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Motivation
Reservoir Optimization

v = −Kλ(s)∇p, ∇ · v = q

φ ∂ts +∇ · ( f (s)v ) = q̂

Superconductor Vortex Pinning

Courtesy Argonne National Laboratory

γ(∂t + iµ)ψ = εψ − |ψ|2ψ + (∇− iA)
2
ψ

J = Im(ψ̄(∇− iA)ψ)− (∂tA +∇µ), ∇ · J = 0

Direct Field Acoustic Testing

−∆u− κ2
(1 + σε)

2u = z



Optimization of PDEs with Uncertain Inputs
Optimal Control: Given α > 0, Do ⊆ D, Dc ⊆ D, and w ∈ L2(Do).

min
z∈Z

J(z) ≡ 1
2
R
[∫

Do

(S(z)(ξ, x)− w(x))2 dx
]

+
α

2

∫
Dc

z2(x) dx

where S(z) = u : Ξ→ H1(D) solves the weak form of

−∇ · (ε(ξ)∇u(ξ)) + N(u(ξ), ξ) = χDc z, in D, a.s..

u(ξ) = g(ξ), on ∂D, a.s.

Topology Optimization: Given 0 < V0 < 1 and D ⊂ Rd, d = 1, 2, 3.

min
z∈Z

J(z) ≡ R
[∫

D
F(ξ, x) · S(z)(ξ, x) dx

]
s.t. 0 ≤ z ≤ 1,

∫
D

z(x) dx ≤ V0|D|

where S(z) = u : Ξ→ H1(D)d solves the weak form of

−∇ · (E(z) : ε(u(ξ)) = F(ξ), in D, a.s..

ε(u(ξ)) =
1
2

(∇u(ξ) +∇u(ξ)>), in D, a.s..

u(ξ) = g(ξ), on ∂D, a.s.



General PDE-Optimization under Uncertainty
(Ω,F ,P) is a complete probability space and ξ : Ω→ Ξ is a random variable.
Consider

min
z∈Zad

J(z) = R(F(z))

where F(z) := f (S(z)(ξ), z, ξ)) and S(z)(ξ) = u : Ω→ U solves the PDE

e(u, z, ξ) = 0 and Zad ⊆ Z.

Assumptions on PDE Solution Map S(z):
I U is a reflexive Banach space and Z is a Hilbert spaces.
I For each z ∈ Zad, e(u, z, ξ) = 0 is well posed, i.e.,

I ∃! S(z)(ξ) : Ω→ U such that e(S(z), z, ξ) = 0 for all z;
I ∃ 0 < c(ξ) ∈ Lp(Ω,F ,P) independent of z such that

‖S(z)(ξ)‖U ≤ c(ξ)(‖z‖Z + 1).

I The map S : Z→ Lp(Ω,F ,P; U) is completely continuous, i.e.,

zn ⇀ z in Z =⇒ S(zn)→ S(z) in Lp(Ω,F ,P; U).

Not satisfied for topology optimization problem!



Existence of Minimizers

Assumptions: F : Zad → Lq(Ω,F ,P);
I F(z) has the lower semicontinuity property that if zn ⇀ z then

lim inf
n→∞

E[ϑF(zn)] ≥ E[ϑF(z)]

for all ϑ ∈ (Lq(Ω,F ,P))∗ satisfying ϑ ≥ 0 P-a.e.;
I Zad is convex, closed and bounded – or –

Zad = Z and F(z) has the coercivity propery that
∃ r > 0 and coercive ϕ : Z→ R ∪ {+∞}, such that

‖z‖Z ≥ r =⇒ F(z) ≥ ϕ(z) a.s.

Assumptions: R : Lq(Ω,F ,P)→ R ∪ {+∞}
I R is convex and lower semicontinuous
I R satisfies R(C) = C for all constants C;
I R is monotonic, i.e., if X ≥ X′ a.s., then R(X) ≥ R(X′).

Result: There exists a minimizer of J(z) = R(F(z)) in Zad.



