SAND2016-4315C

Trinity: Architecture and Early Experience

K. Scott Hemmert, Mahesh Rajan, Rob Hoekstra,
Michael W. Glass, Simon D. Hammond

Sandia National Laboratories
Albuquerque, NM, USA

Shawn Dawson

Lawrence Livermore National Laboratory
Livermore, CA, USA

Abstract—This paper presents a high-level summary of the
architecture and early experience with Trinity, the first DOE ASC
Advanced Technology System (ATS). Trinity is a Cray XC40
supercomputer with planned delivery in two phases: a Haswell first
phase, with Knights Landing being added to phase 2. The paper
describes many aspects of the overall Trinity platform and project.

Keywords-HPC

1. INTRODUCTION

Trinity is the U.S. Department of Energy’s (DOE) Advanced
Simulation and Computing (ASC) major computing system.
Phase 1 of Trinity was delivered in fiscal year 2015. The system
is being procured and operated by the New Mexico Alliance for
Computing at Extreme Scale (ACES), a joint Los Alamos
National Laboratory (LANL) and Sandia National Laboratories
(SNL) partnership, and will be installed at LANL. ACES is
funded by the DOE’s ASC Program. Procurement of a major
system is a complex and time-consuming process, with the
Trinity contract awarded to Cray Inc. on July 9, 2014. The early
phase of the procurement was a joint effort with National Energy
Research Scientific Computing (NERSC).

Trinity is designed to support the largest, most demanding
Directed Stockpile Work (DSW) applications that support the
NNSA’s Stockpile Stewardship Program. ATS platforms are used
by applications from all three nuclear weapons laboratories, and
the mission need was developed with tri-lab input. The mission
need concentrates on increases in geometric and physics fidelities
in 3D, while satisfying analysts’ time-to- solution expectations.
The 3D weapon applications are mainly constrained by available
memory. The main driver for Trinity is the desire to run multiple
large jobs on the system. Trinity was the first DOE system
specified by memory, not by FLOPS (floating operations per
second).

The ASC national computing strategy defines two types of
systems [1]. The Commodity Technology Systems (CTS) are
robust, cost-effective systems that are designed to meet the day-
to-day simulation needs of the Stockpile Stewardship Program .

The Advanced Technology Systems (ATS) are first-of-a-kind
systems that identify and foster technical capabilities and features
that are beneficial to ASC applications. These systems have a
dual purpose, to meet unique mission needs of the Stockpile

Manuel Vigil, Daryl Grunau, James Lujan,
David Morton, Hai Ah Nam, Paul Peltz Jr.,
Alfred Torrez, Cornell Wright

Los Alamos National Laboratory
Los Alamos, NM, USA

Stewardship Program, and to help prepare the ASC Program for
future system designs. These are leadership-class systems, among
the largest in the world. When procuring an ATS there is a
tension between acquiring the right-sized platform to meet the
mission needs and pursuing promising new technologies. ATS
procurements include Non-Recurring Engineering (NRE) funding
to enable delivery of new technologies for leading-edge
platforms.

The ASC notational computing platform procurement
timeline is shown in Figure 1. The strategy includes deliberate
efforts to transition the application codes to each ATS platform.
Trinity is the first ATS procured by ASC.

Trinity NRE covers improved burst buffer software, advanced
power management, and the Trinity Center of Excellence (COE).
The COE directly supports modifying select applications for
Trinity, and is an essential element in making effective use of
Trinity.

Trinity is a single system that contains both Intel Haswell and
Xeon Phi Knights Landing (KNL) processors. It is based on the
Cray XC architecture. The Haswell partition, delivered in FY 15,
is well suited to existing codes and provides the immediate ability
to partially satisfy stockpile stewardship mission needs while the
application codes are modified for the KNL partition. The KNL
partition, delivered in FY'16, results in a system significantly

i* Sequoia (LLNL) |

Ol B s 1 riniey (1 * 1
-
5<
P T s s «
g2¢E
g
553 w
283 ATS 3 - Crossroads (LANL/ *
* System
Delivery m *
ATS 5 — (LANL/SNL)
’(-E Tri-lab Linux Capacity Cluster Il (TLCC Il) l
23e
£3% e E 1
E g E & Deploy
ESw Use
S2@ || M retire -
T T T T
‘13 ‘14 ‘15 ‘16 ‘17 ‘18 ‘19 20 21 22 23

Fiscal Year

Figure 1: The notational ASC computing platform timeline

more capable than current platforms and provides the application
developers with an attractive next-generation processor
architecture. The intentional mix of processor types (Haswell and
KNL) results in a platform that meets both of the ATS
requirements, support of large simulations for Stockpile
Stewardship Program with current ASC applications while
advancing the development and use of emerging programming
models and work flows.

