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Abstract—This paper presents a high-level summary of the   
architecture and early experience with Trinity, the first DOE ASC 
Advanced Technology System (ATS).  Trinity is a Cray XC40 
supercomputer with planned delivery in two phases: a Haswell first 
phase, with Knights Landing being added to phase 2.  The paper 
describes many aspects of the overall Trinity platform and project. 
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I. INTRODUCTION 
Trinity is the U.S. Department of Energy’s (DOE) Advanced 

Simulation and Computing (ASC) major computing system. 
Phase 1 of Trinity was delivered in fiscal year 2015. The system 
is being procured and operated by the New Mexico Alliance for 
Computing at Extreme Scale (ACES), a joint Los Alamos 
National Laboratory (LANL) and Sandia National Laboratories 
(SNL) partnership, and will be installed at LANL. ACES is 
funded by the DOE’s ASC Program. Procurement of a major 
system is a complex and time-consuming process, with the 
Trinity contract awarded to Cray Inc. on July 9, 2014. The early 
phase of the procurement was a joint effort with National Energy 
Research Scientific Computing (NERSC).  

Trinity is designed to support the largest, most demanding 
Directed Stockpile Work (DSW) applications that support the 
NNSA’s Stockpile Stewardship Program. ATS platforms are used 
by applications from all three nuclear weapons laboratories, and 
the mission need was developed with tri-lab input. The mission 
need concentrates on increases in geometric and physics fidelities 
in 3D, while satisfying analysts’ time-to- solution expectations. 
The 3D weapon applications are mainly constrained by available 
memory. The main driver for Trinity is the desire to run multiple 
large jobs on the system. Trinity was the first DOE system 
specified by memory, not by FLOPS (floating operations per 
second). 

The ASC national computing strategy defines two types of 
systems [1]. The Commodity Technology Systems (CTS) are 
robust, cost-effective systems that are designed to meet the day-
to-day simulation needs of the Stockpile Stewardship Program .  

The Advanced Technology Systems (ATS) are first-of-a-kind 
systems that identify and foster technical capabilities and features 
that are beneficial to ASC applications. These systems have a 
dual purpose, to meet unique mission needs of the Stockpile 

Stewardship Program, and to help prepare the ASC Program for 
future system designs. These are leadership-class systems, among 
the largest in the world. When procuring an ATS there is a 
tension between acquiring the right-sized platform to meet the 
mission needs and pursuing promising new technologies. ATS 
procurements include Non-Recurring Engineering (NRE) funding 
to enable delivery of new technologies for leading-edge 
platforms.  

The ASC notational computing platform procurement 
timeline is shown in Figure 1. The strategy includes deliberate 
efforts to transition the application codes to each ATS platform. 
Trinity is the first ATS procured by ASC.  

Trinity NRE covers improved burst buffer software, advanced 
power management, and the Trinity Center of Excellence (COE). 
The COE directly supports modifying select applications for 
Trinity, and is an essential element in making effective use of 
Trinity.  

Trinity is a single system that contains both Intel Haswell and 
Xeon Phi Knights Landing (KNL) processors. It is based on the 
Cray XC architecture. The Haswell partition, delivered in FY15, 
is well suited to existing codes and provides the immediate ability 
to partially satisfy stockpile stewardship mission needs while the 
application codes are modified for the KNL partition. The KNL 
partition, delivered in FY16, results in a system significantly  

 

Figure 1: The notational ASC computing platform timeline 
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more capable than current platforms and provides the application 
developers with an attractive next-generation processor 
architecture. The intentional mix of processor types (Haswell and 
KNL) results in a platform that meets both of the ATS 
requirements, support of  large simulations for Stockpile 
Stewardship Program with current ASC applications  while 
advancing the development and use of emerging programming 
models and work flows.   

  

II. ARCHITECTURE 
Trinity is a Cray XC40 supercomputer, with delivery over two 

phases; phase 1 is based on Intel Xeon Haswell compute nodes, 
and phase 2 will add Intel Xeon Phi Knights Landing (KNL) 
compute nodes. The high level Trinity architecture is shown in 
Figure 2. 

Phase 1 was delivered and accepted in the latter part of 2016, 
and consists of 54 cabinets, including multiple node types.  
Foremost are 9436 Haswell-based compute nodes, delivering ~1 
PiB of memory capacity and ~11 PF/s of peak performance.  
Each Haswell compute node features two 16-core Haswell 
processors operating at 2.3 GHz, along with 128GiB of DDR4-
2133 memory, spread across 8 channels (4 per CPU).  Phase 1 
also includes 114 Lustre router nodes (see Section III.B) and 300 
burst buffer nodes (see Section IV).  Trinity utilizes a Sonexion-
based Lustre filesystem with 78 PB of usable storage and 
approximately 1.6 TB/s of bandwidth.  However, due to the 
limited number of Lustre router nodes in Phase 1, only about half 
of this bandwidth is currently achievable.  Phase 1 also includes 
all of the other typical service nodes: 2 boot, 2 SDB, 2 UDSL, 6 
DVS, 12 MOM, and 10 RSIP.  Additionally, Trinity utilizes 6 
external login nodes. 

Phase 2 is scheduled to begin delivery in mid-2016.  It adds 
more than 9500 Xeon Phi Knights Landing (KNL) based 
compute nodes.  Each KNL compute node consists of a single 
KNL with 16 GiB of on-package memory and 96 GiB of DDR4-
2400 memory.  It has a peak performance of approximately 3 
TF/s.  In total, the KNL nodes add ~1 PiB of memory capacity 
and ~29 PF/s peak performance.  In addition to the KNLs, Phase 
2 also adds the balance of the Lustre router nodes (108 additional, 
total of 222) and burst buffer nodes (276 additional, total of 576).  
When all burst buffer nodes are installed, they will provide 3.69 
PB of raw storage capacity and 3.28 TB/s of bandwidth.  