Numerical Cost Surrogates, R

F(z) = f (S(z)(ξ), z, ξ) is a random variable with q finite moments.
No ordering on Lq(Ω,F ,P) =⇒ cannot minimize F(z)!

I Traditional Stochastic Programming: Minimize F(z) on
average (called risk neutral),

R(F(z)) = E[F(z)].

I Risk-Averse Stochastic Programming: Incorporate risk
preferences in R; for example,

R(F(z)) = E[F(z)] + cE[(F(z)− E[F(z)])
q
+]1/q.

I Probabilistic Optimization: Minimize the probability that F(z)
exceeds a threshold τ ,

R(F(z)) = P(F(z) > τ).

I Ambiguous Stochastic Programming: A is an admissible set
of probability distributions and

R(F(z)) = sup
P∈A

EP[F(z)].



Known v.s. Unknown Probability Distribution

Traditional Stochastic Programming: Minimize F(z) on average,

min
z∈Zad

EP[F(z))].

Known Probability Distribution:
I ξ : Ω→ Ξ ⊆ RM has known Lebesgue density ρ : Ξ→ [0,∞).
I Analysis in Lq

ρ(Ξ) and objective function is smooth if F is.
I Enables polynomial approx. including PC and quadrature.

Unknown Probability Distribution:
I P ◦ ξ−1 is unknown or is estim. from incomplete/contaminated data.
I Must determine minimizers that are robust to unknown distribution.
I Formulate optimization problem as the min-max problem

min
z∈Zad

sup
P∈A

EP[F(z)].

I Numerical solution =⇒ Must discretize the probability measures P ∈ A.
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Choosing a Risk Measure
Controlling Uncertainty and the Risk Quadrangle

I Reduce variability of optimized system:

E[(X − E[X])2] or E[(X − E[X])
q
+]1/q

I Control rare events, reduce failure regions, and certify reliability:

P(X > t) or VaRβ [X] = inf { t ∈ R : P(X ≤ t) ≥ β }

I Minimize over undesirable events:

CVaRβ [X] =
1

1− β

∫
X≥VaRβ [X]

X(ω) dP(ω) = E[X |X ≥ VaRβ [X]]

Opt. Under Uncertainty
Risk R: Measures overall
“hazard”

R(X) = E[X] +D(X)

= min
t
{t + V(X − t)}.

Regret V: Measures ones
“displeasure”

V(X) = E[X] + E(X).

R D

S

V E

Statistical Estimation
Deviation D: Measures
“non-constancy”

D(X) = R(X)− E[X]

= min
t
{E(X − t)}.

Error E: Measures proxim-
ity to zero

E(X) = V(X)− E[X].



Classification of Risk Measures
Artzner, Delbaen, Eber, Heath, Shapiro, Rockafellar, Uryasev, . . .

R : Lq
ρ(Ξ)→ R ∪ {∞} is coherent if

I Convexity: R(tX + (1− t)X′) ≤ tR(X) + (1− t)R(X′), ∀t ∈ [0, 1]

I Monotonicity: X ≥ X′ a.e. =⇒ R(X) ≥ R(X′)

I Translation Equivariance: R(X + t) = R(X) + t, ∀t ∈ R

I Positive Homogeneity: R(tX) = tR(X), ∀t > 0

R is law invariant if

P(X ≤ t) = P(X′ ≤ t) ∀t ∈ R =⇒ R(X) = R(X′)

Examples of law-invariant coherent risk measures with X ∈ Lq
ρ(Ξ):

I Risk Neutral: R(X) = E[X]

I Mean Plus Semideviation: R(X) = E[X] + cE[(X − E[X])
q
+]1/q, c ∈ (0, 1)

I Conditional Value-at-Risk: R(X) = inf { t + cE[(X− t)+] : t ∈ R }, c > 1



Coherent Risk As Distributionally Robust

I If R is convex and lsc, then

R(X) = sup {E[ϑX]−R∗(ϑ) : ϑ ∈ dom(R∗)} .
I If R is translation equivariant and monotonic, then

dom(R∗) ⊆
{
ϑ ∈ (Lq

ρ(Ξ))∗ : E[ϑ] = 1, ϑ ≥ 0 ρ-a.e.
}

I If R is positive homogeneous, then

R(X) = sup
ϑ∈dom(R∗)

E[ϑX].

