




# Crude Oil Characterization Research Study Update

Presentation to  
American Fuel & Petrochemical Manufacturers

Rail Policy Working Group Meeting  
Houston, TX  
May 18, 2016



Exceptional  
service  
in the  
national  
interest

*Presented by*

David L. Lord, Ph.D.

Geotechnology & Engineering Department  
Sandia National Laboratories  
Albuquerque, NM 87185



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

# Technical Team

- David Lord (Ph.D., Env E.), Project technical lead
  - Geotechnology & Engineering Department, Sandia National Laboratories
- Anay Luketa (Ph.D., Mech E.), Combustion/fluids modeling lead
  - Fire Science & Technology Department, Sandia National Laboratories
- Tom Blanchat (Ph.D., Nuclear Engr), Combustion testing lead
  - Fire Science & Technology Department, Sandia National Laboratories
- Chad Wocken (B.S., Chem E.), Hydrocarbon supply chain specialist
  - University of North Dakota Energy & Environmental Research Center
- Ted Aulich (B.S., Chemistry), Hydrocarbon supply chain specialist
  - University of North Dakota Energy & Environmental Research Center
- Ray Allen (B.S. Chem E.), PE (TX), HC sampling and testing specialist
  - President of Allen Energy Services engineering consulting firm
- David Rudeen (B.S., Mathematics), Data analyst and EOS modeler
  - GRAM, Inc. technical consulting

# Outline

- Problem Statement and Objectives
- Project Governance and Workflow
- Overview of Task 2 – Task 3 Testing
- How AFPM can help
- Project Management Contacts
- Project Publications

