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Motivation
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Optimization of PDEs with Uncertain Inputs

Optimal Control: Given a > 0, D, C D, D. C D, and w € L*(D,).

min J(z) = fR {/ (S(2)(&, %) — w(x)) dX] %/CZZ(X) dx
where S(z) = u : = — H*(D) solves the weak form of
=V - (e()Vu(§)) + N(u(6),€) = xp.2, inD, as.
u(€) =g(&), ondD, as.

Topology Optimization: Given0 < Vo <land D c R?, d =1,2,3
min J(z) = [/ F(&,x)-S(z)(&,x)dx| st 0<z<1, /z(x) dx < Vy|D|
z€EZ D D

where S(z) = u : £ — H'(D)? solves the weak form of
—V - (E(2) : e(u(¢)) = F(¢),

inD, a.s.
e(u(e)) = %(Vu(f) +vu©)"), inD. as.
u(§) = g(¢), on dD, a.s.
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+General PDE-Optimization under Uncertainty

(Q, F,P) is a complete probability space and ¢ : Q — = is a random variable.

Consider
22K6=RG®)

where F(z) := f(5(z)(£),z,€)) and 5(z)(§) = u : Q — U solves the PDE
e(u,z,) =0 and Z,q CZ.

Assumptions on PDE Solution Map S(z):
» U is a reflexive Banach space and Z is a Hilbert spaces.
» Foreachz € Z,q, e(u,z,&) = 0 is well posed, i.e.,

» 315(z)(&) : @ — U such that e(S(z),z, &) = 0 for all z;
» 30 < (&) € LP(Q, F,P) independent of z such that

15 llu < c(©)(llzllz +1).
» Themap S: Z — LF(Q, F,P; U) is completely continuous, i.e.,
zp—zinZ = S(z.) — S(z) in L'(Q, F,P; U).

Not satisfied for topology optimization problem!
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Existence of Minimizers

Assumptions: F: Z.4 — L1(Q, F,P);
» F(z) has the lower semicontinuity property that if z, — z then

liminf E[VF(z,)] > E[JF(z)]

n—oo

forall ¢ € (L1(Q2, F,P))* satisfying ¥ > 0 P-a.e.;

» Z.q IS convex, closed and bounded — or —
Z.4 = Z and F(z) has the coercivity propery that
Ir >0 and coercive ¢ : Z — R U {+o0}, such that

lzllz>r = F(z) > ¢(z) as.

Assumptions: R : L7(Q2, F,P) - RU {+oc}
» R is convex and lower semicontinuous
» R satisfies R(C) = C for all constants C;
» R is monotonic, i.e., if X > X’ a.s., then R(X) > R(X').

Result: There exists a minimizer of J(z) = R(F(z)) in Zag.
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Numerical Cost Surrogates, R

F(z) = f(5(2)(§),z,¢&) is a random variable with g finite moments.
No ordering on L7(2, F,P) = cannot minimize F(z)!

» Traditional Stochastic Programming: Minimize F(z) on
average (called risk neutral),

R(F(z)) = E[F(z)].
» Risk-Averse Stochastic Programming: Incorporate risk
preferences in R; for example,
R(F(2)) = E[F(2)] + cE[(F(2) — E[F(2)])%]"/".
» Probabilistic Optimization: Minimize the probability that F(z)
exceeds a threshold T,
R(F(z)) = P(F(z) > 7).
» Ambiguous Stochastic Programming: 2[ is an admissible set
of probability distributions and

R(F(z)) = sup Ep[F(z)].
pea
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+.Known v.s. Unknown Probability Distribution

Traditional Stochastic Programming: Minimize F(z) on average,

min Ep[F(z))].

2€2Z44

Known Probability Distribution:
> ¢:Q — E C RM has known Lebesgue density p : £ — [0, o).
» Analysis in L, (Z) and objective function is smooth if F is.
» Enables polynomial approx. including PC and quadrature.

Unknown Probability Distribution:
» Po¢~!is unknown or is estim. from incomplete/contaminated data.
» Must determine minimizers that are robust to unknown distribution.
» Formulate optimization problem as the min-max problem

min sup Ep[F(z)].

