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Abstract. Sandia engineers use the Temporal Logic of Actions (TLA) early in
the design process for digital systems where safety considerations are critical.
TLA allows us to easily build models of interactive systems and prove (in the
mathematical sense) that those models can never violate safety requirements, all
in a single formal language. TLA models can also be refined, that is, extended
by adding details in a carefully prescribed way, such that the additional details
do not break the original model. Our experience suggests that engineers using
refinement can build, maintain, and prove safety for designs that are significantly
more complex than they otherwise could. We illustrate the way in which we have
used TLA, including refinement, with a case study drawn from a real safety-
critical system. This case exposes a need for refinement by composition, which
is not currently provided by TLA. We have extended TLA to support this kind
of refinement by building a specialized version of it in the Coq theorem prover.
Taking advantage of Coq’s features, our version of TLA exhibits other benefits
over stock TLA: we can prove certain difficult kinds of safety properties using
mathematical induction, and we can certify the correctness of our proofs.

1 Introduction

Sandia builds extremely high consequence systems. Logical errors in these systems
could incur enormous costs both financially and in loss of life. It is of course natural
then to want to apply formal methods to verify such systems. However, historically, the
use of formal methods in digital system design at Sandia has been limited. Not applying
formal methods upfront does not eliminate the need for verification and so often formal
methods are applied after the fact. Not surprisingly, post hoc verification turns out to
be very difficult in practice—in some cases work is ongoing on verification problems for
systems first deployed 30 years ago. Part of the reason why post hoc verification is so
difficult is that “correctness” of a system is always actually correctness with respect to
some specification of the system. Thus, in order to show high level correctness proper-
ties of high consequence systems those systems must have tractable and accurate formal
specifications. Faced with this reality, Sandia engineers are implementing new method-
ology that integrates formal methods into the specification and design phase of high
consequence systems. This makes particular demands on the methods used. We need
specification languages which comport with the way designers think about the systems
they are designing and which are easy enough to use for engineers who are not formal
methods experts. At the same time, however, we need tools which make verification
tractable at scale.



Sandia engineers have begun to make use of the Temporal Logic of Actions [12]
for formalizing specifications. TLA has proven itself to be an effective formalism for
describing the evolution of digital systems over time. Key to its effectiveness is that the
temporal aspects of the logic are available while needed but do not overwhelm the user
when they are not. Generally much of the specification of a digital system is not directly
temporal [14]. Lamport’s TLA+ handles the non-temporal aspects of verification via an
associated mathematics language which closely follows ordinary set theory. Specifica-
tions can therefore be constructed using standard mathematical techniques. Using the
TLA+ tools it is possible to construct and verify complex system specifications using
the specialized support for temporal reasoning for temporal properties the more general
mathematical functionality for non temporal ones.

However, TLA+ and its associated tooling still faces limitations which impact its
use in development of large scale high consequence systems. TLA+ comes with a model
checker [21], but this model checker, while fully automated, is insufficient for proving
many properties. Often times engineers need to work over infinite, or at the very least
very large, state spaces and want to verify properties beyond the capability of any model
checker. For such properties fully automated methods may be insufficient, requiring in-
stead interactive theorem proving with human supplied lemmas and inductive hypothe-
ses. What is more, model checkers are complex pieces of software whose correctness
may not be self evident. For highly critical systems we want to be able to independently
verify claims made by both automated and interactive methods. In short, we want proofs
and we want those proofs to be easily, and independently, machine checkable.

In order to overcome some of these limitations with TLA+ we have embedded a
version of TLA inside the proof assistant Coq [7]. Coq is a highly advanced tool which
overcomes many of the limitations of TLA+, however, unlike TLA its logic is not partic-
ularly suited to our application domain. Further, Coq’s flexibility comes at the expense
of usability as it is a tool which is geared primarily to formal method experts. We needed
a way to leverage Coq’s power while retaining TLA’s ease of use and this has driven
the design of our embedding TLA*,

An initial problem which motivated the design of TLA®® is the design and specifi-
cation of a real digital component of a high consequence digital system being produced
by Sandia. We initially developed a formal model of this component, called the Arbi-
trary Waveform Generator (AWG) in TLA+ but after running into limitation in TLA+
we developed TLA® and transitioned the AWG model over to our embedding. Doing
so allowed us to prove properties which we could otherwise only partially verify by way
of bounded model checking and enabled us to adopt a development approach where we
composed orthogonal refinements to construct a complete model. The compositional
approach is crucial: different refinements reveal different aspects of the system, we
need to be able to work with refinements individually or in combination while manag-
ing complexity. We believe even larger gains will appear as we apply these techniques
more widely and to bigger systems.

The remainder of this paper is structured as follows. In Section 2 we describe the
high level specification of the Arbitrary Waveform Generator. In Section 3 we discuss
our initial attempts to formalize this specification in TLA and the challenges we en-
countered.. In Section 4 we describe how we use our embedding TLA®®? and how we



structured the AWG development in it. In Section 5 we cover the design decisions and
technical details of our embedding.

2 Application: Arbitrary Waveform Generator (AWG)

The Arbitrary Waveform Generator (AWG) is a component of a high consequence dig-
ital system being developed at Sandia. The AWG is used for storing “patterns” in mem-
ory which are later played out as timed waveforms. While relatively simple, the AWG
component is a real circuit that is being incorporated into silicon in production. Its
specification presented in this paper was developed as a collaboration between formal
methods experts and domain engineers with an eye towards more broadly introduc-
ing certain formal methods techniques at Sandia. This process of collaboration proved
helpful early on in clarifying details of the AWGs original requirements document that
otherwise might have been missed while the act of formalizing the resulting specifica-
tion revealed weak spots and avenues to improve our formal method techniques.

Our ultimate application domain demands a very high level of assurance in order
to avoid loss of life. However, there is nothing intrinsic about the AWG that is unique
to our application domain. Indeed, similar systems are likely to be used in a host of
safety critical and non safety critical systems. The timed input/output behavior of the
AWG will appear in any system where precise playback of programmed in patterns is
required and so could be used for anything from a musical alarm clock to the control
system for an aircraft actuator. Given both the generality of the AWG and its importance
in a concrete high consequence system we believe it serves as useful demonstration for
digital system formalization.