Technical Objectives

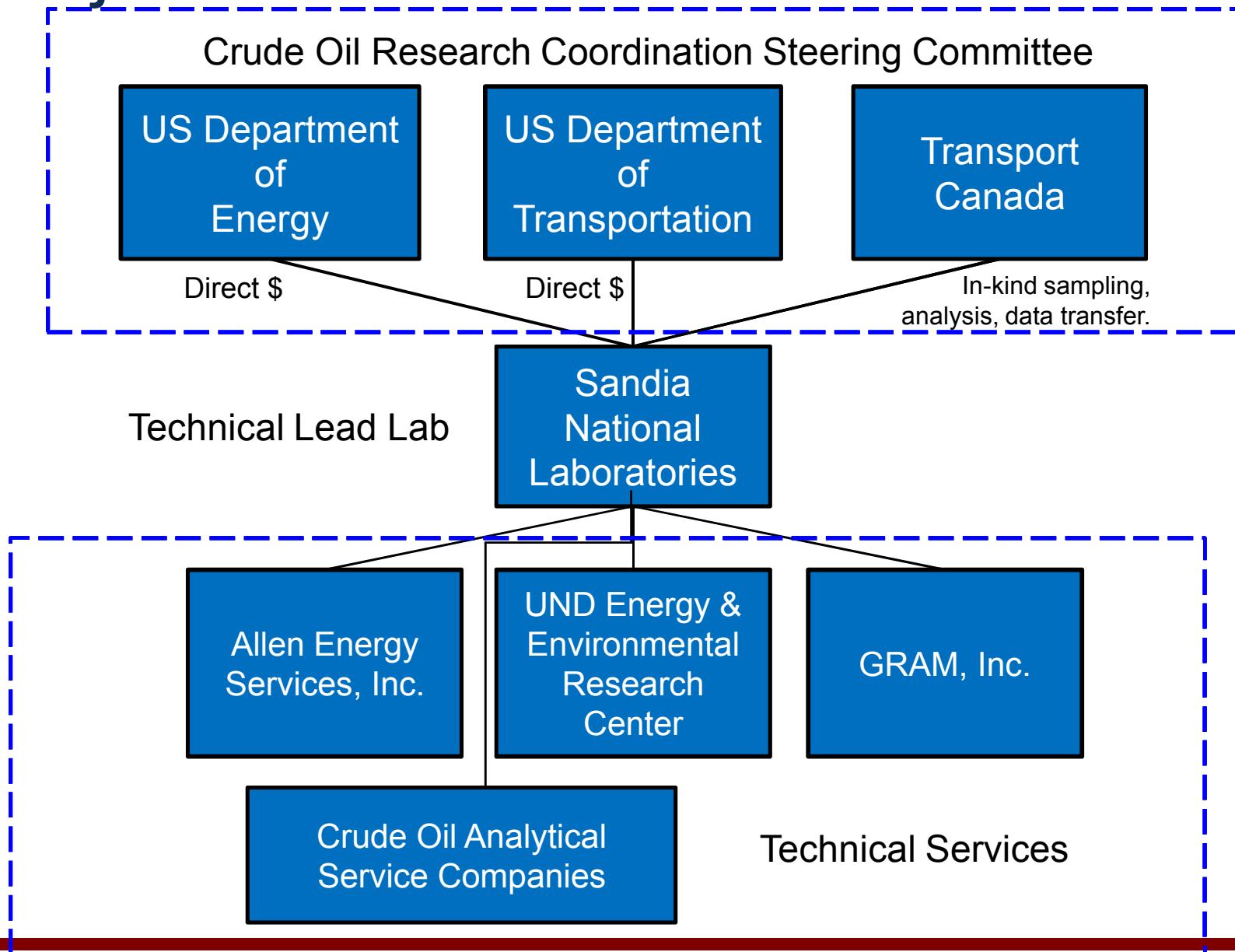
# PROBLEM STATEMENT

# Problem Statement

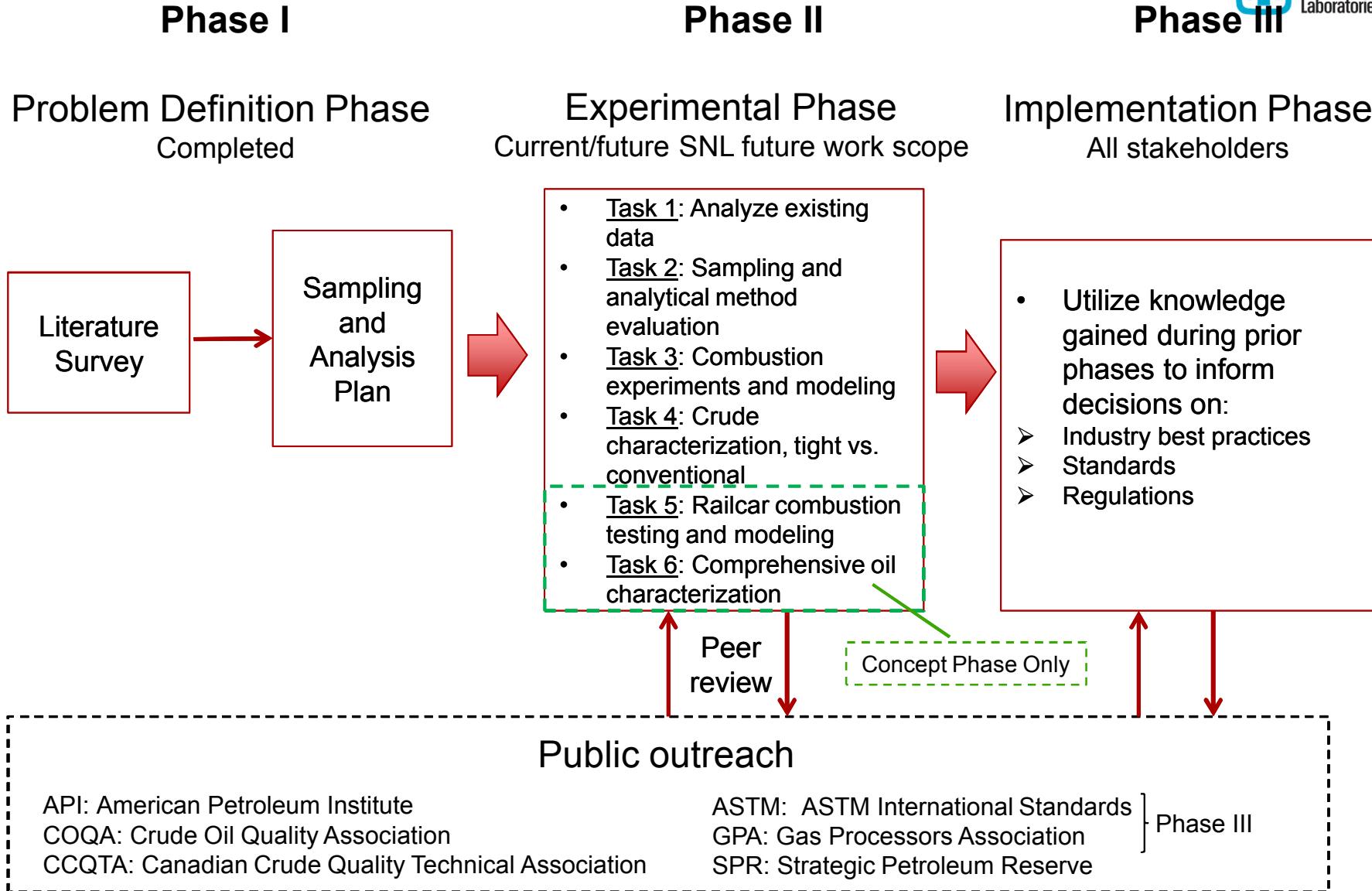
- Crude transport by rail poses risks recognized by US and Canadian regulators
- Hazards have been realized in a number of high-profile train derailments leading to oil spills, environmental contamination, fire, property damage, and fatalities
- Open debate on whether the types of crude (tight oil vs. conventional production) have significant bearing on severity of transportation accidents