Coherent risk =⇒ disitributionally robust with A = dom(R∗).

Example (Conditional Value-at-Risk):

R(X) = CVaRβ [X] = inf
t

{
t + (1− β)−1E[(X − t)+]

}
= sup
ϑ∈dom(R∗)

E[ϑX]

dom(R∗) =

{
ϑ ∈ (Lq

ρ(Ξ))∗ : E[ϑ] = 1, 0 ≤ ϑ ≤ 1
1− β ρ-a.e.

}
.
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Distributionally Robust PDE-Optimization
Žáčková, Rogosinksy, Shapiro, Gaivoronski, Kuhn, . . .

Recall: (Ξ,B) is a measurable space and prob. measure is unknown.
I M is the Banach space of regular Borel measures on B, i.e.,

C(Ξ)∗ ∼= M.

I M+ ⊂M is the set of positive measures, i.e.,

µ ∈M+ =⇒ µ(V) ≥ 0 ∀V ∈ B.

I Ambiguity Set: A ⊂M defined by data. For example:
I Moment Matching: Given generalized moment data m1, . . . ,mN,

A =

{
P ∈M+ : P(Ξ) = 1,

∫
Ξ

ψi(ξ) dP(ξ) = mi, i = 1, . . . ,N
}
.

I Φ-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure P0 and ε > 0,

A =
{

P ∈M+ : P(Ξ) = 1, DΦ(P,P0) ≤ ε
}
.

I Distributionally-robust (a.k.a. data-driven) optimization problem:

min
z∈Zad

sup
P∈A

∫
Ξ

f (S(z)(ξ), z, ξ) dP(ξ).



Example: Φ-Divergence
Ben-Tal, Teboulle, Bayraksan, Love, Shapiro, . . .

Supppose

(i) A nominal probability measure P0 is given,

(ii) The random variable X ∈ Lq(Ξ,B,P0), and

(iii) Φ : R→ [0,∞] is convex lower semicontinuous satisfying

Φ(1) = 0 and Φ(x) =∞ ∀ x < 0.

Define, for fixed ε > 0,

A = {ϑ ∈ (Lq(Ξ,B,P0))
∗ : EP0 [ϑ] = 1, ϑ ≥ 0, EP0 [Φ(ϑ)] ≤ ε} .

Then R(X) = sup
ϑ∈A

EP0 [ϑX] = inf
λ≥0, µ

{λε+ µ+ EP0 [(λΦ)∗(X − µ)]}

is a law-invariant coherent risk measure!

Example (Kullback-Leibler Divergence): Φ(x) = xln(x)− x + 1, x ≥ 0

R(X) = inf
λ>0

{
λc + λlnEP0

[
eX/λ

]}
.



Measure Approximation
For General Ambiguity Sets, A

Approach:
1. Let {ϕi}n

i=1 be a partition of unity on Ξ and µ ∈M be any measure.

2. Define the “localized” measures

µi(V) =

∫
V
ϕi(ξ) dµ(ξ).

3. Note µ(Ξ) = µ1(Ξ) + . . .+ µn(Ξ).

4. Define the projection operators Πµ
n : C(Ξ)→ span{ϕ1, . . . , ϕn} as

Πµ
n y =

n∑
i=1

µi(Ξ)−1
∫

Ξ

y(ξ) dµi(ξ) ϕi ∀ y ∈ C(Ξ)

and Λµn : M→ span{µ1, . . . , µn} as

Λµn ν =
n∑

i=1

µi(Ξ)−1
∫

Ξ

ϕi(ξ) dν(ξ) µi ∀ ν ∈ N,



Approximation Properties

I Lemma: If µ ∈M+ is σ-finite, then Λµnν is absolutely continuous
with respect to µ with density

fµn [ν] =

n∑
i=1

µi(Ξ)−1
∫

Ξ

ϕi(ξ) dν(ξ)ϕi for any ν ∈M.