 

III. EARLY PERFORMANCE RESULTS 
 

A. Application Performance 
ACES management recognized the importance of good 

application performance and setup as part of the four Trinity 
SOW performance related deliverables.  They were completed 
during Trinity Phase 1 acceptance in December 2015.  Of the 
four, ASC application code Capability Improvement (CI) metric, 
measuring applications performance at near full scale was a 
principal focus.  The CI metric measured three applications’ 
performance improvement, defined as the product of an increase 
in problem size, and/or complexity, and an application specific 
runtime speedup factor over baseline measurement on NNSA’s 
Cielo [2][3](a Cray XE6).  For example, if the problem size 
increases by a factor of eight and the run time speedup is 1.2, the 
CI is 8x1.2=9.6. The three applications picked as representative 
of the Tri-Lab workload are: SIERRA/Nalu [4][5] (SNL), 
PARTISN [6] (LANL), and, Qbox [7] (LLNL).  For Trinity, 
target performance for the CI metric is an average of eight, but 
split into four for the Phase 1 Haswell partition and four for the 
Phase 2 KNL partition.  The second important acceptance 
performance deliverable was a target of 400 on the Sustained 
System Performance (SSP) metric [8], measured as a geometric 
mean of the performance of eight applications. The third 
deliverable was to run five chosen applications/benchmarks from 
the SSP suite at near full scale of Trinity.  This along with a 
fourth deliverable to run several micro-benchmarks provided  
excellent insight into performance and scaling characteristics of 
Trinity.  The sections below provide short descriptions of results 
from Trinity Phase 1 performance acceptance tests.  Further 
details are available in [9].   
 

To provide some context a short description of a few primary 
factors that have an impact on performance follows.  Trinity 
nodes are set up to support Hyperthreads.  Processor Turbo Boost 
is turned on and the operating clock frequency varies with the 
thermal load.  Assuming a nominal 2.3 GHz operation, the peak 
node double precision performance (7.67X of Cielo) is  
32cores*16FLOPs/cycle*2.3 GHz = 1,177.6 GF/s/node.  Each 
core is capable of 16 DP FLOPs per cycle from the two 256 bit 
AVX2 units with FMA.  The software environment included 
Craype 2.4.2, Cray Libsci 13.2.0, Cray Alps 1.8.3, Intel 15.0 
compiler, Cray CCE 8.4.0 compiler, GNU 5.1.0 compiler and 
Cray MPICH/7.2.5.  Trinity is listed at 8,101 TF/s on top500.org 
and 182.6 TF/s on hpcg-benchmark.org. 
 

1) ASC Capability Improvement (CI) Application 
Performance 
 

SIERRA/Nalu is a low Mach CFD code that solves a wide 
variety of variable density acoustically incompressible flows 
spanning from laminar to turbulent flow regimes. The SIERRA 
Mechanics [4] simulation code suite is the principal mechanics 
code used by SNL in support of the U.S. Stockpile Stewardship 
Program.  Open source versions of Nalu (version 1.0.0) along 
with the Trilinos solver (version 12.0.0) were used for this 
benchmark. The test problem of interest is a turbulent open jet 
(Reynolds number of ~6,000) with passive mixture fraction 
transport using the one equation Ksgs LES model. The problem 
is discretized on unstructured meshes with hexahedral elements. 
The problem run on Cielo and Trinity is the R6 mesh that 

 
Figure 2: Trinity high-level architecture 

 



 

 

consists of nine billion elements, with total degree-of-freedom 
count approaching 60 billion. Two figures of merit were used; 
both involve the solution of the momentum equations. The 
speedups of the two metrics are weighted to produce a single 
speedup factor for Nalu. The first figure of merit is the average 
solve time per linear iteration. The second is the average matrix 
assemble time per nonlinear step.  Speedup is defined as:  
 

Speedup = Speedup solve*0.67 + Speedup assemble*0.33 
 
Runs of Nalu on 9300 nodes on Trinity and 8192 nodes of Cielo 
were used for the CI computation.  The excellent scaling of Nalu 
on Trinity resulted in a performance gain of 4.26X for the 
assembly time and a performance gain of 3.89X for the matrix 
solve time, resulting in a CI metric value of 4.009.  
 

The PARTISN particle transport code [6] provides neutron 
transport solutions on orthogonal meshes in one, two, and three 
dimensions. A multi-group energy treatment is used in 
conjunction with the Sn angular approximation. Much effort has 
been devoted to making PARTISN efficient on massively 
parallel computers. The package can be used for time-dependent 
calculations where even one simulation can run for weeks on 
thousands of processors. The primary components of the 
computation involve KBA sweeps and associated zero-
dimensional physics. The KBA sweep is a wave-front algorithm 
that provides 2-D parallelism for 3-D geometries, and is tightly 
coupled by dependent communications.  Runs of PARTISN on 
9418 nodes on Trinity, with an input of 11,520 zones/core were 
compared to 8192-node baseline run on  Cielo with an input of 
2,880 zones/core.  This gave a complexity increase of 9.19 and a 
run time ratio of 0.512, resulting in the CI metric value for 
PARTISN of 4.84.   
 