TSBC (2014). "Runaway and Main-Track Derailment Montreal, Maine & Atlantic Railway Freight Train Lac-Mégantic, Quebec 06 July 2013."

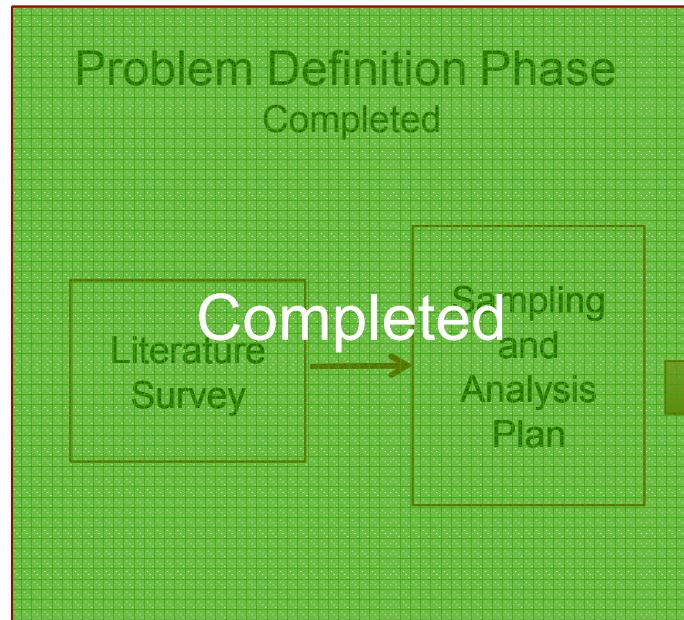

**R13D0054.** Transportation Safety Board of Canada, Gatineau QC K1A 1K8.  
Railway Investigation Report.

# DOE/DOT Project Objectives

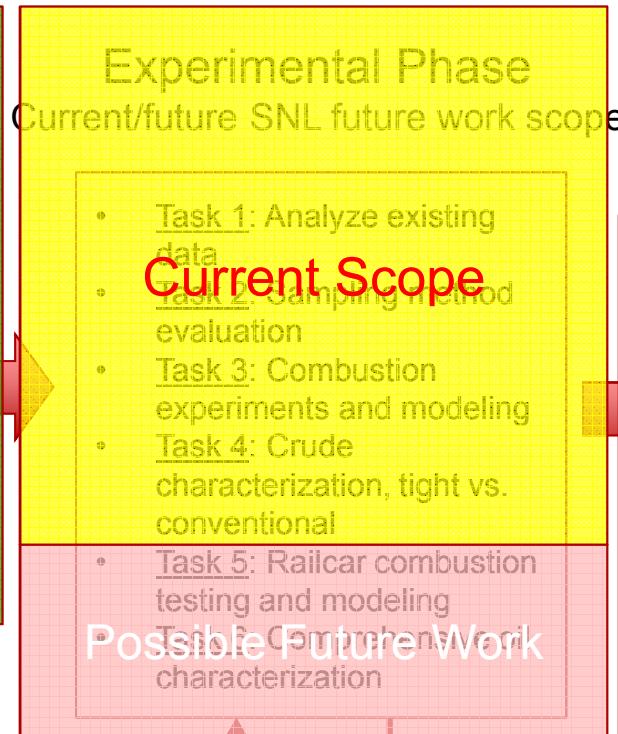

- Determine what combinations of sample capture and analysis methods are suitable for characterizing selected physical properties of volatile crudes
- Evaluate selected physical properties of crude oils (tight vs. conventional production) that are moved within rail transport environment that may have some bearing on flammability risks
- Measure combustion properties (flame dimensions, surface emissive power) of selected crude oils (tight vs. conventional) in controlled burn scenarios that have bearing on hazard determination
- Compare combustion properties to existing published data on other flammable liquids, including methanol, ethanol, jet fuel, hexane
- Evaluate if selected tight oils exhibit measurably different combustion properties from conventional crudes and the reference fluids tested previously

