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Summary ) e

= We have made significant progress in our understanding of
integrated MagLIF implosionssince our first successful
experiments

= Laserinduced mix can significantly degrade integrated
performance and becomes more and more problematicas laser
energy couplingincreases

= |n targets with all low-Z components, performance appearsto scale
with drive current and laser energy coupling

= Simulations mustassume only a fraction of the laser energy is
coupled to the fuel to obtain qualitative agreement (unconditioned
beam)

= |nitial attempt of using a DPP to smooth the beam did notimprove
performance, but is consistent with recent simulations
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Summary (continued) ) B,

= Laser heating experiments being performed on multiple facilities
have already produced significant insight, however, significant
uncertainties and questions remain

= (Z, PECOS) experiments with phase plates show improved energy coupling
and are closer to simulation predictions, but still are generally in poor
agreement.

= OMEGA-EP and NIF preheatingexperiments appear to agree reasonably
well with simulation predictions.

= These experiments will be the focus of the subsequent talks today

= Aplaniscurrently underway to develop a new baseline MagLIF
platform and laser pulse shape with a DPP conditioned beam




The baseline MagLIF experiments produced () i

interesting stagnation conditions
M | 2D Slmulated MagLIF Performance
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Laser-only experiments appear to confirm poor laser-fuel
coupling in initial experiments: Multiple measurements are
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consistent with low energy coupling (~10-20%)
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Reducing the window thickness by 2x )
did not improve performance
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Increasing laser energy to the target further )i
decreased performance
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Increasing laser energy to the target further s
decreased performance

-4
Stagnation image
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With its long preheat stage, MaglLIF is highly ) e
susceptible to fuel impurities (mix)
1.00

C
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%Dopant atomic

Even small high-Z fractions lead to catastrophic radiative losses during
the ~50 ns preheat stage. We must determine and quantify all sources of
mix, starting with mix induced by laser heating.




Changing the endcap materialto Behasa m
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small positive effect with poor laser coupling
-4 4 L L -
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Increasing target height increases load A i,
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inductance, which reduces drive/performance
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Improving laser coupling with low Z i e,
endcaps improves performance
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Equivalently, changing to low Z endcaps with
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nominal laser coupling improves performance
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Our best performing targets appear to scale with
drive current and energy coupling
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Our best performing targets appear to scale with
drive current and energy coupling
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The configuration of our first phase plate test was ) s,
largely driven by empirical progress with the o
unconditioned beam
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We are investigating laser preheating at several (i)
different facilities, each with different goals

ZBL (AAC talks: Geissel, Schwarz, Posters: Schmitt, Bliss)
= Magnetization studies (2)
= Qualification of preheat platform (2)
= Window transmission study (PECOS)
= Optical blast wave interaction studies (PECOS)
= 2w LPland beam conditioning tests (PECOS)
OMEGA-EP (AAC talks: Harvey-Thompson, Nagayama)

= Characterize beam propagation, energy deposition, and laser induced mix as a
function of initial density, laser power, and energy

OMEGA (AAC talks: Davies, Barnak)
= Development of 1/10% scale integrated MagLIF platform
NIF (AAC talks: Pollock, Strozzi)
= Study scaling issues for preheating MagLIF targets with up to 30kJ

17
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ZBL experiments with phase plates show ) e,
increased energy coupling to the fuel and less
x-ray emission from Cl doped window
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Laser only experiments on Z (with ~¥1.8mm DPP ) ) i,
suggests significant window mix

All pinhole
images have

intensities
above washer
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XRS3 spectraindicate fill temperatures of
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2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
energy (eV) F

12 4

o N = O Q0
I

similar

Laboratories

H19
45 psi, 0.5% Ar

H19; 267/3535 J --
H21; 416/3813 ) -
H23; 390/3537 J -

— —H24;414/3729 ) --

H20 H22 H23 H24

50 psi, Pure Ne 60 psi, 0.5% Ar 60 psi , 5% Ar 60 psi, pure D2
36 peak PSL (scaling: 29) Axial lineouts below washer show similar profiles

R e sk Sk [assdorsesting] <:| for low dopant fractions, with intensity scaling that
850 peak PSL(scaling: 1100)

- suggests 10% carbon mix in pure D2 case (H22)

Ar
1000 CCP (no filter correction) Heo. H23 (15-01-16_1)
60 psiS% Ar
—XRS3 a4k

——750eV: 5% Ar, 0.02% Ca2Cl, 30% C

=
o
o

axial distanceinBe (objectmm)

=
o

{}intensity
.