The AWG needs to support two main operations: the first is to read in a pattern from
its input and store that pattern in its memory, the second is upon receiving a special
signal to begin playing out the value in its memory. At any time the AWG can also
be “reset” by passing in a certain signal, clearing its memory. Thus, the AWG can be

Init Output(p)
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Reset

Fig. 1. Simplified AWG state machine

conceptually thought of as a state machine (see Figure 1) that can be in one of three
modes: initially, or upon being reset, the AWG will not have a meaningful value in
its memory and thus not be able to be played. From the cleared state, the AWG can



receive an input pattern which it will encode into memory leaving it ready to play out
the pattern. Finally, the AWG can play out the pattern stored in its memory. This process
of playing out the pattern will happen in a timed manner, removing bits from its pattern
buffer as they are output, and so eventually leaving the AWG with its buffer erased.
From either the “Ready” or “Written” states the AWG can be “reset” returning it to
something like the initial state.

Of course, this simply state machine description is not complete. We also need to
describe the input and output protocols by which the AWG interacts with its environ-
ment as in Figure 2.

Reset
Write
Run
Flush
Interface Main Modules|  *2veform
Outputs
Ready It N
Status

Fig.2. AWG logical interface

This description of the AWG is, of course, much more abstract than what we would
suffice to describe an implementation. For example, it does not include the intermediate
states that will be encountered as the pattern is played out in a timed manner or while
initiating the machine with a new pattern. We will therefore need to refine this specifi-
cation. But, it is worth emphasizing that a formalization of a specification at this level of
abstraction also is insufficiently detailed for those building components which interact
with the AWG. The protocols a component uses to communicate with other components
are very relevant to the design of those other components. Nonetheless, it is still impor-
tant to have conceptual models, and we believe formal models as well, which operate
at these higher levels of abstraction. This leads to an important observation: refinement
of component specifications matters not just in the design of individual components
but in systems of components as well. We want to refine protocols in addition to state
machines. And, this is necessary to build tractable high level specifications.

Thus we will refine our AWG model to clarify that the pattern is played out not all
at once but as a sequence of states requiring an internal memory inside the component.
Additionally we need to refine our AWG model to describe the channels on which it
communicates. One of these channels will carry signals we will call commands and
will take one of three forms: a “Run” command instructing the AWG to play out its
memory, a “Write” command containing a pattern, or a “Flush” command asking the
AWG be flushed. The other input channel is a simple wire used for sending “Reset”
signals. There are three output channels: the waveform lines on which the pattern will



be played, the “Ready” line, and a “Status” line used for such things as error codes.
The AWG is only expected to handle commands while it reads as having a “Valid”
status and a true “Ready” line. And, we would expect it to take multiple clock cycles
for initiation after receiving a command or resetting before it was ready to accept an-
other command. However, it should be able to “Reset” at any time. This then illustrates
the difference between the “Flush” command and the “Reset” signal-while ultimately
serving a similar purpose, the “Flush” command will only come when our system is
ready to receive commands and so can take advantage of this stronger precondition in
its implementation while a “Reset” must be possible in any state of the system.

The addition of memory and timed output is mostly independent from the issue of
the communication protocol. When we think about the details of one refinement of the
initial basic model we need not think about the details of the other.

3 Expressing the AWG in TLA

In order to formulate the specification for the AWG system we turned to the Temporal
Logic of Actions (TLA). TLA has desirable properties for formulating a system like the
AWG. Crucially it is stuttering invariant meaning, intuitively, that TLA specifications
are not sensitive to the rate of the passage of time [3]. This enables the development
of formal TLA specification using a process of refining more abstract specification into
more concrete ones in much the same way think about designs informally [5]. TLA
takes a logic centric view: specification and theorems about specification are both just
logical formula and the statement that one specification refines another is interpreted
simply as that the more refined specification implies the more abstract one, perhaps
along some “refinement mapping” of their underlying state spaces [1]. Stuttering in-
variance means that refinements can in many instances slow down time through the
addition of intermediate states in the refined specification which are not observable in
the more abstract one.

3.1 An Abstract Model

We began formulating the specification of the AWG using the TLA+ toolset via a pro-
cess of refinement. Our initial specification, therefore, only modeled some very basic
properties of the AWG system. However, despite deferring many details to later refine-
ments the basic model is still reasonably complex. This model is parameterized by a set
called Pattern which serves as as to abstract away the details of the patterns stored
in memory and played out by the AWG. We also assume the existence of a constant
NilPattern and require that NilPattern be an element of Pattern. A special
set MemStatus is defined as containing only the constants Valid and Invalid.
The states of our specification are then described using four variables consisting of the
memory together with the three output lines ready, status, and output. The type
invariant which we will prove about the system states that ready is always a boolean,
status is always in MemStatus, and that both output and memory are always
elements of Patterns.
The Next relation is then defined as the conjunction of five actions,



Next ==
\/ Initialize
\/ Reset
\/ Flush
\/ \E p \in Pattern : Write(p)
\/ Run

one of which Write is parameterized by a member of MemStatus. Write(p) is
possible whenever the status is Valid and ready is true. Its effect is to set the mem-
ory to the value of p unless p is the NilPattern in which case the memory is left
unchanged. All other variables are also unchanged.

Write (p) ==
/\ ready = TRUE
/\ status = Valid
/\ IF p /= NilPattern
THEN memory’ = p
ELSE UNCHANGED memory
/\ UNCHANGED <<ready , status , output>>

Run can also occur whenever the status is Valid and ready is true. Run
has the effect of setting the new value for output to the initial value of memory and
setting the new value of memory to NilPattern unless the value of memory was
already Ni1Pattern in which case neither memory nor output are changed. All other
variables are left the same.

Run ==
/\ ready = TRUE
/\ status = Valid
/\ IF memory /= NilPattern

THEN
/\ output’ = memory
/\ memory’ = NilPattern

ELSE UNCHANGED <<output, memory>>
/\ UNCHANGED <<ready , status>>

Similar to Run and Write, Flush is enabled whenever the status is Valid
and ready is true. Its effect is to simply set both memory and output to the
NilPattern leaving status and the ready flag unchanged. By contrast, Reset
has no preconditions and is thus always enabled. Reset must set the ready flag to
false and the output to the NilPattern, but can otherwise set the remaining vari-
ables to any type correct values.

Reset ==
/\ ready’ = FALSE
/\ status’ \in MemStatus
/\ memory’ \in Pattern
/\ output’ = NilPattern



Finally, the Initialize action is enabled whenever ready is false. Its effect
is to set ready to true and to set the st at us flag to one of the values in MemStatus. If
thenew statusisValidthen Initialize willalsosetthe memorytoNilPattern
and leave the output unchanged. Otherwise both memory and output are left un-
changed.