# PROJECT GOVERNANCE

# Project Governance




# Overall Project Workflow




# Overall Project Workflow

## Phase I



## Phase II



## Phase III

Implementation Phase  
All stakeholders



## Public outreach

API: American Petroleum Institute

COQA: Crude Oil Quality Association

CCQTA: Canadian Crude Quality Technical Association

ASTM: ASTM International Standards

GPA: Gas Processors Association

SPR: Strategic Petroleum Reserve

Phase III

# High-Level Project Schedule, Phase I

| Task | Description                                          | Year 1 |    |    |    | Year 2 |    |    |    |
|------|------------------------------------------------------|--------|----|----|----|--------|----|----|----|
|      |                                                      | Q1     | Q2 | Q3 | Q4 | Q1     | Q2 | Q3 | Q4 |
| 1    | Review new & emerging data                           |        |    |    |    |        |    |    |    |
| 2    | Evaluate sampling and analysis methods               |        |    |    |    |        |    |    |    |
| 3    | Large sample acquisition, combustion tests, modeling |        |    |    |    |        |    |    |    |
| 4    | Tight vs. conventional crude characterization        |        |    |    |    |        |    |    |    |

Crude Oil Property and Combustion Tests

# TESTING OVERVIEW

# Task 2 Overview

- Compare sample capture and analysis methods for two selected North American crude oils
  - Prefer upstream production or tank terminals handling tight oils
- Sandia National Laboratories and Transport Canada will administer parallel tests using a variety of sample capture and analysis methods
- Critical review of open vs. closed capture and applicability for use on minimally stabilized oils for measuring:
  - Crude vapor pressure  $VPCR_x(T)$  at selected V/L and temperature
  - Pressurized GC light ends concentration
  - Unpressurized GC DHA and simulated distillation
  - Unpressurized physical property measurements MW, SG, viscosity
  - IBP based on 0.5 wt% determination

# Task 2 Test Matrix

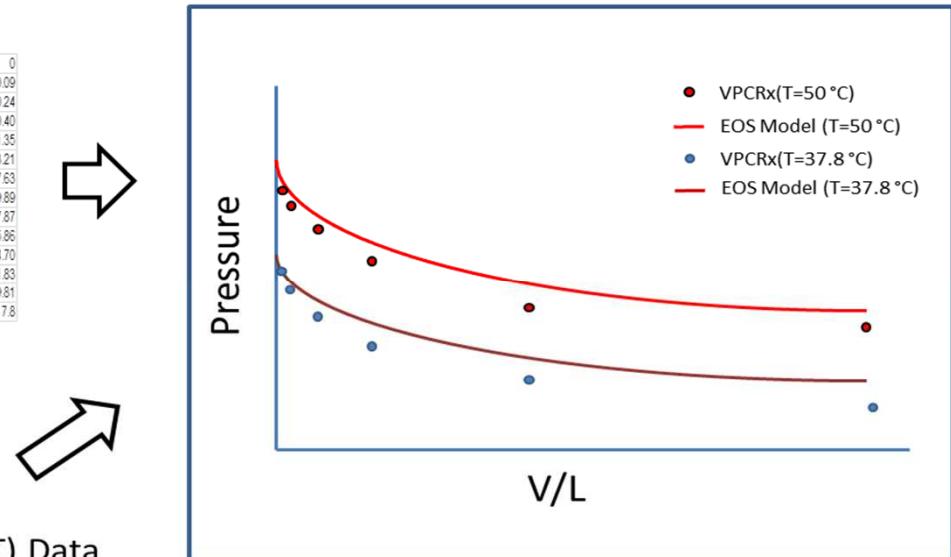
| Sample Technique                    | Standard      | Property Measurement           |                           |                                   |                                         |            |                  |            |                 |                    |
|-------------------------------------|---------------|--------------------------------|---------------------------|-----------------------------------|-----------------------------------------|------------|------------------|------------|-----------------|--------------------|
|                                     |               | TVP                            | Compositional Analysis 1  | Compositional Analysis 2          | Compositional Analysis 3                | Avg MW     | Relative Density | Viscosity  | Flashpoint      | IBP (0.5 wt%)      |
| SPR Tight Line to Mobile Laboratory |               | ASTM D6377 & Separator shut-in | BPP flash gas GC analysis | GOR flash gas GC analysis         | Separator liquid C30+                   | frz pt dep | ASTM D5002       | N/A        | N/A             | EOS with flash gas |
| Floating Piston Cylinder            | ASTM D3700-14 | ASTM D6377-M                   | GPA2103 M                 | GPA2177 + ASTM D7900 + ASTM D7169 | ASTM D8003 + ASTM D7169 + GOR flash gas | frz pt dep | ASTM D5002       | ASTM D7042 | ASTM D93 or D56 | GPA 2103/2177      |
| Water Displacement                  | GPA 2174-14   | ASTM D6377-M                   | GPA2103 M                 | GPA2177 + ASTM D7900 + ASTM D7169 | ASTM D8003 + ASTM D7169 + GOR flash gas | frz pt dep | ASTM D5002       | ASTM D7042 | ASTM D93 or D56 | GPA 2103/2177      |
| Manual Syringe                      | ASTM D8009-15 | ASTM D6377-M                   | GPA2103 M                 | GPA2177 + ASTM D7900 + ASTM D7169 | ASTM D8003 + ASTM D7169 + GOR flash gas | frz pt dep | ASTM D5002       | ASTM D7042 | ASTM D93 or D56 | GPA 2103/2177      |
| Boston Round                        | ASTM D4057-12 | ASTM D6377-M                   | GPA2103 M                 | GPA2177 + ASTM D7900 + ASTM D7169 | ASTM D8003 + ASTM D7169 + GOR flash gas | frz pt dep | ASTM D5002       | ASTM D7042 | ASTM D93 or D56 | GPA 2103/2177      |
| Manual Syringe                      | ASTM D7975-14 | ASTM D7975-14                  | N/A                       | N/A                               | N/A                                     | N/A        | N/A              | N/A        | N/A             | N/A                |