I Lemma: Λµn is invariant on the space of probability measures.
I Lemma: Πµ

n is the adjoint of Λµn .
I Theorem: Let Vi = supp(ϕi) and ‖ · ‖u,Vi denote the uniform

norm on Vi. Then, there exists ci > 0 such that

|〈ν − Λµn ν, y〉M,C(Ξ)| ≤
n∑

i=1

ci

{∫
Ξ

√
ϕi(ξ) d|ν|(ξ)

}
inf

ȳi∈R
‖√ϕi(y− ȳi)‖u,Vi .



Measure Approximation
Piecewise Constants:

1. Let {Vi}n
i=1 be a tesselation of Ξ and define ϕi = χVi .

2. The “localized” measures are

µi(V) = µ(V ∩ Vi).

3. The projection operator Πµ
n : C(Ξ)→ span{ϕ1, . . . , ϕn} is

Πµ
n y =

n∑
i=1

µ(Vi)
−1
∫

Vi

y(ξ) dµ(ξ) χVi ∀ y ∈ C(Ξ)

and Λµn : M→ span{µ1, . . . , µn} is

Λµn ν =

n∑
i=1

µ(Vi)
−1ν(Vi)µi ∀ ν ∈ N,

I Theorem: Suppose Vi are convex, bounded, and Lipschitz, and µ ∈M.
Then ∃ c > 0 only depending on M such that

‖ν − Λµn ν‖W1,∞(Ξ)∗ ≤ c
n∑

i=1

(
1 +
|µ|(Vi)

|µ(Vi)|

)
|ν|(Vi) diam(Vi).



Example — Voronoi Tesselation

Suppose Ξ = [0, 1] and P has pdf

pdf(ξ) =
β

1− e−β
e−βξ for β > 0.

Approx. P using piecewise constant projection and µ set to the uniform prob. measure:

approx-pdf(ξ) =
n∑

i=1

(e−βai−1 − e−βai )

(1− e−β)(ai − ai−1)
χ[ai−1,ai]

(ξ).

β n Error Sum W. Diam. Max. Diam. Max. W. Diam.

1

10 3.592× 10−2 1.438× 10−1 2.518× 10−1 5.899× 10−2

100 3.740× 10−3 1.496× 10−2 4.269× 10−2 1.471× 10−3

1000 3.751× 10−4 1.501× 10−3 6.089× 10−3 2.733× 10−5

10000 3.750× 10−5 1.500× 10−4 7.955× 10−4 4.404× 10−7

10

10 2.282× 10−1 1.304× 10−1 7.572× 10−1 1.010× 10−1

100 3.053× 10−2 1.451× 10−2 5.328× 10−1 8.191× 10−3

1000 3.551× 10−3 1.502× 10−3 3.133× 10−1 5.424× 10−4

10000 3.763× 10−4 1.517× 10−4 1.300× 10−1 2.710× 10−5

100

10 3.076× 10−1 1.226× 10−1 9.758× 10−1 1.194× 10−1

100 4.128× 10−2 1.327× 10−2 9.531× 10−1 1.261× 10−2

1000 5.022× 10−3 1.348× 10−3 9.301× 10−1 1.247× 10−3

10000 5.899× 10−4 1.360× 10−4 9.072× 10−1 1.224× 10−4



Approximation and Optimization Algorithms
Given an arbitrary µ ∈M+ with µ(Ξ) = 1, we approximate

J(z) = sup
P∈A

∫
Ξ

f (S(z)(ξ), z, ξ) dP(ξ)

using our measure discretization, i.e.,

Jn(z) = sup
p∈An

n∑
i=1

pi

µi(Ξ)

∫
Ξ

f (S(z)(ξ), z, ξ) dµi(ξ), An =

{
p ∈ Rn :

n∑
i=1

pi

µi(Ξ)
µi ∈ A

}
.

I Theorem (Piecewise Constants): If ξ 7→ f (S(z)(ξ), z, ξ) ∈ W1,∞(Ξ) and
zn minimizes Jn defined on a family of tesselations {Vni}n

i=1 satisfying

lim
n→∞

sup
P∈A

n∑
i=1

P(Vni)diam(Vni) = 0.