Qbox is a first-principles molecular dynamics code used to 
compute the properties of materials at the atomistic scale [7]. 
The main algorithm uses a Born-Oppenheimer description of 
atomic cores and electrons, with valence electrons treated 
quantum mechanically using Density Functional Theory and a 
plane wave basis. Nonlocal pseudopotentials are used to describe 
the core electrons and nuclei, and derived to match all-electron 
single atom calculations outside of a given cutoff radius. The 
computational profile consists primarily of parallel dense linear 
algebra and parallel 3D complex-to-complex Fast Fourier 
Transforms. The Qbox benchmark problem is the initial self-
consistent wavefunction convergence of a large crystalline gold 

system (fcc, a0 = 7.71 a.u). The metric for this benchmark is the 
maximum total wall time to run a single self-consistent iteration 
with three non-self-consistent inner iterations. Runs of Qbox on 
9418 nodes on Trinity, with an input of 8,800 atoms were 
compared to 6,144-node baseline run on  Cielo with an input of 
2880 atoms.  The computation complexity grows as the cube of 
the number of atoms. This gave a complexity increase of 166.37. 
The  run time ratio was measured to be 0.208, resulting in a CI 
metric value for Qbox of 34.7.   
 

Figure 3 summarizes the measured CI performance for each of 
the Tri-Lab applications and the average of the three 
applications. The achieved average CI performance of 14.517 
exceeds the target of 4.0 set for Phase 1.  Investigations on 
performance optimizations with input parameter changes and run 
time optimizations such as threads per MPI rank and MPI task 
rank ordering are available in [9]. 
 

2)  Sustained System Performance( SSP) benchmarks  
A second performance goal was a target System Sustained 

Performance (SSP) of 400.  SSP [8] is computed using the 
geometric mean of the run time of eight application benchmarks 
at various scales as shown in Table 1. The measured performance 
on Trinity running these applications was 500.  

	
 

Figure 3: Trinity Capability Improvement Performance 

 
Table 1: Trinity System Sustained Performance (SST) results 

Application	Name MPI	Tasks Threads Nodes	Used Reference	Tflops Time	(seconds) Pi

miniFE(Total CG Time) 49152 1 1536 1065.151 49.5116 0.014005964

miniGhost(Total time) 49152 1 1536 3350.20032 1.77E+01 0.122949267
AMG(GMRES Solve wall Time) 49152 1 1536 1364.51 66.233779 0.013412384
UMT(cumulativeWorkTime) 49184 1 1537 18409.4 454.057 0.026378822

SNAP(Solve Time) 12288 2 768 4729.66 1.77E+02 0.034793285

miniDFT(Benchmark_time) 2016 1 63 9180.11 377.77 0.385726849

GTC(NERSC_TIME) 19200 1 300 19911.348 868.439 0.076425817

MILC(NERSC_TIME) 12288 1 384 15036.5 393.597 0.099486409

Geom.	Mean= 0.052990429

SSP= 500.0176846  



 

 

 
As part of acceptance, some of the SSP applications were run 

at near full scale using “extra-large” inputs.  This performance 
data together with important micro-benchmarks like OMB, SMB, 
STREAM, IOR, and PSNAP provide important insights into 
Trinity performance.  These are discussed in [9].  
     

B. File System Performance 
The Trinity parallel file system is implemented using the 

Lustre-based Cray Sonexion 2000 product.  The file system is 
divided into  two equally sized scratch file systems.  Phase 1 
consists of approximately one-half of the LNET routers, thus 
bandwidth performance is expected to be one-half of the fully 
deployed phase 2 system.  As part of acceptance, optimally tuned 
IOR benchmark runs were defined to achieve maximum 
performance.  Maximum performance was evaluated while 
scaling stream counts per OST and processor counts per node.   
The benchmark was run against both scratch file systems to 
verify functionality and performance. File-per-processor (N-N) 
IOR runs exhibited performance of 600 GiB/s using 8 streams per 
OST and 2 processors per node .  Optimally tuned shared file (N-
1) IOR runs yielded performance of 350-400 GiB/s using 32 
processors per node and a transfer size of 8MiB.  The file was 
targeted to a Lustre directory striped nearly full OST count wide 
with a Lustre stripe size of 8M to match the transfer size. 

 
Performance sweeps and IOR tuned to match application 

patterns are shown in Figures 4 through 7.  The tests were 
configured to write 1GiB per processor and were executed on one 
of the two scratch file systems.  Figure 4 shows file-per-processor 
(N-N) write results using 32 processors per node and transfer 
sizes of 4MB and 8MB.  Peak performance of 401 GiB/s 
occurred at the 32K and 64K processor count.  Read performance 
peaked at 420GiB/s at a processor count of 64K, as shown in 
Figure 5.  

 
It should be noted that these plots do not necessarily represent 

peak performance.  In some cases, the rates shown are 15% lower 
than previous identical runs.  A post analysis showed that the file 
system problems did exist during the execution of the tests. 

 
The phase 1 acceptance test included a test to dump 0.8TB in 

20 minutes.  This test was successful using IOR N-N targeting 
both file systems simultaneously.  The  rates obtained were 686 
GiB/s for write and 572GiB/s for read.  This test used the optimal 
8 streams per OST and 2 processors per node configuration 
described previously. 

 
The next set of performance sweeps were based on the N-1  

strided I/O pattern.  The target Lustre directory was striped full 
OST count wide and the stripe size was configured to match the 
IOR transfer size.  Figure 6 shows N-1 write performance as the 
processor count is scaled.  Peak N-1 performance of 301 GiB/s 
occurred at a processor count of 64k and using a 4MiB transfer 
size.  Figure 7 shows the corresponding read performance.  

 
Figure 4: Trinity N-N write performance 

 
Figure 5: Trinity N-N read performance 

 
Figure 6: Trinity N-1 write performance 

 
Figure 7: Trinity N-1 read performance 



 

 

Performance peaked at 330 GiB/s at a processor count of 64K.    
 

To gain insight on the impact of Lustre DNE[11], metadata 
performance was measured using mdtest targeting directories 
hosted by all Metadata Servers (one directory per Metadata 
Server).  Results are shown in Figure 8.  The goal of the test was 
to create, stat, and delete 1 million files while varying processor 
count.  This test was run during acceptance and yielded peak 
create, stat, and delete rates of 172k ops/s,  458k ops/s, and 259k 
ops/s respectively. 