At PowerOn our basic model sets the ready flag to false and the output to the
NilPattern but any type correct values are permitted for the other variables.

The Initialize action plays a crucial role in this model is it is what takes us
from an unready state after a reset or on powering on to a ready one. As such, we
additionally require that Initialize be handled fairly.

Fairness == WF_vars(Initialize)

The weak fairness assumption (W F(A)) in TLA simply demands that either A
keeps happening (that is, it always eventually happens) or it is blocked infinitely often
(always eventually impossible) [14]. Our full specification for the basic model then
is the conjunction of the system starting in a PowerOn state, it advancing by either
stuttering or carrying out the next action, and the fairness condition.

Spec == PowerOn /\ [][Next]_vars /\ Fairness

We can state a number of important properties about this specification. Perhaps most
important is the type safety property: the specification implies that the variables always
take values from the appropriate sets.

THEOREM Spec => [] Typelnvariant

There are other properties of importance, however, like that Reset is always en-
abled or that the F1ush, Run, and Write commands are enabled exactly when the the
ready flag is true and the status code is valid.

CommandsEnabled ==
/\ ENABLED Run
/\ ENABLED Flush
/\ \A p \in Pattern : ENABLED Write(p)

CommandsEnabledIffValid ==
CommandsEnabled <=> (ready = TRUE /\ status = Valid)

THEOREM Spec => [] CommandsEnabledIffValid
THEOREM Spec => [] (ENABLED Reset)

So far we have only looked at safety properties, but we also care about liveness
properties. Most importantly is the idea that the system can never have a false ready
flag forever

THEOREM Spec => (ready = FALSE "> ready = TRUE)



3.2 A Refinement

The basic model does not incorporate all the relevant details of the AWG specification.
We thus need to refine the model to a more detailed specification. One of the areas
of missing details is in the handling of commands. In the basic model, Run, Flush,
and Write(p) are treated simply as events. However, we know that they are actually
commands which come as input to the system and might take multiple steps to handle.
Therefore, our first refinement is to incorporate the more detailed notion of commands.

In the model where we incorporate commands our state consists of the four vari-
ables from basic model plus variables cmd and ctrl. The idea is that cmd will store
the command the machine is currently processing while ctr1 will store its status in
that process. The set Command is defined as consisting of the constants F1lush, Run
and the constant Write together with a payload containing a Pattern. We further
define the set Control to consist of the constants Ready,Busy, and Done. The type
invariant is extended with two new clauses indicating that ctrl is from the the set
Control and that cmd is from the set Command.

The Reset action from basic is preserved only extended to set ctr1l and cmd to
arbitrary values which respect the type invariant. The Initialize event is similarly
preserved except that now it sets ctrl to Ready and leaves cmd unchanged. How-
ever, in place of the actions F1lush, Run, and Write(p) we have a more complicated
implementation of commands by way of the actions Do, Resp, and Req(c).

Next ==
\/ Initialize
\/ Reset
\/ \E ¢ \in Command : Req(c)
\/ Do
\/ Resp

The action Resp can occur whenever the ready flag is true, the status flag is
Valid, and the ctrl variable is Done. Its only effect is to advance ctrl to Ready
andto leave everything else unchanged. The parameterized action Reqg(c) is used for
reading commands off the input. It can happen when ready is true, the status is
Valid, and ctrl is Ready. It sets cmd to the value c and ctrl to Busy but leaves
the other variables unchanged.

The action DoFlush is enabled whenever cmd is Flush and has the effect of
setting both memory and output to NilPattern. The action DoRun is enabled
whenever cmd is Run and has the effect of setting the new value of output to the
prior value of memory and setting the new value of memory to NilPattern. The
action DoWrite is enabled whenever cmd is Write(c) for some value of ¢ and has
the effect of setting memory to c unless this c is the Ni1Pattern in which case c is
left unchanged. In either case DoWrite leaves the output unchanged. These three
actions are disjunctively combined into the Do action which additionally requires that
the status reads as Valid and that the ready flag reads is t rue and, crucially, that
ctrl is set to Busy. After execution of Do, ctrl is set to Done while the ready,
status, and cmd variables are left unchanged.



The more complicated account of the implementation of commands also requires
additional fairness assumptions. It would be a problem if the system just stuttered in-
definitely ready to perform a command but did not ever actually perform one. Thus, we
require weak fairness hold for both Resp and Do.

There are a number of properties we expect to follow from the specification. As
before we want the specification to imply that the type invariant always holds. We also
want to ensure that what we have described is a refinement, which is to say we want
the command version of Spec to imply the Spec from the basic version. There are
also additional liveness properties that we are interested in. Chief among these is the
completeness of the implementation of commands: if at any point ctrl is Busy then
at some later point ct r1 will be Ready.

3.3 Another Refinement

In addition to the more detailed theory of commands, we must consider the playing of
patterns in more detail. The AWG should not play patterns to the output all at once,
but rather play them slowly. In order to handle this we can modify our original basic
specification to store the memory not as a single element of the abstract set Pattern
but rather as a finite sequence of elements from such an abstract set. Playing a pattern
will now be a multi-step process so we also add a variable mode, the type invariant for
which will be that it is a member of the set containing only the constants Record and
Play. The Flush and Write actions are modified to only fire when the mode is in
Record (which they also preserve).

Playback is now implemented with three events. The StartPlay event can occur
when the mode is Record, the status is Valid, and the ready flag is true. It
requires the new state have the mode P1ay but is otherwise unmodified. The DoPlay
event can only fire when the status is Valid, the ready flag is true, and has the
effect of popping the first element of the memory sequence into the output leaving
everything else unchanged. EndPlay becomes possible instead of DoP1lay when the
memory is empty sequence and simply switches the mode back to Record.

3.4 Limitations of the TLA framework

At this point we have described a rather extensive set of models for the AWG in TLA.
We have extended the basic model in two different ways incorporating different aspects
of the full system we care about. We have also stated, and model checked, a number of
properties we care about. We would therefore like to complete the picture by combining
all the various aspects of the three models into a single complete model. We would also
like to verify the various correctness theorems we have stated.

However, we encounter challenges in both these goals. Both the command model
and the memory model were developed by extending the basic model, but in doing so
we had to restate essentially the entire model. It would be undesirable indeed to have
to fully write out yet another model. Instead, we would like to simply be able to assert
that our full specification is somehow the refinement of the basic model which extends
it in the way the command model does and the way memory model does.