01




Sandia

Lowering the LEH window also significantly i) o
reduces performance

LEH Low

Y4q=3.8e10 (~85x reduction)
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Axial Position [mm]

Even with phase plates, qualitative discrepancies
with simulations remain
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H42 H43

All use D, + 0.1% atomic Ar; H39-H42 at 60 PSI; H43 at 45 PSI

1.1 mm PP 1.1 mm PP
2 kJ 2 kJ

E

-2 0 2 -2 0 2 -2 0 2
Transverse Position [mm]  Transverse Position [mm]  Transverse Position [mm]
H39 H40 H41 10
-2 0 2 -2 0 2
0.75 mm PP 0.75 mm PP 0.75 mm PP 3 3
Transverse Position [mm]  Transverse Position [mm]
2 kJ 2 kJ 4 kJ




Axial Position [mm]

Even with phase plates, qualitative discrepancies
with simulations remain
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We are addressing simulation discrepancies in i) e
two ways

= How well do we really know out initial
conditions?

= Are the physics modelsin our
hydrodynamic codes sufficient to
model laser heating?

Laser focus, delivered energy, etc.

Could IR Amplified Spontaneous Emission
(ASE) be pre-disassembling LEH window?

What s level of laser scatter due to LPI?
(2w, 2.5e14 W/cm?)

Does firing the magnetic field coils change

initial state of window or target?

Is the laser interacting with the focusing
target?

10mm

40% pre-pulse
70% main pulse

N

v

ASE: 20 mJ IR over 20 ns

.020
nnnnn

10% decrease (1.48 micron wihen stretched) 10% increase

Ihlou htu get:
In gas:
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We are currently working on a plan to develop a (i)
new baseline MagLIF platform using a DPP

= Goal: Assessintegrated MagLIF performance usingone or more
conditioned-beam laser preheat platforms at a fixed total energy
depositedinto deuterium fuel to the present 2kJ unconditioned beam.
(June-July)

* Target: (Z2839-like) 10 mm long, AR6 Be liner with Be cushions, 57 psi DD
fill, anda 1.5 um LEH window

* Approach

1. Use Pecos experimentsto develop conditioned beam laser platforms
that match the transmission through the LEH with the unconditioned
beam and reasonably match blast-wave evolution (depth, radial
velocity). --- minimize mix with no pre-pulse

2. Simulate these Pecos experimentsto verify understanding.

3. Simulatethe integrated MagLIF target performance usingthese

conditioned beam platforms.
24




We are pursuing several areas of target design () &=,

improvements

= Minimize mix

" |ncrease fuel density

= Minimize target inductance (increase
current)

= Higher aspect ratio liners

Cryogenic target

Thin windows (cryo)

Increase window standoff
Increase diameter of LEH

All low-Z components, ICE layers
Larger beam dump

Ramped pulse shapes

X (cm)




Summary ) e

= We have made significant progress in our understanding of
integrated MagLIF implosionssince our first successful
experiments

= Laserinduced mix can significantly degrade integrated
performance and becomes more and more problematicas laser
energy couplingincreases

= |n targets with all low-Z components, performance appearsto scale
with drive current and laser energy coupling

= Simulations mustassume only a fraction of the laser energy is
coupled to the fuel to obtain qualitative agreement (unconditioned
beam)

= |nitial attempt of using a DPP to smooth the beam did notimprove
performance, but is consistent with recent simulations
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Summary (continued) ) B,

= Laser heating experiments being performed on multiple facilities
have already produced significant insight, however, significant
uncertainties and questions remain

= (Z, PECOS) experiments with phase plates show improved energy coupling
and are closer to simulation predictions, but still are generally in poor
agreement.

= OMEGA-EP and NIF preheatingexperiments appear to agree reasonably
well with simulation predictions.

