
the other two define Rs. We note two important properties of
this equation. First, R, and Rs contain identical matrix
elements but with permuted rows and columns. This results
directly from the fact that in this thin limit there are either
no material interfaces (and thus the driving boundary flux
initially transports through the same material as the interior
fluxes), or there is a single material interface and the
boundary flux will initially transport through one or the
other material depending on which half-space it is in.
Interestingly, if we do not make this distinction then R,=R;
and we obtain the LP closure. Second, each R;; can be
obtained by transport calculations on a single realization,
namely one filled entirely with atomically mixed materials.
This can be accomplished with N transport calculations,
where N is the number of angular quadrature points, if one
is interested only in a single representation for R throughout
the domain (R in general is spatially dependent). If the
angular quadrature is symmetric one may use only N/2
calculations.

RESULTS

In order to test the atomic mix closure we reexamine
the benchmark problems first reported in [2]. These
problems consist of nine different combinations of binary
media and mixing statistics for three different slab widths.
The problems are monoenergetic in one-dimensional slab
geometry; both the rod and S;4 variants were studied. The
problems are driven by an isotropic flux on the left
boundary. All scattering is isotropic. The reflected and
transmitted currents are the transport quantities examined.
In the present work we do not restrict ourselves to the
particular chord lengths reported in [2]; instead we examine
a variety of length scales.

We generated the atomic mix response matrices in
Equation (5) with the Sceptre deterministic code [4] using
its discretization of the first-order form of the linear
monoenergetic Boltzmann equation, controlling the iterative
errors to be less than 107 and spatial errors to be less than
10°. These response matrices were then used in a variant of
Sceptre that can solve Equations (1) and (2). We also used
Sceptre to generate benchmarks wusing Monte Carlo
sampling to create ensembles of realizations.

We present a few selected results below. In Figures 2
and 3 we depict the reflected and transmitted fluxes,
respectively, for a series of stochastic problems (“cases” 1
and 4) that correspond to Tables 10 and 13 in [2] for a
problem thickness of 1 (average optical thickness of 1) and
S;s Gauss-Legendre quadrature. We plot results for our
benchmark calculations, for an atomic mix calculation, for
the LP treatment, and for the atomic mix closure (using the
response matrix computed in the center of the geometry).
Note that the “atomic mix” results are the directly computed
reflection and transmission from an atomic mix realization,
not the results generated by means of the corresponding
closure. We see here that the atomic mix closure is quite
accurate; in particular, it is more accurate than LP. Similar
results have been observed for all of the other problems with
this problem thickness. Only occasionally is LP slightly
more accurate in the limit of very large chord lengths.
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Fig. 2. Reflection results, cases 1/4, Sy, thickness=1.
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Fig. 3. Transmission results, cases 1/4, Sy, thickness=1.

For problem thicknesses of 10 we find comparable results
for the rod problems: although the relative errors of both are
larger, the atomic mix closure is more accurate than LP. For
the S5 problems, however, we find that source iteration with
the atomic mix closure is unstable. Inspection of the closure
matrices shows that they are not diagonally dominant. We
instead elect to use the closures generated previously for
problem thicknesses of 1 as subgrid models. Results for the
same stochastic problems depicted in Figures 2 and 3 but
with a thickness of 10 are shown in Figures 4 and 5. We
again find that the atomic mix closure is more accurate than
LP, even though the closure was generated with a thinner
problem. Comparable results are obtained for all of the
other stochastic problems studied.
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Fig. 4. Reflection results, cases 1/4, Sy, thickness=10.
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Fig. 5. Transmission results, cases 1/4, S¢, thickness=10.

These results show that the atomic mix closure is a
promising alternative to LP. It requires a modest number of
subsidiary calculations on a single homogenized realization,
which if done as a subgrid model will be less expensive than
the full-geometry calculations. The same closure may be
used for any chord length as long as the relative material
proportions remain the same. In almost every case we have
studied it is more accurate than LP.

CONCLUSIONS

Obtaining solutions to stochastic transport problems can
be quite difficult. Transport calculations on an ensemble of
explicit realizations generated by Monte Carlo sampling can
be prohibitively expensive. Atomic mix or LP calculations
are relatively inexpensive, but they can be inaccurate. The
present work illustrates an approach that is less expensive



than Monte Carlo sampling yet more accurate than atomic
mix or LP approximations.

We still need to analyze the reasons why the atomic
mix closures derived for thicker problems lead to source
iteration instabilities. It is not clear if the closure itself
induces an ill-posed problem or if it is merely the iterative
process that is problematic. We hope to examine alternative
source terms to drive the subsidiary calculations. We also
want to extend the work to multigroup and
multidimensional problems.
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NOMENCLATURE

AX) am = Width of left atomic mix buffer region
Ax,, = width of region(s) to left of »

AX; am = Width of right atomic mix buffer region
AXx,, = width of region(s) to right of »

A, = average chord length in material i

m; = material at left boundary
m, = material at right boundary
m,; = material to left of »
m,, = material to right of »
m’” = material at upstream boundary
L .
m" = material at downstream boundary
m, = material upstream of »

m_ = opposite of material upstream of »
+ .

m, = material downstream of

L, = direction k of angular quadrature

Q = direction of particle travel

Pm = probability of material m

VW o = boundary flux in direction k’ entering material m
<l// l-> = ensemble-averaged angular flux in material i

<l/ls, l-> = ensemble-averaged angular flux at a surface

leaving material i

r = spatial location

R =response matrix

R, = surface-averaged response matrix

R, =unconditionally-averaged response matrix

O, ; = scattering cross section in material 7

O, ; = total cross section in material i
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