We are able to use the TLA+ model checker to check the theorems we have stated,
but only by first instantiating the abstract set pattern with a concrete, finite, set. The
model checker tells us that our theorems are true, but only for this concrete set. How
can we be sure they hold for any instantiation of Pattern? Moreover, the model
checker will claim that the properties hold, but it does not provide any sort of witness
or reason as to why this is true. Instead, we gain confidence in correctness only relative
to our confidence in the correctness of the model checker.

4 Expressing the AWG in TLA®

We want to be able to prove properties about our models using inductive reasoning.
Moreover, we want to support parametric reasoning—it should be possible for us to con-
sider some aspects of a model as abstract parameters and still be able to prove properties
about that model which hold for any instantiation of those parameters. Further, we want
proof witnesses and a small trusted base so we do not have to depend on the correct-
ness of complex pieces of machinery like model checkers. Moreover, we would like a
framework which not only provides these things but which also has good support for
“programming in the large” and building abstractions.

Interactive theorem provers based on type theory excel and precisely this point. By
using a small core logic they separate the problems of finding proofs and interacting
with the system with the problem of checking a proof already found. Systems like
Coq and Isabelle [20] come equipped with fully powerful fully automated methods
(such as Coq’s Presburger solver which uses the Omega test [16]) as well as tools for
developing new domain specific automation, but these capabilities are kept separate
from the logic kernel. Curry-Howard based systems further unify the language of terms
which the logic is about with the language of proofs, allowing proofs to be treated as
first class objects and worked with directly in the system. By being fundamentally based
on computation, type theory based systems are also intrinsically geared to verifying
algorithmic systems. Powerful type systems like Martin-Lof Type Theory [15] or the
Calculus of Constructions [6] are rich enough not just to formalize mathematics but to
build it directly as an alternative foundation to set theory. Indeed, born of its lineage
in constructive mathematics type theory makes a stronger claim than that: type theory
isn’t just an alternative to set theory, it is potentially superior as the structural approach
of type theory in which types of mathematical objects (such as pairs or lists) are defined
directly by their formal properties rather than being encoded into sets more closely
matches intuition and everyday mathematical practice.

Coq in particular seems like a close match to our needs. It’s type theory not only
extends higher order logic with dependent types, it also allows for quantification over
universes providing the ability to abstract over types. Moreover, Coq has a rich module
system, and the Coq tool has proven to scale to very large scale projects such as a fully
certified C compiler [4] and the proof of the four color theorem [11]. However, unlike
what we see with TLA+, Coq’s logic is not geared toward expressing systems which
evolve over time. While TLA is well suited to describing systems like the AWG, vanilla
Coq is not.



TLA® is an embedding of TLA into Cog. It allows us to take advantage of Coq’s
features which make scalable verification tractable while presenting an interface similar
to TLA. Moreover, while Coq is a highly advanced tool requiring a great deal of time to
master, one of our goals on the AWG project has been to support collaboration between
subject matter experts and system designers with formal methods experts. As such,
we have aimed to make the embedding relatively straightforward to use even for non
experts. For example, we can use our embedding to formalize a model of a simple
clock akin to that considered by Lamport [13, 14]. The Coq code in Figure 3 provides a

Require Import TLA.
Require Import ZArith.
Require Import Omega.

Local Open Scope Z.
Local Open Scope tla.

Section Model.
Variables hr hr’ : Z.

Definition Init := 1 <= hr <= 12.
Definition Next := hr’ = hr mod 12 + 1.
End Model.
Definition Spec := ‘Init ¢/\ [][Next].

Fig. 3. A model of a clock in our embedding of the TLA in Coq

complete specification of the clock using our library. The Init and Next definitions
inside the Model section describe the initial configuration and evolution of the state
of the clock which we encode as a single integer hr. Init requires this variable have
a value between one and twelve. Next relates the variable hr to the variable hr’
(representing the next time) whenever hr’ is equal to one plus the value of hr modded
out by twelve. These definitions are simply predicates in Coq and so involve no temporal
operators. However, the definition of Spec below them occurs within the embedded
TLA. Spec is simply the temporal logic conjunction of the requirement that Init
holds for the initial state and that every future change in state happens according to
the next predicate. While exceedingly simple, the clock already demonstrates the main
features of our embedding we need to specify the AWG. In particular, we can not only
state properties of interest about the Coq model, but prove them as well. For example,
an important property we can prove about the clock is that the value of hr will always be
between one and twelve. The proof in Figure 4 of this property demonstrates a standard
style of proofs in our system where TLA specific reasoning tools and theorems are
used to handle the temporal backbone of formula but standard Coq tactics are used for
the non-temporal leaves. In this case we need to instruct Coq to prove our property by
induction. Then, a fully automated method (the intuition tactic) becomes sufficient



Theorem hour_inv : valid (Spec ‘=> [] ‘Init).
Proof.

unfold Spec, Init, Next.

apply tla_inv.

(x Base case x)
intuition .

(* Inductive case )

intros .

assert (0 <= x mod 12 < 12) by (apply Z.mod_pos_bound; intuition).
intuition .

Qed.

Fig. 4. Type Invariant for the Clock in Coq

for handling the base case. The inductive step is almost fully automated, but not quite,
requiring a small amount of guidance and appeal to a general mathematical theorem
from Coq’s standard mathematical library. The availability of theorems such as these is
one of the benefits of working with a system such as Coq.

Using TLA®*? we formulated the specification of the AWG module. Following the
original version in TLA we approached this through a series of modules corresponding
to the basic, command, and memory refinements. As in the original basic specification
we took the set of patterns to be abstract. Coq has multiple features allowing us to
abstract over a type but in this case the approach we took was to use Coq’s module
language.

Module Type BasicParams.
Parameter Patternlsh : Type.

Parameter IsPattern : Patternlsh —> Prop.
Parameter NilPattern : Patternlsh.
Parameter NilPatternPattern : IsPattern NilPattern.

Parameter EqNilPatternClassical : forall p,
IsPattern p —> p = NilPattern \/ p <> NilPattern.
End BasicParams.

We describe the parameters to the basic module by way of a module type BasicParams
which has a type representing patterns. In order that we might later instantiate this type
with something like the type of sets which would be larger than the set of parameters,
we call this type PatternIsh and also include a parameter IsPattern which is
a predicate on PatternIsh. The next parameter is the Ni1Pattern, a member of
PatternIsh. We then require two axioms: NilPattern must be a pattern, and ev-
ery pattern must be either equal to the Ni1Pattern or different from it. This second
condition holds automatically in a classical setting, but as Coq uses intuitionistic logic
unless we explicitly assume classical principles, it must be stated explicitly in our case.
Indeed, as we expect PatternIsh to be eventually instantiated with a type with de-



cidable equality (such as the type of n-arry bit vectors), assuming only that equality is
classical and not that it is decidable is actually quite conservative.