2€2Za4 peny

» Numerical solution = Must discretize the probability measures P € 2.
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Known Probability Distribution
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Choosing a Risk Measure

Controlling Uncertainty and the Risk Quadrangle

» Reduce variability of optimized system:

E[(X - E[X)?] or

E[(X - E[X])} ]V

» Control rare events, reduce failure regions, and certify reliability:

P(X > f)

VaRg[X] =inf {t R : P(X <t) > B}

» Minimize over undesirable events:

CVaRg[X] =

1= 8 Jx>varg[x]

X(w) dP(w) = E[X| X > VaRg[X]]

Opt. Under Uncertainty
Risk R: Measures overall
“hazard”

R(X) = E[X] + D(X)

= mtin{t +V(X-t)}.

Regret V: Measures ones
“displeasure”

smia V(X) = E[X] + £(X).
National
Laboratories

Statistical Estimation
Deviation D: Measures
“non-constancy”

D(X) = R(X) — E[X]
= mtin{E(X -t}
Error £: Measures proxim-

ity to zero

£(X) = V(X) — E[X].




Classification of Risk Measures
Artzner, Delbaen, Eber, Heath, Shapiro, Rockafellar, Uryasey, . ..
R : L}(Z) — RU {co} is coherent if
» Convexity: R(tX+ (1 —H)X') <tR(X)+ (1 -t)R(X'), Vtel0,1]
» Monotonicity: X > X' ae. = R(X)>R(X)
» Translation Equivariance: R(X+1t) =R(X)+t, VteR
> Positive Homogeneity: R(tX) =tR(X), Vt>0
R is law invariant if
PX<H=PX <t) teR = RX)=RX)
Examples of law-invariant coherent risk measures with X € L},(Z):
» Risk Neutral: R(X) = E[X]
» Mean Plus Semideviation: R(X) = E[X] + cE[(X — E[X])".]"/7, c € (0,1)
» Conditional Value-at-Risk: R(X) =inf {t+cE[(X—f)4+] : teR}, ¢>1
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Coherent Risk As Distributionally Robust

» If R is convex and Isc, then
R(X) = sup{E[¢X] — R"(¥) : ¥ € dom(R")}.
» If R is translation equivariant and monotonic, then
dom(R™) C {¥ € (L(E))" : EW] =1, ¥ >0p-ae.}
» If R is positive homogeneous, then

R(X)= sup E[¥X].
Yedom(R*)

Coherent risk —> disitributionally robust with 2l = dom(R").
Example (Conditional Value-at-Risk):

R(X) = CVaRs[X] = inf { t+(1—8)'E[(X - t)+]} = sup E[X]
t Yedom(R*)

dom(R*) = {19 €(LL(E)" :EW =1,0<9< ﬁ p-a.e.}.
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Unknown Probability Distribution
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Distributionally Robust PDE-Optimization

Zackova, Rogosinksy, Shapiro, Gaivoronski, Kuhn, ...
Recall: (Z, B) is a measurable space and prob. measure is unknown.
» 2t is the Banach space of regular Borel measures on B, i.e.,

C(E)" ~m.
> M+ C M is the set of positive measures, i.e.,
pemt = wV)>0 VVeB.

» Ambiguity Set: 2l C 21 defined by data. For example:
» Moment Matching: Given generalized moment data m, . .., my,

m:{Pemﬁ : P(E):1,/Ezp,-(g)dp(g):mi7z’:1,4..,N}.

» ®-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure Py and € > 0,
A={PeM" : P(E) =1, Ds(P,Py) <e}.

» Distributionally-robust (a.k.a. data-driven) optimization problem:

min sup [ f(S(z)(§),z,&) dP(§).

2€2a4 pen J=
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v Example: ®-Divergence

Ben-Tal, Teboulle, Bayraksan, Love, Shapiro, . ..