Then, zn has a w-converging subsequence and the w-limit minimizes J.
I J and Jn may not be differentiable!

I J and Jn are Fréchet subdifferentiable.
I Compute value and subgradient using linear/convex optimization.
I Cannot use derivative-based optimization algorithms.
I Subgradient descent and bundle methods converge sublinearly.

I Expensive PDEs =⇒ Need rapid optimization algorithms.



Example — Moment Matching
Let ψi : Ξ→ R be B-measurable functions and mi ∈ R for i = 1, . . . ,N

A =

 P ∈M+ : P(Ξ) = 1,

∫
Ξ ψi(ξ) dP(ξ) = mi, i = 1, . . . ,Ne∫
Ξ ψi(ξ) dP(ξ) ≤ mi, i = Ne + 1, . . . ,N

 .

Theorem (Rogosinsky): If A 6= ∅, then for each z ∈ Z there exists ξi and pi ≥ 0 with
p1 + · · ·+ pN+1 = 1 such that

sup
P∈A

∫
Ξ

f (S(z)(ξ), z, ξ) dP(ξ) =

N+1∑
i=1

pi f (S(z)(ξi), z, ξi)

Approximation: Localized measures µj

An =

 p ∈ Rn :
n∑

j=1

pj = 1,

∑n
j=1

pj
µj(Ξ)

∫
Ξ ψi(ξ) dµj(ξ) = mi, i = 1, . . . ,Ne

∑n
j=1

pj
µj(Ξ)

∫
Ξ ψi(ξ) dµj(ξ) ≤ mi, i = Ne + 1, . . . ,N

 .

Theorem (Kouri): If An 6= ∅, then for each z ∈ Z there exists pi ≥ 0 with at most
min{n,N + 1} nonzero such that p1 + · · ·+ pN+1 = 1 and

sup
q∈An

n∑
j=1

qj

µj(Ξ)

∫
Ξ

f (S(z)(ξ), z, ξ) dµj(ξ) =

N+1∑
j=1

pj

µj(Ξ)

∫
Ξ

f (S(z)(ξ), z, ξ) dµj(ξ).



Example — Moment Matching
Optimal Control of 1D Elliptic Equation

Let α = 10−4, Do = Dc = D = (−1, 1), and w ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2
R

[∫ 1

−1
(S(z)(·, x)− 1)2 dx

]
+
α

2

∫ 1

−1
z(x)2 dx

where S(z) = u ∈ L2
ρ(Ξ; H1

0(−1, 1)) solves the weak form of

−∂x (ε(ξ, x)∂xu(ξ, x)) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ×D,
u(ξ,−1) = 0, u(ξ, 1) = 0 ξ ∈ Ξ.

Ξ = [−0.1, 0.1]× [−0.5, 0.5], the true distribution is a tensor product of
truncated exponentials, and the random field coefficients are

ε(ξ, x) = 0.1χ(−1,ξ1) + 10χ(ξ1,1), and f (ξ, x) = exp(−(x− ξ2)2).



Example — Moment Matching

P(Ξ) = 1,
∫

Ξ

ξ1 dP(ξ) ≈ −0.537, and
∫

Ξ

ξ2 dP(ξ) ≈ −0.313

I Left: Voronoi (n = 64) with 1000 MC samples per cell.
I Center: Uniform (n = 64) with level 4 sparse grids.
I Right: C2 parition of unity (n = 64) with level 4 sparse grids,

i.e., shifted/scaled tensor products of

θ(x) =


4x2(3− 4x) if 0 < x ≤ 1

2
4(x− 1)2(4x− 1) if 1

2 < x < 1
0 otherwise.



Example — Moment Matching

n Obj. Val. Center Prob. Center Prob. Center Prob.