The basic module then technically takes the form a functor, parameterized by a
parameter module of the basic module type.

Module Basic (Params : BasicParams).
Import Params.
Hint Resolve NilPatternPattern.

We defined our states as coming from the type St containing a memory, the output, a
boolean ready flag, and the status. The status variable is defined as coming from the
type containing only the constants Valid and Invalid.

Inductive MemStatus : Type := Valid | InValid.

Record St := {
ready : bool;
status : MemStatus;
memory : Patternlsh;
output : PatternlIsh }.

Using this definition we can then define the various events of the model in much the
same way as we encountered in pure TLA. For example, the Next event is defined
simply as the conjunction of smaller events in Coq.

Definition Next :=
Initialize
\/ Reset
\/ Flush
\/ (exists p, IsPattern p /\ Write p)
\/ Run.

To express these events in a clear way we define a section and using the Variable key-
word to lambda abstract over the the current and next states in the section. Then, we
can give names to the variables as projections into the states.

Section Model.

Variable st st’ : St.

Let ready’ := (st’).(ready). Let ready := st.(ready).
Let status’ := (st ’).(status). Let status := st.(status).
Let memory’ := (st ’).(memory). Let memory := st.(memory).
Let output’ := (st ’).(output). Let output := st.(output).

This boilerplate is an unfortunate consequence of encoding into Coq, but is only a con-
stant factor larger than what we encounter in TLA+ where we must list all variables
explicitly at the top of a section of code. On the other hand, the definition of the whole
specification is an element of our expr data type and does not live in the model section.

Definition Spec := ‘PowerOn ‘/\ [][Next] ‘/\ Fairness.



Observe that with the definition of St much of what we considered a “type invariant
property” of the model in the pure set theoretic model will now hold automatically. That
status is in the type MemoryStatus or that ready is a boolean are not theorems
about the specification but part of the type of states of which the specification is about.
However, because we encode membership in the pattern set as a predicate, we still have
a type invariant that simply states that output and memory remain valid patterns.

Definition Typelnvariant :=
IsPattern memory /\ IsPattern output.

However, by switching to the Coq representation we can not prove that the type invariant
always holds as an inductive property.

Theorem Spec_then_Typelnvariant
valid (Spec ‘=> [] ‘Typelnvariant).

And, indeed, we can state and prove the other properties from the TLA+ version of the
specification. After the basic model we construct the two refinements. The command
model works similarly to basic. It is again constructed as a module functor parameter-
ized by a module of the BasicParams type.

Module Command (Params : BasicParams).
Import Params.
Hint Resolve NilPatternPattern.

Using Coq’s inductive type system makes it easy to express the type of the control
variable as well as the type of commands.

Inductive Control : Type := Ready | Busy | Done.
Inductive Command : Type
| Flush : Command
| Write : Patternlsh —> Command
| Run : Command.

However, we only consider a Write command to be valid if the stored pattern data is,
in fact, a pattern. We can express this by defining a predicate on commands by pattern
matching.

Definition IsCommand (¢ : Command) : Prop :=
match ¢ with
| Write p => IsPattern p
| - => True
end.

Then, the states of the command module are expressed by way of a record type with six
fields.

Record St := {
ready : bool;
status : MemStatus;
ctrl : Control;



cmd : Command;
memory : Patternlsh;
output : PatternIsh }.

While, the type invariant property must now also include that command given is well
formed.

Definition Typelnvariant :=
IsCommand cmd
/\ IsPattern memory
/\ IsPattern output.

Beyond this, the definition of the command module works as direct translation of our
early TLA+ specification following the same approach as we used for translating the
basic module. Except, now, we prove our various theorems in Coq. However, because
we can not simply take advantage of variable punning the way TLA+ does to treat states
from the command module as states of the basic module we must express the refinement
by way of a refinement mapping function after first instantiating the basic module.

Module BASIC := Basic.Basic Params.
Definition refinement_-mapping : St —> BASIC.St :=
fun x => match x with
| {| ready := readyO;

status := statusO;
output := outputO;
memory := memory0 |} =>

{l

BASIC.ready := readyO;
BASIC. status := statusO;
BASIC . memory memory0 ;
BASIC. output output0 |}

end.
Theorem refines
valid (Spec ‘=> (map refinement_mapping BASIC. Spec)).

The last module to translate is the memory module. Here we have parameters not merely
a base type of patterns and its associated properties, but also a maximal length of the
vector of these which will be stored in memory. To represent this we use a new module
type which extends the BasicParams.

Module Type MemParams <: BasicParams.
(x some code elided =)
Parameter MaxMemoryLen : nat.
Parameter MaxMemoryLenGtZ : (0 < MaxMemoryLen)%nat .

Fixpoint IsListPattern (ls : list PatternIsh) : Prop :=
match Is with
| nil => True
| (cons h tl) => IsPattern h /\ IsListPattern tl



end .
End MemParams.

The main idea then is to instantiate the basic module with a representation in which
patterns from the basic correspond to sequences of patterns in the memory module. We
do this by way of a module functor.

Module ParamsFromMem (Params : MemParams) <: BasicParams.
Definition PatternIsh := 1list Params.PatternlIsh.
Definition IsPattern := Params.IsListPattern.
Definition NilPattern : PatternlIsh := nil.

Theorem NilPatternPattern : IsPattern NilPattern.
Proof.

unfold IsPattern, NilPattern.

simpl. auto.
Qed.
Theorem EqNilPatternClassical : forall p, IsPattern p

—> p = NilPattern \/ p <> NilPattern.

Proof.

intros p H.

unfold NilPattern, IsPattern.

destruct p. left; auto. right; intros F; inversion F.
Qed.

End ParamsFromMem .

Memory itself is simply parameterized by a module of type MemParams and has its
states a record with five fields.

Record St := {
ready : bool;

status : MemStatus;
mode : Mode;
memory : list Patternlsh;

output : list PatternIsh}.

As before the Coq code is mostly a direct translation of the original TLA+ specifica-
tion. Only now we can give Coq checked proofs of properties rather than depending on
model checking. The refinement mapping from Memory to Basic, however, depends on
instantiating Basic with a different, and more specific, set of parameters.