| Color coding | Test Administrator |
|--------------|--------------------|
| White        | SNL                |
| Red          | TC                 |
| Blue         | Both               |

- Test matrix will be run on two minimally stabilized North American crudes
- Objective is to compare multiple methods on a homogeneous sample
- Note: Oil variability across production regions or supply chain is addressed in Task 4 and potential Task 6, not Task 2

# Task 2: Closer Look

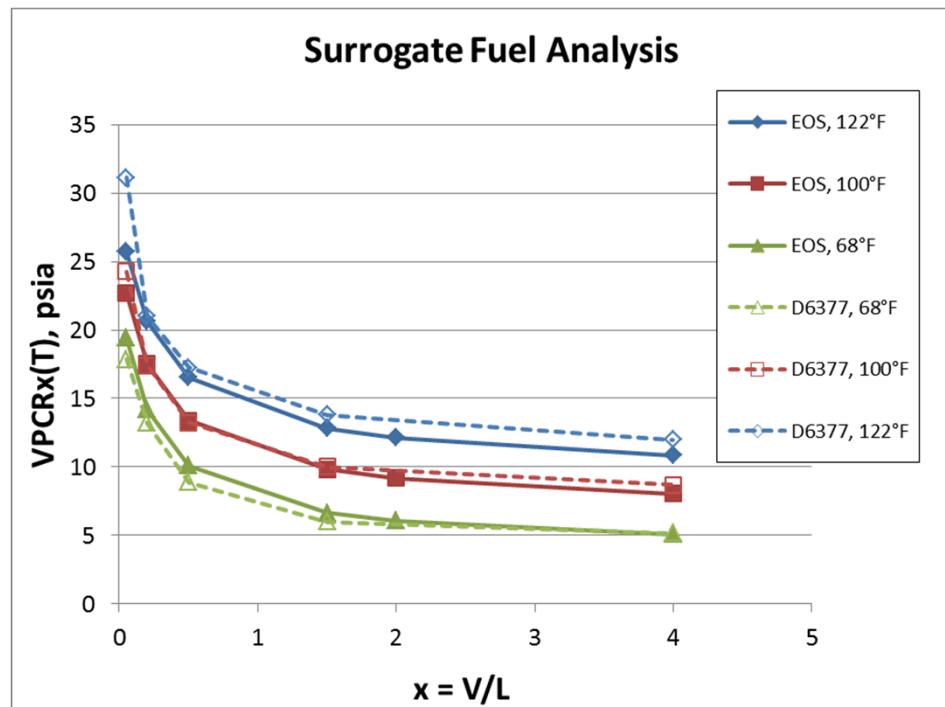
## Conceptual Example of PVT Data Consistency Check