II. ARCHITECTURE

Trinity is a Cray XC40 supercomputer, with delivery over two
phases; phase 1 is based on Intel Xeon Haswell compute nodes,
and phase 2 will add Intel Xeon Phi Knights Landing (KNL)
compute nodes. The high level Trinity architecture is shown in
Figure 2.

Trinity

~40 PF Total Performance and 2.1PiB of Total Memory

Compute (Intel “Haswell”)
9436 Nodes (~11 PF)

Burst Buffer
576 Nodes

Lustre Routers

Gateway Nodes 222 Nodes l

I L3
- \
- 1 2x 648 Port IB Switches ‘ 3.69 PB Raw
Development & i 1 3.28TB/s BW
Login Nodes
Eo===cl=== = s
== FDRIB
78 PB Usable ~1.6 TB/s — 2 Filesystems

Figure 2: Trinity high-level architecture

Phase 1 was delivered and accepted in the latter part of 2016,
and consists of 54 cabinets, including multiple node types.
Foremost are 9436 Haswell-based compute nodes, delivering ~1
PiB of memory capacity and ~11 PF/s of peak performance.
Each Haswell compute node features two 16-core Haswell
processors operating at 2.3 GHz, along with 128GiB of DDR4-
2133 memory, spread across 8 channels (4 per CPU). Phase 1
also includes 114 Lustre router nodes (see Section II1.B) and 300
burst buffer nodes (see Section IV). Trinity utilizes a Sonexion-
based Lustre filesystem with 78 PB of usable storage and
approximately 1.6 TB/s of bandwidth. However, due to the
limited number of Lustre router nodes in Phase 1, only about half
of this bandwidth is currently achievable. Phase 1 also includes
all of the other typical service nodes: 2 boot, 2 SDB, 2 UDSL, 6
DVS, 12 MOM, and 10 RSIP. Additionally, Trinity utilizes 6
external login nodes.

Phase 2 is scheduled to begin delivery in mid-2016. It adds
more than 9500 Xeon Phi Knights Landing (KNL) based
compute nodes. Each KNL compute node consists of a single
KNL with 16 GiB of on-package memory and 96 GiB of DDR4-
2400 memory. It has a peak performance of approximately 3
TF/s. In total, the KNL nodes add ~1 PiB of memory capacity
and ~29 PF/s peak performance. In addition to the KNLs, Phase
2 also adds the balance of the Lustre router nodes (108 additional,
total of 222) and burst buffer nodes (276 additional, total of 576).
When all burst buffer nodes are installed, they will provide 3.69
PB of raw storage capacity and 3.28 TB/s of bandwidth.

III. EARLY PERFORMANCE RESULTS

A. Application Performance

ACES management recognized the importance of good
application performance and setup as part of the four Trinity
SOW performance related deliverables. They were completed
during Trinity Phase 1 acceptance in December 2015. Of the
four, ASC application code Capability Improvement (CI) metric,
measuring applications performance at near full scale was a
principal focus. The CI metric measured three applications’
performance improvement, defined as the product of an increase
in problem size, and/or complexity, and an application specific
runtime speedup factor over baseline measurement on NNSA’s
Cielo [2][3](a Cray XE6). For example, if the problem size
increases by a factor of eight and the run time speedup is 1.2, the
CI is 8x1.2=9.6. The three applications picked as representative
of the Tri-Lab workload are: SIERRA/Nalu [4][5] (SNL),
PARTISN [6] (LANL), and, Qbox [7] (LLNL). For Trinity,
target performance for the CI metric is an average of eight, but
split into four for the Phase 1 Haswell partition and four for the
Phase 2 KNL partition. The second important acceptance
performance deliverable was a target of 400 on the Sustained
System Performance (SSP) metric [8], measured as a geometric
mean of the performance of eight applications. The third
deliverable was to run five chosen applications/benchmarks from
the SSP suite at near full scale of Trinity. This along with a
fourth deliverable to run several micro-benchmarks provided
excellent insight into performance and scaling characteristics of
Trinity. The sections below provide short descriptions of results
from Trinity Phase 1 performance acceptance tests. Further
details are available in [9].