Module FROMMEM := ParamsFromMem (Params).
Module BASIC := Basic.Basic (FROMMEM).
Definition refinement_mapping (st : St) : BASIC.St :=
match st with
| {| ready := readyO;

status := statusO;
memory := memory0;
mode := mode0;

output := output0 |} =>



{| BASIC.ready := readyO;

BASIC. status := statusO;

BASIC.memory := match mode0 with
| Record => memory0
| Play => ((List.rev output0) ++ memory0)

end ;

BASIC. output := match mode0 with
| Record => List.rev output0
| Play => nil

end |}
end.

Now, we have constructed two modules in Coq which each define a TLA®Y specifi-
cation refining our original basic specification. Our next goal then is to define a spec-
ification which incorporates the details from each. We would like to be able to do this
in a general way: we should not have to fully describe the combined refinement at the
same level of detail as the others, but rather simply declare it as the combination of the
memory and command refinements.

One option, available to us from TLA, is to simply combine the two models as a
conjunction [2]. However, a complexity arises in that the two models have different
type to represent their states and we need to be explicit about what states we are using.
Using the product of the two state spaces would lead to a model, but not the one we
intend. Since, then we would have, for example, two separate variables encoding the
status.

Let us therefore be specific about what we want. We have two models which both
refine basic along functions of their state spaces. We want a fourth model which refines
both of them, but in a way in which those refinements are compatible, in that either
function from the combined model to basic is identical.

Basic

Command Memory

Total

Further, we want the best such combined model in a particular sense: any model which
refines both command and memory in such a way that the two refinements yield the



same refinement should refine our combined total model.

Basic

Command Memory

This general picture should be familiar to those who have encounter category theory as it
is what is called, in categorical language, a “push-out.” Indeed, more than 20 years ago,
Goguen suggested push-outs as an abstract, formalism independent, definition for the
combination of components [10]. And, Fiadeiro and Maibaum already demonstrated
the use of push-outs for combining specifications in a temporal logic setting in the
early 1990s [8]. Unfortunately, it seems this work has been largely neglected and not
previously applied to TLA.

However, push-outs of refinements have a simple definition in TLA®Y. We simply
take the pull-back of the underlying state spaces in the underlying category of types or
sets (that is, the push-out in the opposite category recognizing that functions go from
more concrete to more abstract while we have written refinement arrows from abstract
to concrete) and use the conjunction of the specifications along their specifications. That
is, the state space of the total model should, intuitively, be the subtype of the product of
state spaces of Memory and Command where the two refinement mappings yield the
same value in the state space of basic.

However, this intuitive definition does not quite work for us because Coq’s mod-
ule system is generative rather than applicative and so when Memory and Command
instantiate Basic they generate different types. To get around this, we must define a
projection between them. First, we define the total model parametrically as a module
functor and instantiate Basic and Command.

Module Total (Params : MemParams).
Module MEMORY := Memory (Params).
Module COMMAND := Command (MEMORY.FROMMEM ) .

Then we define an isomorphism between their underlying state spaces.

Definition castStl (st : MEMORY.BASIC. St)
COMMAND. BASIC. St :=
match st with
| {| MEMORY.BASIC.ready := ready;
MEMORY.BASIC. status := status;
MEMORY . BASIC . memory memory ;
MEMORY . BASIC. output output |} =>

{l
COMMAND. BASIC . ready := ready;



COMMAND. BASIC. status := status;
COMMAND. BASIC . memory := memory;
CGOMMAND. BASIC. output := output |}

end.
This allows us to say when the two states are the same.

Definition sameSt (stl : MEMORY.BASIC. St)
(st2 : COMMAND.BASIC.St) : Prop :=
castStl stl = st2.

With this in place, we can define the full specification of the total model.

Inductive St : Type := Make_St : forall stl st2,
sameSt (MEMORY.refinement_mapping stl)
(COMMAND. refinement_mapping st2)
—> St.

Definition pl (st : St) : MEMORY. St :=
match st with
| Make_St m _ _ =>m
end.

Definition p2 (st : St) : COMMAND. St :=
match st with
| Make_St - m _ =>m
end.

Definition Spec : Expr St :=
(map pl MEMORY.Spec) ¢/\ (map p2 COMMAND. Spec).

5 Implementing TLA®*

There are a number of ways to use a meta logic as rich as Coq to host another logic
or language. Often times when considering embedded languages we contrast so called
“shallow” and “deep” embeddings [18]. In a shallow embedding each construct of the
target language is mapped to a function in the meta language which directly implements
that construct. By contrast, in a deep embedding the target language constructs are con-
sidered as data representing syntax. Existing embeddings of TLA into Coq have taken
both of these approaches. In [19] a shallow embedding of Coq in TLA was constructed
to prove a meta result that all TLA specifications of a certain form satisfy a “machine
closed” property in which the liveness part of the specification does not constrain the
reachable states of the system. As such, TLA formulae are interpreted simply as predi-
cates on infinite sequences of states. A deep approach to embedding a TLA like logic in
Coq was used more recently as part of the VeriDrone project [17]. VeriDrone combines
discrete digital components with continuous physical ones in a hybrid cyber-physical



system, and so their logic combines continuous time with the discrete transition seman-
tics of TLA. They, following, Lamport, use a two step approach where their logical
syntax corresponds to a full set of “RTLA” formulae of which the stuttering invariant
TLA formula are only a subset.

We take what is mostly a deep embedding approach to the handling of TLA formu-
lae in Coq. The set of TLA expressions is encoded as an inductively defined datatype
with constructors for the logical operators like conjunction, disjunction, and implication
as well as the temporal operators such as eventually and forever. This data type, given
in Figure 5 is parameterized by a type A which is the type of states. Crucially though,
this representation ensures that all formula are stuttering invariant by construction. This
is important to us because it later allows us to use an induction principle for arbitrary
safety properties (t la_inv_gen discussed below) which does not generate any proof
obligations relating to stuttering steps. The desire to give such induction principle moti-
vates our slightly different design decisions from prior work. Because formulae are rep-

Variable A : Type.

Definition Predicate := A —> Prop.
Definition Action := A —> A —> Prop.

