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Outline

 Application space for high voltage 
capacitors

 Circuit considerations

 High ε’ dielectrics for HV capacitors

 Low ε’ dielectrics for HV capacitors

 Path forward
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Applications for high voltage capacitors

Voltage, energy, power, lifetime, reliability and cost requirements are 

application specific
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Capacitors can be charged and discharged 
using RC or RLC circuits

For high C and targeted fast discharge, one encounters circuit inductance which requires 
design of low inductance circuits.

Must manage capacitor ESR and ESL!
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Considerations for capacitor design

 Electromechanical stability

 Operating frequency

 Shot life and duty cycle

 Temperature

 Package volume

 Cost
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High K dielectrics 
for high voltage capacitors



We are studying weakly coupled relaxors for
high energy density capacitors

BiScO3-80BaTiO3 BiZn½Ti½O3-80BaTiO3

OSU   Raengthon and Cann, JACerS 95 [11] 3554-61 (2012).

PSU Ogihara, Randall, and Trolier-McKinstry, JACerS 92 [1] 3554-61 (2009)

These so called weakly coupled relaxors exhibit high permittivity and can 
exhibit low dε’/dT above the relaxation temperature
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Can’t we just use BaTiO3?
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 Commercial capacitors exhibit electric field tuning
 Dielectric constant changes with applied field

 Commercial capacitors are optimized for high ε‘ but not energy density

Energy stored in a capacitor is:
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Pulse discharge requires purpose built circuits
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Most measurements we make are in frequency domain but pulse discharge occurs in 
the time domain…
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Capacitors can be charged and discharged 
using RC or RLC circuits

For high C and targeted fast discharge, one encounters circuit inductance which requires 
design of low inductance circuits.
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Loss of small signal between 200 and 300 ns with increasing temperature…thermal 
activation of slow polarization mechanisms and increases capacitance is observed
Capacitance appears to increase with temperature (higher peak current)

Waveform shapes changed with increasing
temperature

V0  3.2V Increasing 
Temperature

Thermally 
activated

polarization 
mechanisms
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Dielectric relaxation was also shown at 
elevated temperatures
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Frequency Domain

Temperature 
(°C)

C2-5MHz

(nF)
C10mHz

(nF)

-55 - 170

-40 - 159

-30 - 214

10 - -

22.5 116 208

56 140 -

90 183 -

100 207 -

Time Domain

0 
1
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Combining frequency and time domain data

The charge capacitance 
should be: 
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Dielectric loss only 
accounts for <15%

Rudeger H.T. Wilke, Sandia National Laboratories



The energy stored by the MLCC must 
equal the energy dissipated during discharge 
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142nF(3.34Volts)2  7.92x107 Joules

E  474 i(t)2 dt  8.22x107 Joules

The values agree to within 96%
220nF polymer cap agrees to within 99%

Discharged

We still don’t know where 40% of the 
energy went from the effective low-f 
charge and high-f discharge
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Summary

 200 nF MLCCs were successfully 

fabricated from BZT-80BT

 Capacitance values calculated from pulse 
discharge data reveals that the dielectric 
relaxation is observable in the time domain

 We can reduce the temperature of the 
dielectric relaxation through solid solution
formation
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Low K dielectrics 
for high voltage capacitors



 Alkali-free glass competitive with many emerging materials

 May have an advantage in manufacturing

 Packaged capacitors: 0.3-3 J/cc (depending on voltage rating)

 Can we make 1 kV, 100 nF capacitors?

Comparison of Capacitive Energy Storage 
Materials

Michael et al., JACERS 98 (2015) 1223
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http://www.neg.co.jp/JP/technology/pdf/idw11.pdf

 Sold by many vendors world wide

 Boro-alumino-silicate glass system

 Sold in thicknesses ~ 100 – 200 µm

 [Na] < 350 ppm (typical)

Alkali-Free Glasses
Parameter Value

Density (g/cm3) 2.3-2.5

Young’s Modulus (GPa) 73-75

r 5-6

tan  0.001

 (Ω*cm @ 250 C) >1012

Strain Point 650-700 C

 “Overflow 
drawn down 
process”
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 Schott AF45 glass etched via 
sonicating in HF

 For t < 20 µm, Eb > 10 MV/cm

 Udielectric~35 J/cc

 Smith et al. Mater. Lett.  63 (2009) 1245, Lee et al. JACERS 93 (2010) 2346

Breakdown Strength of Alkali-free Glass

Parameter D263T AF45

t (µm) 30 19

Eb (MV/cm) 4.2 12

 47.9 10.7
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 Alkali-free glass has found broad application in mobile 
device and display applications

 Commercially sold in thickness > 100 µm (1.3 x 300 m rolls)

 r ~ 5-6  Need massive area (>20 cm2) to achieve 1 nF
capacitance

Thinning of Glass - Motivation

5 µm thick, 8 mm diameter
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Thinned Glass Capacitors Designs