Measured  
Compositional Data

|                 | SPR Bkn<br>mole frac | WH108<br>mole frac |
|-----------------|----------------------|--------------------|
| Nitrogen        | 0.0004               | 0.0006             |
| Carbon Monoxid  | 0.0000               | 0.0000             |
| Carbon Dioxide  | 0.0002               | 0.0007             |
| Argon           | 0.0000               | 0.0000             |
| Oxygen          | 0.0000               | 0.0000             |
| Hydrogen Sulfid | 0.0000               | 0.0000             |
| Methane         | 0.0009               | 0.0004             |
| Ethane          | 0.0073               | 0.0035             |
| Propane         | 0.0346               | 0.0285             |
| Iso-Butane      | 0.0146               | 0.0128             |
| N-Butane        | 0.0541               | 0.0488             |
| Iso-Pentane     | 0.0300               | 0.0301             |
| N-Pentane       | 0.0468               | 0.0443             |
| N-Hexane        | 0.1172               | 0.1173             |
| Heptanes        | 0.1110               | 0.0927             |
| Benzene         | 0.0044               | 0.0096             |
| Toluene         | 0.0105               | 0.0162             |
| Ethyl Benzene   | 0.0034               | 0.0042             |
| Xylenes         | 0.0211               | 0.0193             |
| Residual        | 0.5438               | 0.5746             |

Equation of State  
model PVT  
predictions

|           | E1 (-) | 0     | 0     | 0     | 0     |
|-----------|--------|-------|-------|-------|-------|
| E2        |        | 0.087 | 0.07  | 0.09  | 0.09  |
| E3        |        | 0.24  | 0.23  | 0.25  | 0.24  |
| E4        |        | 0.42  | 0.50  | 0.53  | 0.40  |
| E5        |        | 1.10  | 1.06  | 1.40  | 1.35  |
| E6        |        | 2.26  | 2.18  | 3.02  | 3.21  |
| E7        |        | 4.62  | 4.31  | 6.16  | 7.63  |
| P1 (psia) |        | 19.34 | 15.94 | 19.82 | 19.89 |
| P2        |        | 17.62 | 14.70 | 18.02 | 17.87 |
| P3        |        | 15.89 | 13.23 | 16.22 | 15.66 |
| P4        |        | 14.70 | 11.87 | 14.70 | 14.70 |
| P5        |        | 12.45 | 10.51 | 12.61 | 11.83 |
| P6        |        | 10.72 | 9.16  | 10.80 | 9.81  |
| P7        |        | 9.00  | 7.8   | 9     | 7.8   |


Overlay PVT behavior for two-phase crude oil systems



| Temperature (°F) | (°C) | V/L  | V/L  | V/L | V/L | V/L | V/L |
|------------------|------|------|------|-----|-----|-----|-----|
| 68               | 20   | 0.02 | 0.05 | 0.2 | 0.5 | 1.5 | 4.0 |
| 100              | 37.8 | 0.02 | 0.05 | 0.2 | 0.5 | 1.5 | 4.0 |
| 122F             | 50   | 0.02 | 0.05 | 0.2 | 0.5 | 1.5 | 4.0 |

# Task 2 Closer Look

- Actual example of PVT Data consistency check
- Comparing EOS modeling with measured VPCR<sub>x</sub>(T) for a test fuel (jet A + gasoline) that will later be burned
- Data show reasonable agreement between simulated and measured PVT curves