= These experiments will be the focus of the subsequent talks today

= Aplaniscurrently underway to develop a new baseline MagLIF
platform and laser pulse shape with a DPP conditioned beam
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H41 MLM images
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Magnetized Liner Inertial Fusion (MagLIF) i) o,

Laboratories

Initialize axial magnetic field (B, = 10-30 T)
= |nhibits thermal losses from fuel to liner

= May help stabilize liner during compression

=  Flux compression increases field to kT

= Fusion products magnetized 2 a particles become
trapped in field

Laser heating of fuel (E, = 2-4 kJ)

Initial average fuel temperature 150-200 eV = 10 keV at compression
Reduces compression requirements (final size and velocity)

Coupling of laser to plasma in an important science issue

Magnetic compression of fuel

= 70-100 km/s, quasi-adiabatic fuel compression

=  Low Aspect liners (r/Ar = 6) are robust to hydrodynamic
instabilities

= Significantly lower pressure/density than NIF ICF




Changes to experimental parameters have ()i
explainable impacts on target performance

Change to experiment | Impact of change Explanation of impact

Endcap material * Thick window = low preheat
Aluminum — Beryllium + 1.8x increase in yield = low mix

3.5 ym window « Endcap material not critical
Endcap material * Thin window = nominal preheat

« 13xincrease in yield

: : = moderate mix
1.5x increase in temp

Endcap material is critical

Aluminum — Beryllium
1.7 ym window

Laser energy « 2.3x decrease in yield

25 -4 kJ « Weak emission from ¢ Increased preheat increases
1.7 ym window top of stagnation mix, important with Al endcaps
Aluminum endcaps column

Target height . 3xdecrease inyield ::c)> acéffrﬁzﬁo:imeviﬁg;

7.5 — 10 mm « Delayed stagnation

lower temperature

31
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Pre-pulse signatures are evident in time ) i,
Laboratories
integrated data

Crystal imager Pinhole camera « Window or prepulse
(3keV+6keV shock emission?
« Emission in this region is
not from argon.
« Brighter for larger DPP
and lower gas pressures

N
Axial Position [mm]

Axial Position [mm]
IN w

2D HYDRA
Simulation

-2 0 2 ) 0 2

Transverse Position [mm] o
Transverse Position [mm]

Emission is slightly wider than
with 0.75 mm phase plate



We have observed significant magnetization )
effects in ZBL experiments
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Anatomy of a MagLIF Target

= Beliner:OD=5.63mm, ID
=4.65 mm, h=5-10 mm

=  LEH Window: 1-3 um thick
plastic window. Supports
60 PSI pure D2 gas fill.

= Return Can: Slotted for
diagnostic access

Slotted Return
Current Can
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Z-Beamlet
Laser

LEH Window

<

7-10 mm

Be Liner




Anatomy of a MagLIF Experiment

Field Coils:
Helmholtz-like coil
pair, 10-30 T axial
field w/ =3 ms rise
time

ZBL: 1-4 kJ green
laser, 1-4 ns square
pulse w/ adjustable
prepulse

Power Feed: Up to
24 MA (typical =18
MA) in 120 ns

i
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Z-Beamlet
4| Laser(ZBL)

Coil Support o1
Structure
Load-Current B-
dots
Power Feed

45 ¢

Field Coils

Be Liner/Target

e -~
o N o
T

Fuel Fill Line



We are collecting data on all phases of MagLIF implosions,

on multiple facilities

‘wansmited enargy inJ
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Our current focus is on better understanding of fuel preheating and mix




Four sets of data imply low levels of preheat. s
Data set #1: Blastwave measurements via VISAR

Dashed: Data
Solid: HYDRA simulation

Velocity (km/s)

Time (ns)

Inferred: 330 J or less coupled to the gas (of ~2.8 klJ)




Four sets of data imply low levels of preheat. e
Data set #2: Calorimeter measurements

Laboratories

Calorimeter Measurements

B14012201

1500

Standard shots:
2.5 um mylar
pre-pulse: 650 ps (~ 650 J)
2 . Window dZ main pulse : 2ns (~ 1400 J)
31000~ 2.5pum
() | *
- +@ E.=850)
° *
2 B14011403
- L 4
£ | . |
1) » *
& 500 3-3.4 um - !
= E .
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8 ° L4 |V _ 4
w/ yield ., "a,,q E150) E,=85 J
o 7. , = TR .
0 - i i i — 1 i L L L 1 1 1 1 1 l J
0 500 1000 1500
fOCUS d|ameter in ‘le Note: horizontal scale is distorted by 32.5° viewing angle