 

IV. BURST BUFFER INTEGRATION AND PERFORMANCE 

A. Design 
Trinity includes the first large scale instance of on-platform 

burst buffers using the Cray DataWarp® product. The Trinity 
burst buffer is provided in two phases along with the two phases 
of Trinity.  The phase 1 burst buffer consists of 300 DataWarp 
nodes.  This is expanded to 576 DataWarp nodes by phase 2.  In 
this section, unless otherwise noted, the phase 1 burst buffer will 
be described.   

The 300 DataWarp nodes are built from Cray service nodes, 
each with a 16 core Intel Sandy Bridge processor and 64 
gigabytes of memory.  Storage on each DataWarp node is 
provided by two Intel P3608 Solid State Drive (SSD) cards. The 
DataWarp nodes use the Aries high speed network for 
communications with the Trinity compute nodes and for 
communications with the Lustre Parallel File System (PFS) via 
the LNET router nodes. 

Each SSD card has 4 TB of capacity and is attached to the 
service node via a PCI-E x4 interface.  The SSD cards are over-
provisioned to improve the endurance of the card from the 
normal 3 Drive Writes Per Day (DWPD) over 5 years to 10 
DWPD over 5 years. This reduces the available capacity of each 
card. The total usable capacity of the 300 DataWarp nodes is 1.7 
PiB. 

The DataWarp nodes run a Cray provided version of Linux 
together with a DataWarp specific software stack consisting of an 
enhanced Data Virtualization Service (DVS) server and various 
configuration and management services. The DataWarp nodes 
also provide a staging function that can be used to 
asynchronously move data between the PFS and DataWarp.  
There is a centralized DataWarp registration service that runs on 

one of the Cray System Management nodes. Compute nodes run 
a DVS client that is enhanced to provide support for DataWarp. 
The DataWarp resources can be examined and controlled via 
several DataWarp specific command line interface (CLI) utilities 
that run on any of the system’s nodes. 

DataWarp can be configured to operate in a number of 
different modes.  The primary use case at ACES is to support 
checkpoint and analysis files, these are supported by the striped 
scratch mode of DataWarp. Striped scratch provides a single file 
name space that is visible to multiple compute nodes with the file 
data striped across one or more DataWarp nodes. A striped 
private mode is additionally available. In the future, paging space 
and cache modes may be provided.  This section will discuss 
LANL’s experience with striped scratch mode. 

A DataWarp allocation is normally configured by job script 
directives.   Trinity uses the Moab Work Load Manager (WLM).  
The WLM reads the job script at job submission time and records 
the DataWarp directives for future use. When the requested 
DataWarp capacity is available, the WLM will start the job. Prior 
to the job starting, the WLM uses DataWarp CLI utilities to 
request instantiation of a DataWarp allocation and any requested 
stage-in of data from the PFS.  After the job completes, the WLM 
requests stage-out of data and then frees the DataWarp allocation.  
The stage-in and stage-out happen without any allocated compute 
nodes or any compute node involvement.  The DataWarp 
allocation is made accessible via mount on only the compute 
nodes of the requesting job.  Unix file permissions are effective 
for files in DataWarp and are preserved by stage-in and stage-out 
operations. 

A DataWarp allocation is normally only available for the life 
of the requesting job, with the exception of a persistent DataWarp 
allocation that may be accessed by multiple jobs, possibly 
simultaneously.  Simultaneous access by multiple jobs is used to 
support in-transit data visualization and analysis use cases. 

B. Integration 
Correct operation of DataWarp in conjunction with the WLM 

was achieved after several months of extended integration testing 
on-site at LANL. Numerous fixes and functional enhancements 
have improved the stability and usability of the DataWarp feature 
on Trinity. Due to this effort, production use of DataWarp has 
been limited as of late April, 2016. 

C. Performance 
All performance measurements were conducted with IOR.  The 
runs were made with: 

• 1 reader or writer process per node 
• 32 GiB total data read or written per node 
• 256, 512 or 1024 KiB block size 
• Nodes counts from 512 to 4096 
• The DataWarp allocation striped across all 300 

DataWarp nodes 
These characteristics were selected to approximate the IO 
patterns expected when applications use the HIO library.  
Additional investigation and optimization of IO characteristics is 
needed.  Results are shown in Figures 9 through 12. 

 
Figure 8: Trinity metadata performance 

 



 

 

 

Figure 10 - DataWarp N-N Read Speed 

Figure 11 - DataWarp N-1 Write Speed 

Figure 12 - DataWarp N-1 Read Speed 

V. SYSTEMS MANAGEMENT AND INTEGRATION 

A. ACES/Cray Collaboration 
ACES and Cray have been collaborating on the 

Rhine/Redwood (CLE 6.0/SMW 8.0) software release while it 
was still in active development and through several beta releases 
until the release of UP00 in December 2015.  This collaboration 
is unprecedented for Cray and it has proven to be very 
successful.  As new releases of CLE 6.0/SMW 8.0 became 
available, system administrators at ACES would install, test, and 
give feedback directly to the developers.  Through this tightly 
coupled collaboration, Cray was able to deliver a more refined 
and administrator friendly version of both the CLE and the 
SMW management tools because of the exposure of this product 
to a customer in the field.  More often than not, the developer’s 
implementation on an internal system in a controlled 
environment is not always adaptable to the customer managing a 
Cray machine at a site. Because of the close relationship with 
Cray, the ACES administrators had a rapid feedback cycle. The 
early use of CLE 6.0 at LANL uncovered a variety of bugs and 
design issues, as well as producing several new ideas which 
improved the eventual deployment on Trinity. This collaboration 
also provided invaluable experience to the ACES system 
administrators who would eventually support Trinity in 
production. 