Terry Khaled, Report ANM-112N-03-11 (2003). http://www.electronics-tutorials.ws/capacitor/cap_2.html

Support Layer

Active Dielectric

n layers Electrodes

Edge 
Margin

 Top/Bottom sheets for 
physical  support

 Edge margin to avoid flashover

 Needs insulating fluid to 
avoid triple points

� =
��

��
, � =Young’s 

modulus

Bending 
Stress for 

Corning Willow 
Glass

����=73.6 
MPa
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Fabrication of a Wound Capacitor

 2.7 m long piece of 50 µm thick NEG 
Glass

 Designed to have electrode tabs to 
limit electrode resistance and 
inductance effects

 Wound around 14 cm diameter spool

 1 kV: Udielectric~10 mJ/cc, Ucapacitor~0.5 
pJ/cc

Aluminum Tab

Top Electrode
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 Glass is masked on edges – provide mechanical structure for thinned 
samples

 Etched in 2.5% HF solution (0.01 �� �⁄ )

 Sputter electrodes (100 nm)

Thinning of Glass - Process
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 Pattern 0.75” diameter electrode  
with edge tab 

 Electrode deposition top and 
bottom – rotated 180

 Laser cut glass to form individual 
capacitor layer 

 Edge margin is 0.125” (~10 kV 
hold off voltage in air)

Fabrication Approach for Multi-layer Glass 
Capacitor

200 µm Glass

10-25 µm Glass

10-25 µm Glass

200 µm Glass

n layers Electrodes

Edge 
Margin
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 Left 200 µm thick support frame around 25 µm thick 
thinned glass (60 mm  60 mm)

 Immersed in Fluorinert for measurement

 Layers bonded together using air dried silver paint

Fabrication of Large Area/Multi-Layer 
Capacitor

Fluorinert

Cu Electrodes
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 C (1 kHz) = 23.0 nF, tan =0.001

 Udielectric~0.24 J/cc – need to improve end termination to push Eapplied

 Ucapacitor~70 mJ/cc - can increase by increasing n, decreasing edge margin, 
using thinner support layers 

Properties of Multi Layer Glass Capacitor
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Path Forward

 Partner with commercial entities to develop system specific 
disruptive technologies

 Continue to refine glass post processing to achieve packages 
relevant to high power electronics

 Continue to evaluate material and package response in pulsed 
power environments
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Underdamped case with non-linear dielectrics
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200nF MLCCs were fabricated in house

32200nF MLCC

• BZT-BT powder was synthesized 
from BaCO3, Bi2O3, ZnO, and TiO2

• Powders were calcined at 950°C for 
12 hrs in air

• Particle size was reduced by ball 
milling

• Milled powders were blended with 
Ferro B-73305 PVB-based binder

• 15.25 cm wide tapes were cast on a 
heated bed

• Tapes were printed with DuPont 
9894 Pt-Ink

• Sample burnout in flowing O2 and 
sintering in stagnant air
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Energy densities of >1.3 J/cc have been demonstrated

t=460µm
A=2.77cm2

v=0.127cm3

E/v100kv/cm=0.82 J/cm3

E/v140kv/cm=1.35 J/cm3

t=135µm
A=18.1cm2

v=0.262cm3

E/v100kv/cm= 0.69J/cm3

Dimpled Electrode

200nF MLCC

Breakdown >230 kV/cm 
have been achieved with 
smaller sample volumes
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Blistered 200 nF MLCC were fabricated initially

L = 22.68 mm
w= 24.4 mm
t =  1.12 mm

6 active layers
9894 Pt ink with BZT-
80BT dielectric

Final dicing can 
reduce package size 
(fiducials painted in 
Pt on top of MLCC) 

Systematic study 
eliminated blisters in 
MLCCs

RGA indicated that 
O2 was released 
above 1000°C

Reduced sintering 
temperature

No blisters

MLCC sintered at 1040°CMLCC sintered at 1210°C

50% reduction in 
ε’ @110 kV/cm 
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~1.4 MHz

Dominant frequencies from a current pulse 
can be extracted using a Fourier transform 

Current Waveform from 
Underdamped RLC Circuit

Dominant frequency (~1.4MHz) of the current pulse measured with a CVR agrees 
well with that calculated from ω0=2πf

Fourier Transform

Time Domain Frequency Domain

Rudeger H.T. Wilke, Sandia National Laboratories



Sr shifts Tmax below room temperature

 Dielectric relaxation should be below 0°C for high 
frequency and fast pulse applications 36

Sr (%) TCε’ (ppm/K)

0 -1338

5 -1464

10 -1479

20 -1474

40 -1603

ε” shifted by ~65°C

TC ' 
( 'max 'max@180C )

 'max@90C (180C)
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