Inferred: ~200-300 J coupled through 3-3.4 um foils




Four sets of data imply low levels of preheat. s,
Data set #3: Shadowgraphy of blastwave (~600 J*)

6.0mm 11.0mm 14.0mm

Shadowgraph measurements
Ne 250 Torr gas-cell shot, 10/6/2014

ZBL: 1.8kJ/2ns, 300J prepulse, 1mm dia. focus
Target: scale-2 gas cell, 1um-thick Mylar LEH, 250 Torr neon gas fill

S 1
; 08 shadowgraph timin
2 06 arap g : A “
2 04 l l l g i
g 0.2 t=10ns t=36ns t=60ns
0 e —— np~sqn(eden‘s) ‘[|0‘910(‘0T’?)]st‘("1$)‘1 10.C np ~ sqrt(edens) [log10(cm=3)] , t(ns):  36. np ~ sqrt(edens) [log10(cm=3)] , t(ns):  60.0112
0 20 tl:?e(ns)ﬁo 80 100 2-042“ “““ ““ “““ Hi— Z.Oﬂ-\w Vo b m\‘u 2.0#‘\ R E MH;
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Four sets of data imply low levels of preheat. i,
Data set #4: Laser with B, shots in Z chamber
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Two separate diagnostics confirmed heating

Inferred peak T,~500 eV (equilibration value lower)

Bent crystal imager
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To date, increased laser energy has reduced yield, (i)
consistent with Z>1 mix from the window and LEH

YnDD Y DD

~1.9el1l ~1.6e10

Simulations:

Increasing laser energy (Ejscer)
from 200 J absorbed to>1 kJ
should dramatically increase
yield (in absence of mix)

Experiments to-date:

Target changes thought to
increase laser absorption into
gas have all decreased the yield.

al Position [mm]

Axial Position [mm)]
o«

Laser-produced mix (direct or
indirect via blastwave of
radiation) appears to be the
culprit.

Axial Position [mm]

Must stay unmixed for ~50 ns!
We can dud the top of the
stagnation plasma!
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MagLIF time scales A s,

Laboratories
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MagLIF employs a slow implosion (70-100 km/s) so
preheat and magnetization are required to achieve
thermonuclear conditions

Sandia
m National
Laboratories

Simulated CR necessary to achieve T = 10 keV

LowB High B 60 [

R ;
50 f
40}

30|

CR 10 keV

20 f

10

= |nitial 10-30 T field greatly
amplified during the implosion
through flux compression Velocity (cm/ s)

= Magnetization (“BR”) reduces pR
requirements for a deposition
and minimizes electron heat
losses*

To realize the benefits of preheat, losses must
be mitigated during the implosion




An ensemble of measurements from our first MagLIF experiments
are consistent with a magnetized, thermonuclear plasma!

Nuclear Activation (yield)

X-ray Imaging (hot
* ey § MaglLIF Z pinch plasma shape)
5 | I DD yield b 10 :
W DT yield
EQ 10" = L,
g % g M.R. Gomez et al. PRL (2014).
-3 qQ P.F. Schmit et al., PRL (2014).

P.F. Knapp et al., PoP (2015).
M.R. Gomez et al., PoP (2015).
S.B. Hansen et al., PoP (2015).
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Timeline of Proposed Experimental Objectives on NIF(fh) i

Laboratories

" Yearl

= Examine efficiency of coupling and level of backscatter as function of laser intensity

= Determine laser smoothing effects, level of LPI, on gas heating as well as
requirements for predictable behavior with current simulation codes

= Year?2

= Assess LPI thresholds, effect of gas Ne, window thickness and pulse shape on energy
coupling
= Study impact of magnetic field on laser propagation (warm)
= Study sources of mix including radiation ablation and blastwave interaction
= Year3
= Assess mix mitigation strategies for promising scaled designs
= Studyimpact of magnetic field on laser propagation (cryo)
= Year4
= Utilize Thomson scattering to quantify fuel conditions

= Measure plasma heating lifetimes with and without magnetic field
= Demonstrate effective mix mitigation

= Year5
= Qualify Z300 MaglIF preheating target
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