B. Early Experience with Rhine/Redwood 
Trinity is the first Cray system to deploy the new CLE 

6.0/SMW 8.0 system management software.  This release pair is 
a complete redesign and modernization of the software stack, 
positioning Cray closer to industry standards than ever before.  
However, this new design brings new challenges.  At the heart of 
Rhine/Redwood is an advanced ‘configurator’ which, paired with 
the Ansible configuration management utility, handles the 
complete prescription of all system components - from SMW to 
compute and even external login nodes.  The ACES systems team 
has worked extensively with Cray to refine and guide the 
development of CLE 6.0/SMW 8.0 (6.0/8.0) codenamed 
Rhine/Redwood (R/R) so that it is functional, scalable, and its 
system management is automatable. The ACES team has also 
strived to see that the new release would be a more robust 
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product for the larger Cray administrator community.  The work 
in this section describes the administrative decisions made by the 
ACES team and how our implementation provides system 
stability and consistency, reducing downtime and improving the 
user experience. 

1) Pre-Release Evaluation and Preparation 
The ACES team received a beta release of 6.0/8.0 in early 

June 2015 and installed it on a Test and Development System 
(TDS).  Our experience with the initial install itself was difficult 
for a variety of reasons.  The  system management philosophy is 
radically different under 6.0/8.0 than with previous versions, 
making the learning curve for this new release difficult.  A 
significant amount of time is required to perform the first install 
of Rhine/Redwood on a system that has never before seen the 
stack, even on a small TDS like ours.  This is due to the fact that 
there is no upgrade process from the previous 5.x/7.x version to 
6.0/8.0.  The SMW and boot RAID are required to be reformatted 
and reconfigured for the new version.  Once the base install of the 
SMW is completed, the new system must be defined using the 
configurator’s “question and answer” text-based interface. This is 
a tedious process in which the administrator must specify, by 
hand, many of the details of the system’s configuration, such as 
its entire network profile.  The ACES team provided significant 
feedback to Cray on the issues that were encountered and feature 
requests to be included in future releases many of which were 
already in the process of being implemented in Cray’s 
development release. 

  With subsequent releases of 6.0/8.0, new features were 
added such as worksheets.  Worksheets allow the administrator to 
pre-configure the system’s detail and then import those 
configurations into the configurator tool.  These worksheets can 
then be used moving forward if the SMW would ever need to be 
reinstalled.  Worksheets provide a mechanism to prepare for an 
initial install of a system as well.  If its worksheets are fully 
populated, then most of the system will be prescribed on import, 
greatly simplifying the initial install process.  However, we have 
learned there is still extensive work to be done after the initial 
install and boot of the system.  Even so, the ACES team could 
quickly see the value in Rhine/Redwood’s new philosophy and 
the flexibility that it provided.  The removal of the shared root 
space, the advent of customizable images, and the use of Ansible 
plays to prescribe each node allow for much more flexibility and 
scalability than the functionality that was previously provided in 
5.x/7.x.  

2) Configuration Management 
The ensuing work, post-install, was to learn how to effect 

change onto the system.  The administration team was faced with 
the challenge of implementing its own configuration management 
strategy or to somehow make use of Cray’s Ansible system to 
apply changes.  At first it was decided to try to supplement Cray’s 
Ansible infrastructure to fully prescribe the machine.  This initial 
strategy proved to be the wrong path for a few reasons.  First, if 
there was an issue with any defined Ansible play it most likely 
caused a failure in the boot process.  The symptoms of these 
errors would typically mislead the administrator into searching 
for a system problem that had no association to the real Ansible 
failure.  Secondly, the administrators realized that adding 
ancillary plays to Cray’s Ansible playbooks increased the overall 
node boot time due to the additional burden of processing those 
plays.  Therefore, it was decided to restrict the number of plays to 
be as few as necessary.  Third, Cray’s Ansible framework is truly 
intended to be run only once at boot time of the node.  Execution 
of the full playbook is a lengthy process and resource-intensive.  

Therefore, a small subset of plays is selected to be run at a 
specified interval to maintain the configuration of a node 
throughout its lifecycle.  Compute nodes are of even more 
concern because, while it is desirable to keep them updated, the 
overhead of running Ansible while jobs are executing is too high.  
It is a widely accepted fact that OS and network jitter can have a 
large impact on job performance.  To mitigate this problem, the 
ACES team decided to implement a lightweight, disjoint Ansible 
play that would run in TORQUE’s epilogue after a job was 
completed to update the node. 

All of the challenges and issues with using the new CLE 6.0 
software required a considerable amount of time and effort to 
overcome.  Initially there was very little documentation so 
learning the new software consisted of trial and error, trying new 
things to see what would break.  Another pain point was that 
Cray’s Ansible infrastructure would take control of certain 
configuration files that are traditionally handled by the site’s own 
configuration management strategy.  The difficulty arises when 
more than one player is found playing in the same sandbox.  One 
example of this is the management of the sshd service.  Cray’s 
Ansible play needs to configure the daemon at install time in 
order to have a functional system.  However, conflicts may 
surface once the site decides to extend the customization of the 
configuration that Cray prescribes.  At what priority should site 
plays be run when they conflict with vendor plays?  How should 
configuration incompatibilities between site and vendor be 
handled?  What about those configuration files whose content is 
only partially prescribed and the site needs to extend the 
prescription?   Overcoming these issues is still an ongoing work 
for the most part.  Workarounds have been implemented to solve 
many of these issues, but a better long-term strategy from Cray is 
required. 