Inductive Expr :=
| E_Predicate : Predicate —> Expr
| E_AlwaysAction : forall {B : Type},
(A — B) —> Action —> Expr
| E_EventuallyAction : forall {B : Type},
(A —> B) —> Action —> Expr
| E-Neg : Expr —> Expr
| E_.Conj : Expr —> Expr —> Expr
| E_Disj : Expr —> Expr —> Expr
| E_-Impl : Expr —> Expr —> Expr
| E_Equiv : Expr —> Expr —> Expr
| E_Always : Expr —> Expr
| E_Eventually : Expr —> Expr
| E_ForallRigid : forall {B : Type}, (B —> Expr) —> Expr
| E_ExistsRigid : forall {B : Type}, (B —> Expr) —> Expr.

Definition E_Enabled (r : Action) :=
E_Predicate (fun st => exists st’, r st st’).

Fig. 5. Inductive type representing TLA expressions

resented as an inductive data type it becomes possible to define functions which work
with these formulae using recursion. Moreover, we can prove meta logical properties
about formulae in general using induction. However, in the case of the leaves of TLA
formulae—predicates about a current state and actions relating two states—our encoding



switches to simply using Coq propositions. That is, when it comes to the mathematical
language used in formulae we simply use Coq directly rather than continuing to use a
deep embedding to encode some powerful logic such as set theory. Similarly, we en-
code the quantifiers using functions whose codomain is expressions and whose domain
is some Coq type.

On top of this data type we use CoqOs notations facilities to build a more convenient
syntax for writing TLA formulae. Our general convention is to begin TLA syntactic
constructions with a back tick, as in case of conjunction.

Notation P ‘/\ Q" :
(E_Conj P Q) (at level 80, right associativity): tla_scope.

Formulae however are only have the picture. We don’t just want to write formulae:
we want to prove them true. We are thus faced with a problem of saying what exactly
qualifies as a proof of a formula. One option would be to construct a syntactic proof
theory for TLA as a Coq data type and then to encode proofs as objects in this datatype.
However, we chose instead to switch semantical account of truth of TLA formulae in
Coq and then to use Coq to prove the truth of a formula. This is essentially the same
approach taken by Lamport: we define TLA in terms of its semantics rather than in
terms of its proof theory [12]. TLA formulae are interpreted as being predicates over
behaviors where behaviors are infinite sequences of states. We encode such infinite
sequences simply as functions from natural numbers to states. We define the operator
@ taking a behavior and a natural number such that s@n is the behavior created by
forgetting the first n states of s.

Fixpoint eval {A : Type} (e : Expr A) : Behavior A —> Prop :=
match e with
| E_Predicate p => fun s => p (s 0)
| E_AlwaysAction f r => fun s =>
forall n, (r (s@n 0) (s@n 1)) \/ f (s@n 0) = f (s@n 1)
| E_EventuallyAction f r => fun s =>
exists n, (r (s@n 0) (s@ n 1)) /\ f (s@n 0) < f (s@n 1)
e => fun s => 7 eval e s
el “/\ e2 => fun s => eval el s /\ eval e2 s
el “\/ e2 => fun s => eval el s \/ eval e2 s
el ‘=> e2 => fun s => eval el s —> eval e2 s
el ‘<=> e2 => fun s => eval el s <> eval e2 s
[l e = fun s => forall n, eval e (s@n)
<> e => fun s => exists n, eval e (s@n)
E_ForallRigid f => fun s => forall x, eval (f x) s
E_ExistsRigid f => fun s => exists x, eval (f x) s

«~

\
\
\
\
\
\
\
\
\
end .

Fig. 6. Semantics of TLA in Coq



The interpretation of a formula then is a function from behaviors to propositions
given by the coq function eval given in Figure 6. The idea is that a formula £ with is
true of a behavior S if eval E S is. From eval we can define the notion of validity
of a formula as being that it is true of every behavior.

Definition valid (A : Type) (e : Expr A) : Prop :=
forall s, eval e s.

An essential notion in TLA is the idea of stuttering invariance. The idea is that “stut-
tering steps”, those steps where the state does not change, are irrelevant. Therefore,
two behaviors which differ only by the addition and removal of stuttering steps should
validate the same formulae. However, formalizing this idea is a bit of a challenge. Lam-
portOs solution is to define a function # from behaviors to behaviors which eliminates
any stuttering steps except for those at the end (when all remaining steps are stuttering
steps) [12]. Then, two behaviors s; and s9 are stuttering equivalent if #s; = #ss.

Unfortunately, this definition does not work very well in a constructive setting such
as Coq. The problem is that # function is not generally computable as equality of states
is not necessarily decidable and, even when use a type of states where it is, we can
not decide if all remaining steps in a behavior are stuttering steps as that would require
examining an infinite number of states.

We thus use an alternative account of stuttering equivalence. Our idea is to observe
that if two behaviors s; and so are stuttering equivalent then they must have the same
first state (sym = son). Moreover, if the first step in s; is a stuttering step then s; @1 is
stuttering equivalent to so while if it is not then there must be some 7 such that s;@1
is stuttering equivalent so@n and where all the steps in so up to n are stuttering steps
meaning all the states of s; before so@n are equal. In either case there is some n such
that s;@1 is stuttering equivalent to so@n and where for all & less than n, s30 = sqk.
And, because stuttering equivalence is symmetric, it works the other way also: there is
some m such that s;@Qm is stuttering equivalent to so@1 and where for all & less than
m, $10 = s1k.

Definition stutter_relation {A : Type}
(R : Behavior A — Behavior A —> Prop) :=
(forall s s, Rs s> —> s 0 =35s" 0) /\
(forall s s, R's s’ —> exists m, R (s @ 1) (s’ @ m)
/\ forall k, k<m-—> s’ 0=5s" k) /\
(forall s s, R s s’ —> exists m, R (s @m) (s’ @ 1)
/\ forall k, k<m-—>s 0 =5 k).

Definition stutter_equiv {A : Type} (s s’ : Behavior A) : Prop :=
exists R, R s s’ /\ stutter_relation R.

Fig. 7. Stuttering Equivalence as Largest Stuttering Relation



Further, it follows that not only is this a true fact about stuttering equivalent behav-
iors but it is a complete account as well. Given any two behaviors s; and sy which have
the same first element and where there are n and m such that s; 1 is stuttering equivalent
to somn with s20 = sk for all k less than n, and s;m stuttering equivalent to so1 with
s1k = 510 for all k less than m, it is immediate that s; and sy are stuttering equivalent
as well. Our idea then is to define stuttering equivalence co-inductively as the largest
relation which satisfies this property. In particular, we define a stuttering relation as any
relation on behaviors which satisfies these properties and then say two behaviors are
stuttering equivalent if they are related by some stuttering relation (see Figure 7). We
can then show that stuttering equivalence is indeed an equivalence relation and that it is
a stuttering relation.