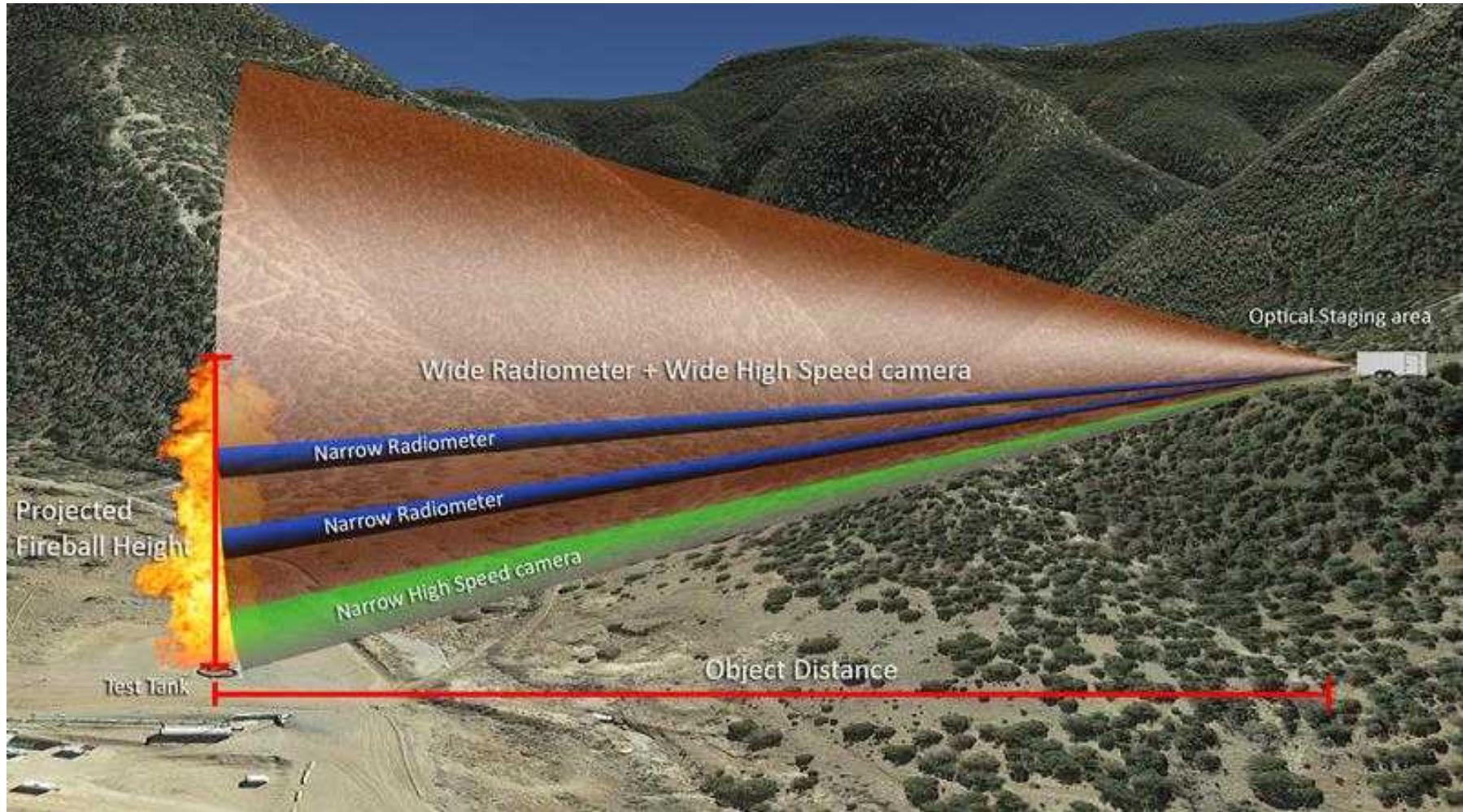
# Task 3 Overview

- Subject four selected North American crudes to basic property and controlled burn testing
- Span a range from tight oils (Bakken, Eagle Ford) with high visibility, to baseline light sweet (WTI, LLS), to specially-stabilized crude from the Strategic Petroleum Reserve
- Compare results against existing hydrocarbon liquid combustion test data

# Burn Test Configurations

## Pool fire

- Surface emissive power (SEP)
- Heat flux to engulfed objects
- Flame height
- Fuel consumption rate




## Fireball

- Surface emissive power (SEP)
- Heat flux to nearby objects
- Fireball diameter
- Fireball duration