3) External Login Nodes 
Another new feature of the CLE 6.0 stack is the replacement 

of the Bright Cluster Manager software used to provision the 
esLogin nodes.  Cray has deployed OpenStack on the 
provisioning node, which is named the Cray System Management 
Software (CSMS) system.   The key feature of this change is that 
the newly-named eLogin nodes are built from the same images 
that the internal systems are built from.  This allows for a 
commonality between the system software and package versions 
found in all image types.  The programming environment (PE) is 
also shared between the internal system and eLogin nodes.  
Unfortunately, the security model of OpenStack, by default, is 
not solid enough to meet the rigorous standards of the 
Department of Energy.  Cray and ACES have worked closely to 
resolve these issues and help steer the CSMS product to have a 
better security posture. 

C. Integrating New Technologies 
Along with the new CLE 6.0 / SMW 8.0 software stack, 

Trinity is also deployed with some new hardware technologies.  
One such is the Sonexion 2000, which is a Lustre appliance.  
This Lustre deployment has been split into two equally sized 
39PB file systems.  One of the new features of the Lustre server 
on the system is DNE[11] which allows for multiple metadata 
targets (MDT) to distribute metadata performance across 
multiple servers.  The current implementation of this feature, 
however, requires the manual placement of directories onto a 
specific MDT, forcing decisions to be made a priori by the user 
to take advantage of this feature.  However, the ACES team has 
not enabled user control over the placement of directories on a 
specific MDT. This configuration will be controlled 



 

 

administratively upon request since it is important to maintain an 
even distribution of users across the platform. 

Another new technology deployed on Trinity is Cray’s 
DataWarp burst buffer solution.  These SSD-endowed nodes 
allow for an intermediary scratch file system to interpose 
between the compute resource and parallel file system.  
Integration of this technology into the machine has been another 
one of the more difficult problems the administrators have faced.  
The interaction between the workload manager, Moab, and the 
DataWarp API has been an ongoing effort.  Users need an on-
demand allocation of the DataWarp file system on a per-job 
basis, along with a definition of the granularity and striping 
across multiple burst buffer nodes to achieve maximum 
performance.  The complexities in scheduling these resources 
and the multitude of DataWarp failure modes have caused a 
variety of error scenarios that are difficult to recover from.  The 
administrators have encountered orphaned allocations from dead 
jobs, and burst buffer nodes in a failed state.  When these 
problems arise, their solution is not always intuitive and the 
recovery procedure is only now being documented to restore 
functionality to the system.  As the DataWarp project matures 
however, and the Moab code improves to handle the scheduling 
of these resources, the administrators expect many of these 
failures to be handled more gracefully by the system.  This will 
eventually make the recovery and restoration of the DataWarp 
service less burdensome. 

D. Current Challenges 
The current challenges that face the ACES administrative 

team are reliable boots, DataWarp at scale, and monitoring.  
Boot reliability is an ongoing issue, but is being actively 
investigated by Cray engineers.  Boot integrity is a source of 
frustration for Cray administrators as well.  All complete-system 
boot failures carry a large opportunistic cost in valuable uptime 
to users due to the necessity of the bounce, and route, which 
accompanies each boot process.  Other failure modes may occur 
if the collection of Ansible plays malfunctions or is loath to run 
at all.  This can leave the end node in a state in which no remote 
connectivity is possible. The only way to analyze such a failure 
is to use xtcon to connect to the node and inspect its Ansible 
logs.  If a large set of nodes fail in this way, though, it is 
extremely difficult to recover apart from a full system reboot.  
Cray’s Scalable Services system affords a parallel boot process 
by distributing configuration through various tiers, which are 
ideally comprised of existing service nodes.  There have been 
obstacles with this composition in practice however, and 
currently a small set of re-purposed compute nodes are required 
to handle these duties.  Cray has done extensive testing in this 
area and found that there is a small set of frequently accessed 
files that should be moved into the node’s RAM image to reduce 
network load during boot.  Compute nodes are being used for 
this task because they have much more memory available for 
Scalable Services to cache these distributed file systems.  The 
practice of stealing compute resources for this purpose is a 
source of concern to the ACES team, but these issues are being 
addressed and should be fixed soon. 

Another challenge for the administrators has been deploying 
and testing DataWarp at scale.  There has been ongoing work 
with Cray and Adaptive to fully deploy an end-to-end solution.  
Many of the issues have arisen from the fact that ACES utilizes 

an external host for the workload manager and does not run the 
Moab server on the SDB.  This has led to a number of 
communication and timing faults with the scheduling and 
management of DataWarp resources.  Many of these issues are 
exposed on the small TDS so much of the testing has not been 
attempted at full scale on Trinity – yet another concern for the 
ACES administration team.  There has not been enough 
exposure time to DataWarp and the Moab scheduler to be 
comfortable recovering from the failure modes that might arise. 
This will only be compounded when the system is in the 
classified network where debugging these issues becomes a 
serious effort. 

Monitoring is another area in which much has been done in 
preparation for the sheer volume of log and performance data 
that Trinity will generate on a daily basis. Estimates are that 
about 4TB of uncompressed data will flow from the machine per 
day.  Resiliency and failure tracking are a few of the many areas 
of interest in these logs.  Features such as enhanced MCA 
logging [12] and SSD drive telemetry data [13] allow ACES to 
track failures and component health of the system.  Collection 
and analysis of this aggregation of information has required the 
ACES team to develop an external monitoring cluster simply to 
store and process this bulk of data throughout the life of the 
machine. 

E. Continuing Collaboration 
Cray and ACES both continue to collaborate on the security 

and functionality issues that are encountered with this current 
release version of CLE 6.0.  The features and fixes provided in 
CLE 6.0 UP01 promise to be a great improvement over the 
existing version and the ACES team is eager to begin testing it 
out.  This will also be the first public release of this product 
which will expose it the entire Cray community, which will 
invite more feedback and drive the product to maturity.  
Software historically takes many revisions to improve in 
functionality and reliability and the ACES team looks forward to 
the continued development and improvements made to the Cray 
software management stack. 

