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INTRODUCTION

The accurate modeling of stochastic media in radiation 
transport calculations remains on ongoing research 
challenge.  The Levermore-Pomraning (LP) closure for the 
statistical transport equation is simple and inexpensive, but 
it is often inaccurate [1-2].  More accurate closures have 
been proposed, but they can be prohibitively expensive [3].  
In this work we present a relatively inexpensive closure that 
we have observed to be more accurate than LP in almost all 
cases studied.

DESCRIPTION OF THE ACTUAL WORK

The statistical transport equation governing transport in 
binary stochastic media is given by (adapted from [2]):
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This equation is formally exact for arbitrary mixing 
statistics.  Unfortunately an additional set of equations is 
needed to relate the two types of conditional averages.

In [3] we proposed a family of closures of the following 
form:
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To determine R we proposed a set of subsidiary calculations 

to relate  s and   to boundary fluxes  b :
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These subsidiary calculations involve a deterministically-
generated ensemble of geometric realizations; weighted 
transport calculations on this ensemble yield numerical 
approximations to R.  Depending on the problem this 
ensemble can be quite large.

We note that the LP closure uses the identity matrix for 
R in Equation (2).

New Closure

In order to develop our new model for R we depict an 
arbitrary realization in Figure 1 for a stochastic transport 
problem in one-dimensional slab geometry.  In the regions 
centered around location r we explicitly note the distinct 
materials at the extremities and on either side of r; there 
may be material interfaces within these regions (not 
depicted).  These are surrounded by “buffer” regions 
extending to the problem boundary in which we replace 
distinct material regions with atomically mixed material.  
The motivation for the atomic mix layers is to reduce the 
number of explicit material regions and interfaces that we 
will eventually need to computationally model; we assume 
that material distribution details near r are more important.  
We depict the (known) boundary fluxes and the (unknown) 
fluxes at r.  This is a generalization of the approach we took 
in [3], which did not include any atomic mix layers and was 
specialized for the “rod” (two-point angular quadrature) 
problem.

Fig. 1. General slab-geometry stochastic transport model.

With the above description of the problem we can relate the 
conditionally-averaged interior fluxes to the boundary 
fluxes as a function of the material distributions:
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The various response functions R in Equation (4) are 
derived from ensemble-averages of the conditional interior 
fluxes depicted in Figure 1 and are in general unknown.

In [3] Equation (4) was approximately solved by 
creating a finite ensemble of realizations, performing 
transport calculations on each realization for each boundary 
flux, and then using the computed interior fluxes to obtain 
R.  We had intended (and still do intend) to perform a 
similar process in the present work, which we hope will 
obtain reasonable accuracy at reduced computational cost.  
However, we have discovered an interesting limit which has 
proved quite fruitful and is the main topic of this paper.

If we allow 0,,  rrrl xx and the atomic mix

buffer regions to grow accordingly, we find that 

lrl mm , and rrr mm , .  In this limit we find that 

Equation (4) simplifies to
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where the first two equations define the elements of Ru and 
the other two define RS. We note two important properties of 
this equation.  First, Ru and RS contain identical matrix 
elements but with permuted rows and columns.  This results 
directly from the fact that in this thin limit there are either 
no material interfaces (and thus the driving boundary flux 
initially transports through the same material as the interior 
fluxes), or there is a single material interface and the 
boundary flux will initially transport through one or the 
other material depending on which half-space it is in.  
Interestingly, if we do not make this distinction then Ru=Rs

and we obtain the LP closure.  Second, each Rk’k can be 
obtained by transport calculations on a single realization, 
namely one filled entirely with atomically mixed materials.  
This can be accomplished with N transport calculations, 
where N is the number of angular quadrature points, if one 
is interested only in a single representation for R throughout 
the domain (R in general is spatially dependent).  If the 
angular quadrature is symmetric one may use only N/2 
calculations.

RESULTS

In order to test the atomic mix closure we reexamine 
the benchmark problems first reported in [2].  These 
problems consist of nine different combinations of binary 
media and mixing statistics for three different slab widths.  
The problems are monoenergetic in one-dimensional slab 
geometry; both the rod and S16 variants were studied.  The 
problems are driven by an isotropic flux on the left 
boundary.  All scattering is isotropic.  The reflected and 
transmitted currents are the transport quantities examined.  
In the present work we do not restrict ourselves to the 
particular chord lengths reported in [2]; instead we examine 
a variety of length scales.