Supppose
(i) A nominal probability measure Py is given,
(i) The random variable X € L(E, B, Py), and
(iii) @ : R — [0, oo] is convex lower semicontinuous satisfying

®(1)=0 and @(x) =00 VYx<O0.
Define, for fixed € > 0,

A= {0 € (L'(,B,P))" : Bp,[9] =1, ¥ >0, Ep,[0(V)] < e}

Then R(X)=sup Ep,[9X] = inf {Xe+ pu+ Ep,[(AD)" (X — )]}
= A20,

is a law-invariant coherent risk measure!
Example (Kullback-Leibler Divergence): ®(x) = xIn(x) —x+1,x >0

R(X) = inf {/\c + AlnEp, [ex/ *] } .
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' Measure Approximation

For General Ambiguity Sets, 21

Approach:
1. Let {yi}i—; be a partition of unity on Z and . € 9t be any measure.
2. Define the “localized” measures

(V) = / @i(€) du(©).

3. Note u(Z2) = m(B) + ... + u(2).
4. Define the projection operators I : C(Z) — span{¢i,...,pn} as

Wy =3 @™ [ WO du(© v Yy eCE)
— =
and Al : M — span{p,...,us} as

A”V—Zuzz @ an@m vwen
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Approximation Properties

v

Lemma: If 4 € MT is o-finite, then Al/v is absolutely continuous
with respect to p with density

=3 mE ™ [ @O foranyvem

v

Lemma: A/ is invariant on the space of probability measures.
Lemma: 114 is the adjoint of AJ.

Theorem: Let V; = supp(y;) and || - ||.,v, denote the uniform
norm on V;. Then, there exists ¢; > 0 such that

v

v

(0= Mmgmee) < 3o { [ Va@du© | inf Vet -5y,
i=1 = '
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Measure Approximation

Piecewise Constants:
1. Let {Vi}._, be a tesselation of E and define ¢; = xv,.
2. The “localized” measures are

pi(V) = p(V N Vi).
3. The projection operator IT} : C(Z) — span{1,...,pn} IS
Ly = > uV)™ [ wOdu©) v vy ecE)
i=1 Vi

and Al : 9 — span{p,...,pn}is

Aﬁy = Zu(vi)_lu(vi)ui Vv e ‘ﬁ,
i=1

» Theorem: Suppose V; are convex, bounded, and Lipschitz, and . € 9.
Then 3 ¢ > 0 only depending on M such that

n V) .
v—Av||pee iz < (1—|—|M(1>1/V,» diam(V;).
l llwi.o (=) ; (V)] lvI(Vi) (Vi)
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Example — Voronoi Tesselation

Suppose = = [0,1] and P has pdf

- _ B e
pdf(¢) = T gt for B >0.

Approx. P using piecewise constant projection and y set to the uniform prob. measure:

n —Baj_1 _ ,—pBa;
approx-pdf(§) = Z (1(6_ e*ﬁ)(a-e— 11‘7)1) X

i=1

a;_1,a;] (5)

B n Error Sum W. Diam. Max. Diam. Max. W. Diam.
10 | 3592 x 1072  1.438x 10~T 2518 x 10! 5.899 x 102
1 100 | 3.740 x 1073 1.496 x 1072 4.269 x 1072 1.471 x 1073
1000 | 3.751 x 107* 1501 x 107%  6.089 x 107> 2.733 x 10~°
10000 | 3.750 x 107> 1.500 x 10~*  7.955 x 10~*  4.404 x 1077

10 | 2282 x 1077 1.304 x 10°T 7572 x 10! 1.010 x 1071
10 100 | 3.053 x 1072 1451 x 1072 5328 x 107! 8.191 x 1073
1000 | 3.551 x 1072 1.502 x 1073 3.133 x 107! 5.424 x 1074
10000 | 3.763 x 10~% 1517 x 10~*  1.300 x 107! 2.710 x 107°

10 | 3.076 x 1077 1.226 x 10°7  9.758 x 10! 1.194 x 1077
100 100 | 4128 x 1072 1.327 x 1072 9.531 x 10~! 1.261 x 1072
1000 | 5.022 x 107°  1.348 x 10~%  9.301 x 10" 1.247 x 1072
10000 | 5.899 x 10™*  1.360 x 10™*  9.072 x 10" 1.224 x 10~*
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.. Approximation and Optimization Algorithms
Given an arbitrary 1 € 9™ with (2) = 1, we approximate
J(z) = sup f( (2)(£),2,€) dP(£)
pPe
using our measure discretlzatlon i.e.,