 

VI. APPLICATION READINESS – CENTER OF EXCELLENCE 
The Trinity Center of Excellence (COE) provides a 

collaborative long-term relationship between subject matter 
experts (SME) from Cray and Intel, with ASC codes teams, to 
support the transition of key scientific applications to Trinity.   
Applications from all three nuclear weapons laboratories were 
identified, to focus COE activities and limited resources. These 
multiphysics applications often have millions of lines of code and 
have additional complexity, such as having many third-party 
software dependencies and  supporting computational campaigns 
that are long-running with performance profiles that can change 
drastically throughout the lifetime of the run or by input deck. 

A wide range of computational motifs and approaches are 
important to mission-class applications including hydrodynamics, 
linear solvers, deterministic transport, Monte Carlo, molecular 
dynamics, and material contact amongst others. 

Trinity provides codes with advanced high-performance 
computing resources, however reaping the benefits by using them 
effectively is non-trivial and creates a number of challenges for 
our code teams. Effective use of Trinity involves the on-node 
challenges of the Knights Landing processor including: 1) 



 

 

enabling (or not hindering) compiler vectorization with AVX-512 
instructions; 2) increasing parallelism to use the increased 
number of cores and threads; 3) identifying data structures that 
will benefit from residing in high-bandwidth memory and 
explicitly managing the memory hierarchy.  In addition, the 
composed Trinity system provides both challenges and 
opportunities, such as 1) using the burst buffer to reduce I/O 
overhead and enabling new workflow capabilities within a 
simulation run, 2) scaling simulations to utilize the massive scale 
of the system, 3) managing simulation data on the large  parallel 
file system, and 4) identifying new workflow/simulation 
capabilities to use the heterogenous composition of Trinity with 
two types of nodes.  

Vendor SMEs in performance optimizations, tools, compilers, 
and hardware work closely with code teams to address effective 
use of Trinity resources.  COE activities began well in advance of 
receiving the system.  COE activities include:   

• SME integration into daily code team development 
activities,  

• Application exploration using vendor tools,  
• Training, workshops and working groups to share best 

practices, and 
• Early access to hardware and software. 

This section describes some of the activities during the early 
period of the COE when Knights Landing processors were not 
generally available.  However, significant progress was possible 
through collaborative application exploration to identify where to 
focus application development efforts, proxy application 
development to enable future collaborations, and early access to 
hardware and software with direct feedback to vendors.      

 

A. Collaborative Application Exploration  
Collaborative application exploration, often called ‘deep 

dive’, ‘hackathon’, or the Intel-centric terms ‘discovery’ and 
‘dungeon’ sessions, are an invaluable opportunity to help prepare 
code teams to adjust to more complex hardware environments.  
These activities brings vendor SMEs together with application 
developers to identify where to focus application development 
and see the impact of real-time code changes with feedback and 
collaboration with tools and performance experts.  

The vendor SMEs bring the domain knowledge of the 
hardware, compilers, and performance analysis tools.  The DOE 
developers bring the domain knowledge about the physics in the 
source code, as well as the architecture, design, constraints,  and 
portability goals of the application.   

Deep dive activities with Cray SMEs focused on larger 
simulation studies using Craypat and Cray performance tools.  
Deep dives used testbed systems with roughly 100 nodes and 
eventually utilized the Trinity Phase 1 Haswell partition as it 
became available.  Since testbed systems are installed at NNSA 
facilities, this opened the code exploration activity to export 
controlled codes, which was extremely valuable to LANL code 
development activities.        

The Intel-led discovery and dungeon sessions focused on on-
node performance, with discovery sessions hosted at NNSA sites 
and dungeons hosted at Intel sites.  A discovery session is a one 
or two day working session with a couple of Intel SMEs and 
DOE code developers. The dungeon session is typically a week 
long focused time, where application or library developers (from 
the DOE) are partnered with performance analysts, library and 
tool developers and compiler specialists from Intel.  The time is 
used to engage in intensive behavior and performance profiling of 

existing codes using tools and a variety of performance counters. 
The analysis results of these activities are then used to drive 
exploratory code modification to address bottlenecks.  

As part of the COE effort, LLNL developers participated 
with Intel developers in two Discovery sessions.  The goal of 
these Discovery sessions was to broadly identify  bottlenecks in 
certain areas of a code.   Both sessions provided useful insight to 
the developers.  In the first session, one of the limiting factors 
was related to cross section data lookup – which was expected.  
However, another hot spot was related to pipeline flushes.  By 
design, Monte Carlo code has a lot of branching,  and branch 
mis-prediction resulted in a large number of stalls, which limits 
single core performance.    

In the second Discovery session focused on different 
applications, code teams specifically wanted to analyze the 
efficiency of a certain abstraction of the OpenMP layer.  They 
quickly identified a series of print statements that were slowing 
down the code unnecessarily using the Intel tools and removed 
them in real-time to improve performance. During the session, 
they observed an unexpected performance in the abstraction 
layer.  It was unclear if this was 1) a real issue with the 
abstraction, 2) an issue with Intel Vtune itself in how it collects 
data, or 3) an issue with the OpenMP run time library.  A 
dungeon session is scheduled to further investigate these issues. 

The SNL developers participated in both discovery and 
dungeon sessions as a natural evolution of the code exploration 
process.  Prior to the dungeon, discovery sessions were held to 
gather performance profiles of the Sierra Mechanics engineering 
analysis code suite. From these performance profiles, key areas 
were identified to focus on for the dungeon session.  