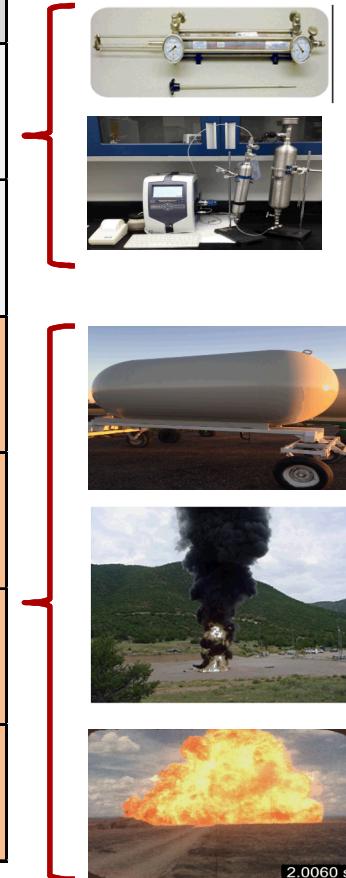


# Fireball Test SEP Instrumentation



# Task 3 Test Matrix - Highlights

| Oil                          | Properties                                            | Pool Fire<br>2m, 5m          | Fireball<br>40 gal, 400 gal       |
|------------------------------|-------------------------------------------------------|------------------------------|-----------------------------------|
| Tight Oil #1                 | VPCRx(T), Light Ends, SimDis, IBP, MW, SG, flashpoint | SEP, flame height, burn rate | SEP, fireball diameter & duration |
| Tight Oil #2                 | VPCRx(T), Light Ends, SimDis, IBP, MW, SG, flashpoint | SEP, flame height, burn rate | SEP, fireball diameter & duration |
| Conventional light sweet oil | VPCRx(T), Light Ends, SimDis, IBP, MW, SG, flashpoint | SEP, flame height, burn rate | SEP, fireball diameter & duration |
| Stabilized SPR oil           | VPCRx(T), Light Ends, SimDis, IBP, MW, SG, flashpoint | SEP, flame height, burn rate | SEP, fireball diameter & duration |


# HOW AFPM CAN HELP

# How AFPM can help

- Technical peer review of test plans, test reports
  - Need a point-of-contact for communications
- Access to sampling points for Tasks 2, 3, and 4
  - Sandia has 7-page sampling proposal (re: Tasks 2 and 3) for distribution to crude oil producers and/or terminal operators who may be interested in helping provide samples
  - Use and publication of data
    - Oil data acquired from the sampling event will be analyzed and published in unclassified, unlimited release technical research reports and presentations. Sandia will avoid any specific references to producer name, terminal operator name, or geographic location (lat/long) of the sampling location.
  - Contact David Lord for more information (slide 25)

# Access to Crude Oil Samples

| Sample Description      | Target Timeframe<br>(Calendar Year-Quarter) | Preferred Sample | Approx Quantity                                                                   |
|-------------------------|---------------------------------------------|------------------|-----------------------------------------------------------------------------------|
| Task 2 Parallel Test #1 | CY2016                                      | Q2               | LACT or rail/pipeline terminal in central or southern U.S. that handles tight oil |
| Task 2 Parallel Test #2 |                                             | Q2               | LACT or rail/pipeline terminal that handles Bakken                                |
| Task 3 Burn Sample #1   | CY2016                                      | Q3               | Bakken                                                                            |
| Task 3 Burn Sample #2   |                                             | Q4               | Eagle Ford                                                                        |
| Task 3 Burn Sample #3   | CY2017                                      | Q1               | SPR stabilized oil                                                                |
| Task 3 Burn Sample #4   |                                             | Q2               | WTI or LLS                                                                        |



# Project Sponsor Contacts

- U.S. Department of Energy
  - Evan Frye
    - U.S. Department of Energy, Office of Fossil Energy, Office of Oil & Natural Gas
    - *evan.frye@hq.doe.gov*
    - 202-586-3827
- U.S. Department of Transportation
  - Joseph Nicklous
    - U.S. Department of Transportation, Office of Hazardous Materials Safety
    - Pipeline and Hazardous Materials Safety Administration
    - *joseph.nicklous@dot.gov*
    - 202-366-4545
- Transport Canada
  - Barbara Di Bacco
    - Transport Canada, Transport Dangerous Goods Directorate
    - *barbara.dibacco@tc.gc.ca*
    - 613-990-5883

# Sandia Project Contacts

- Sandia project manager/technical lead
  - David Lord
    - Sandia National Laboratories, Geotechnology & Engineering Department
    - [dlord@sandia.gov](mailto:dlord@sandia.gov)
    - 505-284-2712
- Sandia geosciences program manager
  - Erik Webb, Senior Manager
    - Sandia National Laboratories, Geoscience Research & Applications
    - [ekwebb@sandia.gov](mailto:ekwebb@sandia.gov)
    - 505-844-9179

# Project Publications

- Lord, D., A. Luketa, C. Wocken, S. Schlasner, R. Allen and D. Rudeen (2015). "Literature Survey of Crude Properties Relevant to Handling and Fire Safety in Transport." *Unlimited Release SAND2015-1823*. Sandia National Laboratories, Albuquerque, NM 87185.
- SNL (2015). "Crude Oil Characteristics Sampling, Analysis and Experiment (SAE) Plan." Office of Fossil Energy. U.S. Department of Energy, <http://energy.gov/fe/articles/crude-oil-characteristics-research>. 9-Jul-2015.
- Lord, D., R. Allen, C. Wocken and T. Aulich (2016). "DOE/DOT Crude Oil Characterization Research Study, Task 2 Sampling & Analysis Plan: Evaluate Crude Oil Sampling & Analysis Methods." *Unlimited Release SAND2016-3079*. Albuquerque, NM 87185. *Anticipated release date June 6, 2016.*

**END OF PREPARED SLIDES**