Jn(2) —supZ ”1 /f(S ),2,6) dpi(€), mn:{peR“ Y Poeut.
[ wi( -1 wi(Z)
» Theorem (Piecewise Constants): If ¢ — f(S(z)(¢),z,£) € W*°(Z) and
z, minimizes J,, defined on a family of tesselations {V,;}i., satisfying

n

lim supZP wi)diam(V,;) = 0.

Yl*}OOPGz[ P

Then, z, has a w-converging subsequence and the w-limit minimizes J.
» ] and J, may not be differentiable!
» Jand ], are Fréchet subdifferentiable.
» Compute value and subgradient using linear/convex optimization.
» Cannot use derivative-based optimization algorithms.
» Subgradient descent and bundle methods converge sublinearly.

» Expensive PDEs —> Need rapid optimization algorithms.
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Example — Moment Matching

Let ¢; : © — R be B-measurable functions and m; € Rfori=1,...,N

Joi(€)dP() =m;, i=1,...,N,
e

Joi(€)dP(E) <my, i=Ne+1,...,

Theorem (Rogosinsky): If 2 # (, then for each z € Z there exists & and p; > 0 with
p1+ -+ pny1 = 1 such that

le{Pesm+ : P(B) =1,

N+1

sup LAs@E©.z0are = > pSEE) 28)

Approximation: Localized measures y;

Z,"l”()f_wz(f dﬂ]()—miai:lv-w,Ne
U= pER" : Y pi=1,
= ] 1M]( )I_wt(f)d:u']( & <my,i=Ne+1,...,N

Theorem (Kouri): If 2, # 0, then for each z € Z there exists p; > 0 with at most
min{n, N + 1} nonzero such thatp; + - -- +pn41 = 1 and

pi
N] E)

sup
9€An 21 1i(E
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N+1
/ FSENE),2.€) dpi(€) = / FSEE),,€) dps(E).
1

j=




Example — Moment Matching

Optimal Control of 1D Elliptic Equation
Leta=10"% D, =D, =D = (-1,1), and w = 1 and consider

1
+Q/ z(x)? dx
2/

where S(z) = u € L3(Z; Hj(—1,1)) solves the weak form of
—0x (e(&, %) 0xu(€, x)) = £(£, %) +2(x) (£ x) €Ex D,

= =[-0.1,0.1] x [-0.5,0.5], the true distribution is a tensor product of
truncated exponentials, and the random field coefficients are

minimize z)==R
z€l2(—1,1) ) 2

6(5,3() = O~1X(71,$1) + 10}((51’1), and f(f,X) = exp(—(x — 52)2).
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Example — Moment Matching

P / €1dP(€) ~ —0.537, and / £ dP(¢) ~ —0.313

1 1 1
0.75
G0 105 & 0
0.25
-1 0 -1
-1 0 1
¢
™1

0
-1 0 1

& &

» Left: Voronoi (n = 64) with 1000 MC samples per cell.
» Center: Uniform (n = 64) with level 4 sparse grids.

» Right: C? parition of unity (1 = 64) with level 4 sparse grids,
i.e., shifted/scaled tensor products of

4x*(3 — 4x) ifo<x<l
O(x) = 4(x—1)*(4x—1)if § <x <1
0 otherwise.
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Example — Moment Matching