We generated the atomic mix response matrices in 
Equation (5) with the Sceptre deterministic code [4] using 
its discretization of the first-order form of the linear 
monoenergetic Boltzmann equation, controlling the iterative 
errors to be less than 10-7 and spatial errors to be less than 
10-6.  These response matrices were then used in a variant of 
Sceptre that can solve Equations (1) and (2).  We also used 
Sceptre to generate benchmarks using Monte Carlo 
sampling to create ensembles of realizations.

We present a few selected results below.  In Figures 2 
and 3 we depict the reflected and transmitted fluxes, 
respectively, for a series of stochastic problems (“cases” 1 
and 4) that correspond to Tables 10 and 13 in [2] for a 
problem thickness of 1 (average optical thickness of 1) and 
S16 Gauss-Legendre quadrature.  We plot results for our 
benchmark calculations, for an atomic mix calculation, for 
the LP treatment, and for the atomic mix closure (using the 
response matrix computed in the center of the geometry).  
Note that the “atomic mix” results are the directly computed 
reflection and transmission from an atomic mix realization, 
not the results generated by means of the corresponding 
closure.  We see here that the atomic mix closure is quite 
accurate; in particular, it is more accurate than LP.  Similar 
results have been observed for all of the other problems with 
this problem thickness.  Only occasionally is LP slightly 
more accurate in the limit of very large chord lengths.



Fig. 2. Reflection results, cases 1/4, S16, thickness=1.

Fig. 3. Transmission results, cases 1/4, S16, thickness=1.

For problem thicknesses of 10 we find comparable results 
for the rod problems: although the relative errors of both are 
larger, the atomic mix closure is more accurate than LP.  For 
the S16 problems, however, we find that source iteration with 
the atomic mix closure is unstable.  Inspection of the closure 
matrices shows that they are not diagonally dominant.  We 
instead elect to use the closures generated previously for 
problem thicknesses of 1 as subgrid models.  Results for the 
same stochastic problems depicted in Figures 2 and 3 but 
with a thickness of 10 are shown in Figures 4 and 5.  We 
again find that the atomic mix closure is more accurate than 
LP, even though the closure was generated with a thinner 
problem.  Comparable results are obtained for all of the 
other stochastic problems studied.

Fig. 4. Reflection results, cases 1/4, S16, thickness=10.

Fig. 5. Transmission results, cases 1/4, S16, thickness=10.

These results show that the atomic mix closure is a 
promising alternative to LP.  It requires a modest number of 
subsidiary calculations on a single homogenized realization, 
which if done as a subgrid model will be less expensive than 
the full-geometry calculations.  The same closure may be 
used for any chord length as long as the relative material 
proportions remain the same.  In almost every case we have 
studied it is more accurate than LP.

CONCLUSIONS

Obtaining solutions to stochastic transport problems can 
be quite difficult.  Transport calculations on an ensemble of 
explicit realizations generated by Monte Carlo sampling can 
be prohibitively expensive.  Atomic mix or LP calculations 
are relatively inexpensive, but they can be inaccurate.  The 
present work illustrates an approach that is less expensive 



than Monte Carlo sampling yet more accurate than atomic 
mix or LP approximations.

We still need to analyze the reasons why the atomic 
mix closures derived for thicker problems lead to source 
iteration instabilities.  It is not clear if the closure itself 
induces an ill-posed problem or if it is merely the iterative 
process that is problematic.  We hope to examine alternative 
source terms to drive the subsidiary calculations.  We also 
want to extend the work to multigroup and 
multidimensional problems.
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NOMENCLATURE

Δxl,am = width of left atomic mix buffer region
Δxl,r = width of region(s) to left of r
Δxr,am = width of right atomic mix buffer region
Δxr,r = width of region(s) to right of r

i = average chord length in material i

ml = material at left boundary
mr = material at right boundary
mr,l = material to left of r
mr,r = material to right of r
m- = material at upstream boundary
m+ = material at downstream boundary
mr

- = material upstream of r


r
m = opposite of material upstream of r

mr
+ = material downstream of r

k = direction k of angular quadrature

Ω = direction of particle travel
pm = probability of material m

mkb ,', = boundary flux in direction k’ entering material m

i = ensemble-averaged angular flux in material i

is , = ensemble-averaged angular flux at a surface 

leaving material i
r = spatial location
R = response matrix
Rs = surface-averaged response matrix
Ru = unconditionally-averaged response matrix

is , = scattering cross section in material i

it , = total cross section in material i
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