Vo
ro

no
i1

00
0 16 0.13457 (−0.864,−0.893) 0.435 (−0.634, 0.841) 0.328 (0.195,−0.848) 0.237

64 0.13777 (−0.882,−0.933) 0.540 (−0.331, 0.849) 0.346 (0.467,−0.909) 0.114
256 0.14056 (−0.981,−0.983) 0.605 (0.116, 0.922) 0.351 (0.330,−0.960) 0.044

1024 0.14133 (−0.126,−0.987) 0.484 (−0.916, 0.988) 0.342 (−0.939,−0.994) 0.174
4096 0.14207 (−0.978,−0.997) 0.368 (−0.813, 0.988) 0.343 (0.350,−0.991) 0.289

S
qu

ar
e
`

=
4 16 0.13221 (−0.750,−0.750) 0.709 (−0.750, 0.750) 0.150 (0.750, 0.750) 0.142

64 0.13779 (−0.857,−0.875) 0.496 (−0.875, 0.875) 0.321 (0.875,−0.875) 0.193
256 0.14058 (−0.063,−0.938) 0.457 (−0.938, 0.938) 0.333 (−0.938,−0.938) 0.210

1024 0.14194 (−0.969,−0.969) 0.438 (−0.969, 0.969) 0.338 (0.906,−0.969) 0.223
4096 0.14286 (−1.000,−1.000) 0.433 (−0.968, 1.000) 0.342 (1.000,−1.000) 0.225

C
2
`

=
4

16 0.13444 (−1.000,−1.000) 0.696 (1.000, 1.000) 0.164 (−1.000, 1.000) 0.140
64 0.13953 (−1.000,−1.000) 0.501 (−0.714, 1.000) 0.329 (1.000,−1.000) 0.170

256 0.14154 (−1.000,−1.000) 0.663 (0.867, 1.000) 0.231 (−1.000, 1.000) 0.106
1024 0.14244 (−1.000,−1.000) 0.441 (−0.935, 1.000) 0.340 (1.000,−1.000) 0.218
4096 0.14286 (−1.000,−1.000) 0.433 (−0.968, 1.000) 0.342 (1.000,−1.000) 0.225

? 0.15640 (−0.995,−0.996) 0.657 (0.432, 1.000) 0.323 (−0.993, 0.999) 0.019

? Computed using Gaivoronski’s stochastic descent algorithm for moment matching.



Example — CVaR
Optimal Control of 1D Elliptic Equation

Let α = 10, Ωo = Ωc = Ω = (−1, 1), and w ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2
R

[∫ 1

−1
(S(z)(·, x)− 1)2 dx

]
+
α

2

∫ 1

−1
z(x)2 dx

where S(z) = u ∈ L2
ρ(Ξ; H1

0(0, 1)) solves the weak form of

−∂x (ε(ξ, x)∂xu(ξ, x)) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ,−1) = 0, u(ξ, 1) = 0 ξ ∈ Ξ.

Ξ = [−0.1, 0.1]× [−0.5, 0.5] is endowed with the uniform density ρ ≡ 5
and the random field coefficients are

ε(ξ, x) = 0.1χ(−1,ξ1) + 10χ(ξ1,1), and f (ξ, x) = exp(−(x− ξ2)2).



Example — CVaR
Discretization: Uniform (n = 900) with level 4 sparse grids.

β = 0.05 β = 0.5 β = 0.95

An =

{
p ∈ Rn :

n∑
i=1

pi = 1, 0 ≤ pi ≤
µ(Vi)

1− β , i = 1, . . . , n

}
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Conclusions:
I Risk Neutral:

I Can efficiently solve using adaptive sparse grids and trust regions.
I Risk Averse:

I Risk measures often not differentiable;
I Define smooth risk measures using primal and bidual formulations;
I Can use Newton’s method/quad. and can prove error bounds.

I Unknown Distribution:
I Incorporate data into distributionally-robust opt. formulation;
I Objective function not differentiable;
I Nonsmooth optimization algorithms converge slowly.

Future Work:
I Risk measures: Develop error indicators and use locally adaptive

sparse grids with trust-region algorithm.
I Unknown distribution: Develop opt. algorithm with adaptive

tessellation and sampling that exploits PDE constraint.
I Incorporate (buffered) probabilistic objectives and constraints to

control tail-probabilities and rare events
(Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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