n | Obj. Val. Center Prob. Center Prob. Center Prob.
S 16 | 0.13457 || (—0.864,—0.893) | 0.435 | (—0.634,0.841) | 0.328 || (0.195,—0.848) | 0.237
e 64 || 0.13777 || (—0.882,-0.933) | 0.540 || (—0.331,0.849) | 0.346 | (0.467,—0.909) | 0.114
S| 256 || 0.14056 (—0.981,—-0.983) | 0.605 (0.116,0.922) | 0.351 (0.330, —0.960) 0.044
§ 1024 || 0.14133 (—0.126,—-0.987) | 0.484 | (—0.916,0.988) | 0.342 | (—0.939,—0.994) | 0.174
S| 4096 | 0.14207 (—0.978,—-0.997) | 0.368 | (—0.813,0.988) | 0.343 (0.350, —0.991) 0.289
~* 16 || 0.13221 (—0.750, —0.750) | 0.709 | (—0.750,0.750) | 0.150 (0.750,0.750) 0.142
Il 64| 013779 | (~0.857,-0.875) | 0.49 || (—0.875,0.875) | 0.321 || (0.875,—0.875) | 0.193
©| 256 || 0.14058 || (—0.063,—0.938) | 0.457 || (—0.938,0.938) | 0.333 | (—0.938,—0.938) | 0.210
S| 1024 | 0.14194 || (—0.969, —0.969) | 0.438 | (—0.969,0.969) | 0.338 || (0.906,—0.969) | 0.223
g 4096 || 0.14286 (—1.000,—1.000) | 0.433 | (—0.968,1.000) | 0.342 (1.000, —1.000) 0.225
16 | 0.13444 || (—1.000,—1.000) | 0.696 | (1.000,1.000) | 0.164 || (—1.000,1.000) | 0.140
T‘I‘ 64 || 0.13953 (—1.000,—1.000) | 0.501 | (—0.714,1.000) | 0.329 (1.000, —1.000) 0.170
~| 256 || 0.14154 (—1.000, —1.000) | 0.663 (0.867,1.000) | 0.231 (—1.000, 1.000) 0.106
Y| 1024 | 0.14244 (—1.000, —1.000) | 0.441 | (—0.935,1.000) | 0.340 (1.000, —1.000) 0.218
4096 || 0.14286 || (—1.000,—1.000) | 0.433 || (—0.968,1.000) | 0.342 || (1.000,—1.000) | 0.225

[ [ *] 0.15640 ] (—0.995,-0.996) [ 0.657 ]| (0.432,1.000) | 0.323 [ (—0.993,0.999) [ 0.019 |

* Computed using Gaivoronski’s stochastic descent algorithm for moment matching.
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Example — CVaR

Optimal Control of 1D Elliptic Equation
Leta=10,Q,=Q,=Q = (-1,1),and w = 1 and consider

1
+E/ z(x)? dx
2/

where S(z) = u € L2(Z; Hj(0,1)) solves the weak form of

minimize [(z) = 172 [/1 (S(z)(-,x) — 1)* dx

z€l2(—1,1) 1

N

=0y (e(&,x)0xu (&, x)) = f(&, x) +z(x) (&x) €ExQ,
u(€,-1)=0, u(&,1)=0 ==

E =[-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density p = 5
and the random field coefficients are

€(&,x) = 0.1x(—1,¢,) + 10x(e,,1y,  and  f(&,x) = exp(—(x — 52)2).
Sandia
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- Example — CVaR

Discretization: Uniform (n = 900) with level 4 sparse grids.

B =0.05 B=05 B =095
05 05 05
S0 S0 S0
-0.5 -0.5 -0.5
-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

v
Il
li
=
——

Ql,,_{pG]R{":Zp,—l O<p1_1_ i
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Conclusions
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e
Conclusions:

» Risk Neutral:
» Can efficiently solve using adaptive sparse grids and trust regions.
> Risk Averse:
» Risk measures often not differentiable;
» Define smooth risk measures using primal and bidual formulations;
» Can use Newton’s method/quad. and can prove error bounds.
» Unknown Distribution:

» Incorporate data into distributionally-robust opt. formulation;
» Objective function not differentiable;
» Nonsmooth optimization algorithms converge slowly.

Future Work:

» Risk measures: Develop error indicators and use locally adaptive
sparse grids with trust-region algorithm.
» Unknown distribution: Develop opt. algorithm with adaptive
tessellation and sampling that exploits PDE constraint.
» Incorporate (buffered) probabilistic objectives and constraints to
control tail-probabilities and rare events
@ o (Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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