With the definition of stuttering equivalence in place we can prove the metatheorem
that the truth value of a formula is always stuttering invariant.

Theorem stutter_equiv_eval : forall A (e : Expr A) (s s’
stutter_equiv s s’ —> eval e s <> eval e s’.

However, stuttering invariance is not just an interesting theorem about our semantics, it
also is a useful property in constructing proofs. For example, a useful induction princi-
ple for proving that properties always hold given a specification takes advantage of the
fact that we do not need to consider stuttering steps because all formula are stuttering
1nvariant.

Theorem tla_inv_gen
forall (A : Type) (Init : Predicate A)
(Next : Action A) (F P : Expr A),
(valid (‘Init ¢/\ [][Next] ‘/\ F ‘=> P)) —>
(forall s,
eval P s —> Next (s 0) (s 1) — eval P (s @ 1))
—> valid (‘Init /\ [][Next] ‘/\ F ‘=> [] P).

Our type of expressions is parameterized by a type of states. And, we would expect
that different specification would use different state types we cannot necessarily simply
use implication in modeling refinement. Instead, we may need to consider implication
under some refinement mapping. To make this notion precise we have a function for
mapping a state change function over a formula (given in Figure 8). This mapping pro-
cedure satisfies the important property which is that mapping over formula is equivalent
to mapping over behaviors.

Lemma map.id : forall (A : Type) (e : Expr A),
map (fun x => x) e = e.

As the mathematical language in our embedding is Coq instead of ZFC, our system
differs somewhat from TLA+. In particular, Coq is always typed and so the state of
formulae we work with be given as some type. This differs from TLA+ where the state
is always a mapping which assigns each (of countably many) variables an arbitrary set.
However, from the type theoretic perspective these TLA+ states can be given a type:
namely the type of functions from the type of variables to the type of sets. We can
therefore represent TLA+ specification directly without assigning types to the variables

Behavior A),



Fixpoint map (C A : Type) (f : C —> A) (e : Expr A) : Expr C :=
match e with
| E_Predicate P => E_Predicate (fun st => P (f st))
| E_-AlwaysAction g R =>
E_AlwaysAction (fun st => g (f st))
(fun st st’ => R (f st) (f st’))
| E_EventuallyAction g R =>
E_EventuallyAction (fun st => g (f st))
(fun st st’> => R (f st) (f st’))
| " P=> ¢ (map f P)
| P */\ Q=> (map f P) */\ (map f Q)
| P \/ Q=> (map f P) ‘\/ (map f Q)
| P ‘=>Q=> (map f P) ‘=> (map f Q)
| P ‘<=>Q=> (map f P) ‘<=> (map f Q)
| [1 P=>1[] (map f P)
| < P => <> (map f P)
| E_ForallRigid g => E_ForallRigid (fun x => map f (g x))
| E_ExistsRigid g => E_ExistsRigid (fun x => map f (g x))
end.

Fig. 8. Mapping over an expression to change the state type

if we can simply exhibit a type in Coq which behaves like the collection of all sets in
set theory. As a proof of concept of this idea we have constructed such a type using a
variant of the canonical model of constructive set theory in type theory as well founded
trees indexed by a universe due to Martin-Lof and Aczel [9]. A full version of ZFC can
be then derived by assuming additional axioms for choice and classicality. However,
our experience has been that working with typed representations of states works better
in practice than encoding everything into sets. Indeed, it seems that variables in actual
TLA models are almost always “typed” in the sense that their values do not range over
arbitrary sets but rather some more restricted collection of values such as numbers or
lists. Furthermore, these types are an inherent part of the specification known to design-
ers from the beginning and it simplifies things significantly if they hold definitionally
rather than as a theorem which must be shown. However, it may make sense to at some
future time to parse models written for the TLA+ toolset and then automatically pro-
duce TLAY specifications from these models. Using the type of sets may be helpful
in this situation.

6 Conclusions

By embedding TLA in a foundational proof assistant like Coq we were able to construct
a model of a critical system component in a compositional manner using refinement.
Not only did this approach allow us to express the specification we cared about, but we
could construct proofs of correctness properties using an interactive theorem proving
approach combining automation with human creativity to come up with intermediate



states like induction hypotheses. Because these proofs occur within Coq’s logic we
achieve a high level of confidence in our proofs: we do not depend on the correctness
of a temporal logic specific proof engine or external verification tools, only on the Coq
kernel and its implementation of Coq’s reasonably simple logic.

The designers and engineers involved in the specification and verification of the
AWG component found the effort to be worthwhile. Using a TLA-style specification
forced us to consider details about how the high-level design worked early on. Without
it, we probably would not have considered those details until they were encountered by
programmers or revealed in testing, at which point changing the design would have been
much more difficult. We estimate that the cost of performing the formal specification
and model checking was justified by the time saved later in the process, and that those
costs will decrease in the future as we gain experience with the tools and techniques.

Our use of Coq allowed us to actually prove all our stated properties rather than
depend on bounded model checking. However, the use of proofs rather than model
checking is not without cost. Model checking is a full automated method while our
inductive proofs require user input. Therefore, an important topic for future work is
improving the automation available within the Coq embedding. There are a number of
paths to improve the quality of automation, but at an obvious one is to simply repli-
cate the capabilities of the TLA+ model checker within Coq. It should be possible to
implement a model checker for TLACoq in Coq and, even, potentially, to prove its cor-
rectness. We believe that many of the properties we proved “by hand” could be shown
more or less automatically by such a system. In other cases, full model checking will
not be tractable, but having a tool for bounded model checking within TLACoq would
be useful when developing models as it would provide designers and verifiers a low
cost way to check that they are on the right track.

Coq already serves as a common framework for formal reasoning at many levels,
ranging from abstract mathematical proof to the development of certified compiler. Cur-
rently, we are using TLA and TLACoq to prove properties about models of high con-
sequence systems, however, at some point these systems are implemented in hardware
or low level languages and those implementations are not certified.. Another important
direction for future work therefore is to link up our work on TLACoq with other Coq
based verification approaches such that eventually we can get to the point of “full stack
verification” where low level implementations are proven to correspond to our high
level models. This would take us towards our eventual goal of a development approach
where design, development, and specification happen in tandem leading to eventually
implementations which are fully verified and correct by construction, allowing us to
assert with certainty that abstract safety properties hold about the concrete complicated
digital systems we deploy in high consequence applications. Formalizing the high level
descriptions of systems as we have done with TLACoq is an essential step in this effort.
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