The focus of the SNL dungeon at Intel was on matrix 
assembly and scalable linear solvers (domain decomposition and 
multi-grid), and the underlying data structures of these 
algorithms. Rather than extracting small code kernels for this 
activity, which drastically shortens compile time and helps to 
improve feedback from code changes, the SNL developers 
brought a substantial portion of their software environment to 
expose Intel SMEs to the real challenges faced by DOE 
developers. These core components utilize the Kokkos parallel 
performance portability abstraction library [20]. Initial findings 
have shown slow dense-BLAS performance for very small matrix 
operations – something previously unseen by both Cray and Intel 
in many DOE benchmarks and mini-applications. In addition, 
OpenMP tasking was found to be very limited in performance for 
factorization kernels in the solvers. Performance issues found in 
these studies are now being worked into future versions of math 
libraries on the Trinity platform. 
 

B. Proxy Applications 
The development and use of proxy applications for Trinity 

and future ATS machines provides key advantages.  The proxy 
application is designed to be freely distributable to vendors, 
collaborators,  other laboratories, and universities.  The design of 
the proxy application reflects the design of the larger application 
that it represents.  It is therefore not written to be the most 
efficient source code for Trinity, but rather to represent the 
current coding of a larger, portable application.  

Quicksilver is an LLNL developed proxy application, which 
reflects the physics and computer science of a larger Monte 
Carlo transport code.  It was developed as part of the COE effort 
in preparation for porting code to Trinity and future ATS 



 

 

machines.  Quicksilver, and other proxy applications, provide a 
manageable test bed to explore methods for refactoring a code 
which may provide for better performance of the larger code 
across a range of computer architectures. Approaches which 
prove beneficial will then be implemented in both the proxy 
application and the larger code.    

Quicksilver  is a freely distributable code, which solves a 
simplified dynamic neutron transport problem.   At 7000 lines of 
code, it includes key computer science and physics features: It 
may be compiled as a pure MPI or a hybrid MPI and threaded 
code. It contains internal problem and mesh generation.   Mesh 
elements have 14 nodes and 24 faces.  Mesh elements are single 
material, and are assigned to domains using Voronoi 
decomposition. Any number of domains (MPI ranks) are 
supported.  The default problem is a cubic source in the corner 
of a cubic domain, but user defined geometry  may consist of 
any number of bricks and spheres, each with its own material 
properties.   

Quicksilver supports three reaction types:  elastic scattering, 
absorption, and fission.  However as it is desired to simulate 
materials with any number of reactions to investigate Trinity 
hardware features and compilers, multiple copies of the three 
basic types may be replicated so that each material  may have 
any number of reactions.  Isotopes are used as an additional key 
to the cross section data.  They have no physical meaning, but 
allow for the proxy app to simulate the larger code. Any number 
of isotopes are supported.  Cross section data is completely 
synthetic, users may specify an arbitrary fourth degree 
polynomial (in energy) to define cross sections.  The number of 
groups in the cross section tables and the source strengths may 
be set at run time.  

There are  potential disadvantages of proxy applications.  As  
proxy applications are simplified from the original, they do not 
completely represent the physics and computer science of the 
original application. Memory access, cache usage, high-
bandwidth memory usage, threading, and vectorization are  
difficult to exactly replicate in a smaller code.  An approach 
which looks promising in Quicksilver, may not perform as well 
in the larger application.  There is also a cost to develop and 
maintain the proxy application.  Still, evidence from proxy 
applications used in other COE efforts show that the lessons 
learned will pay back this investment.   

 

C. Early Emulation Environments to Improve Levels of 
Vectorization  
A key determinant of performance for both the Haswell and 

Knights Landing parts of Trinity is ensuring high levels of 
vectorization (we note that a high proportion of compute 
performance comes from both processor types having dual-
vector processor units). Since our users did not have access to 
KNL hardware, we utilized Intel’s Software Development 
Environment (SDE) for early programming environment 
development [18]. While SDE does not provide accurate 
performance timing information, the analysis information 
provided does allow for detailed instruction breakdowns and 
memory access behavior. In Figure 13 we show early 
evaluations of the use of AVX-512 instructions in 
unmodified/unoptimized codes for a range of mini-applications 
and benchmarks compiled to run on Knights Landing. The use of 

wide FMA, gather and scatter instructions are new for both 
Haswell and KNL micro-architectures, AVX-512 is new for 
KNL only. We have provided the SDE information back to our 
development activities, ahead of having access to KNL, to 
ensure we focus on, and improve, the levels of vectorization 
being achieved.  

 

D. Early Evaluation of Compiler Toolchains 
During the last three years, research staff preparing codes for 

Trinity systems have been engaged with both Intel and Cray 
compiler teams to ensure that bugs in the compiler tool chains 
and resulting code performance are addressed earlier than in 
previous procurements. There has been a particular focus on 
OpenMP runtime performance for Haswell, and work is starting 
to perform similar assessments on Knights Landing test systems. 
We are pleased to report significant improvements in support  
for C++, particularly C++11, on the most recent edition of the 
Cray compiler environment. Using the full multi-physics 
applications have also helped to identify compiler issues that 
were only exposed when compiling very large and complex 
applications. Very lengthy (hours) compile and link times and 
reduced performance optimization are a common issue for the 
larger codes. Improvements in the compiler’s ability to optimize 

through multiple layers of abstractions have significantly 
benefited the overall performance. 

E. Next Steps 
Early COE activities created much needed collaborations 

between vendor SMEs and DOE application developers and 
paved the way for more rapid progress.  COE activities will 
escalate over the next couple of years as access to Knights 
Landing processors becomes available, the programming 
environment and tools provide full KNL functionality and 
performance and become more stable, and Trinity is finally 
delivered and open for production simulations.  Code teams are 
carefully balancing performance optimizations targeted for 
Trinity, while keeping an eye toward performance portability, so 
that codes can utilize ATS-2 ‘Sierra’, a GPU-enabled system in 

 
Figure 13 - AVX-512 Vectorization Levels in DOE Benchmarks 

and Mini-Apps 

 



 

 

the 2018 time frame [21], and future exascale systems in the 
2023 time frame[22]. 
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