To provide some context a short description of a few primary
factors that have an impact on performance follows. Trinity
nodes are set up to support Hyperthreads. Processor Turbo Boost
is turned on and the operating clock frequency varies with the
thermal load. Assuming a nominal 2.3 GHz operation, the peak
node double precision performance (7.67X of Cielo) is
32cores*16FLOPs/cycle*2.3 GHz = 1,177.6 GF/s/node. Each
core is capable of 16 DP FLOPs per cycle from the two 256 bit
AVX2 units with FMA. The software environment included
Craype 2.4.2, Cray Libsci 13.2.0, Cray Alps 1.8.3, Intel 15.0
compiler, Cray CCE 8.4.0 compiler, GNU 5.1.0 compiler and
Cray MPICH/7.2.5. Trinity is listed at 8,101 TF/s on top500.org
and 182.6 TF/s on hpcg-benchmark.org.

1) ASC Capability
Performance

Improvement (CI) Application

SIERRA/Nalu is a low Mach CFD code that solves a wide
variety of variable density acoustically incompressible flows
spanning from laminar to turbulent flow regimes. The SIERRA
Mechanics [4] simulation code suite is the principal mechanics
code used by SNL in support of the U.S. Stockpile Stewardship
Program. Open source versions of Nalu (version 1.0.0) along
with the Trilinos solver (version 12.0.0) were used for this
benchmark. The test problem of interest is a turbulent open jet
(Reynolds number of ~6,000) with passive mixture fraction
transport using the one equation Ksgs LES model. The problem
is discretized on unstructured meshes with hexahedral elements.
The problem run on Cielo and Trinity is the R6 mesh that

consists of nine billion elements, with total degree-of-freedom
count approaching 60 billion. Two figures of merit were used;
both involve the solution of the momentum equations. The
speedups of the two metrics are weighted to produce a single
speedup factor for Nalu. The first figure of merit is the average
solve time per linear iteration. The second is the average matrix
assemble time per nonlinear step. Speedup is defined as:

Speedup = Speedup solve*0.67 + Speedup assemble*0.33

Runs of Nalu on 9300 nodes on Trinity and 8192 nodes of Cielo
were used for the CI computation. The excellent scaling of Nalu
on Trinity resulted in a performance gain of 4.26X for the
assembly time and a performance gain of 3.89X for the matrix
solve time, resulting in a CI metric value of 4.009.

The PARTISN particle transport code [6] provides neutron
transport solutions on orthogonal meshes in one, two, and three
dimensions. A multi-group energy treatment is used in
conjunction with the Sn angular approximation. Much effort has
been devoted to making PARTISN efficient on massively
parallel computers. The package can be used for time-dependent
calculations where even one simulation can run for weeks on
thousands of processors. The primary components of the
computation involve KBA sweeps and associated zero-
dimensional physics. The KBA sweep is a wave-front algorithm
that provides 2-D parallelism for 3-D geometries, and is tightly
coupled by dependent communications. Runs of PARTISN on
9418 nodes on Trinity, with an input of 11,520 zones/core were
compared to 8192-node baseline run on Cielo with an input of
2,880 zones/core. This gave a complexity increase of 9.19 and a
run time ratio of 0.512, resulting in the CI metric value for
PARTISN of 4.84.

Qbox is a first-principles molecular dynamics code used to
compute the properties of materials at the atomistic scale [7].
The main algorithm uses a Born-Oppenheimer description of
atomic cores and electrons, with valence electrons treated
quantum mechanically using Density Functional Theory and a
plane wave basis. Nonlocal pseudopotentials are used to describe
the core electrons and nuclei, and derived to match all-electron
single atom calculations outside of a given cutoff radius. The
computational profile consists primarily of parallel dense linear
algebra and parallel 3D complex-to-complex Fast Fourier
Transforms. The Qbox benchmark problem is the initial self-
consistent wavefunction convergence of a large crystalline gold

system (fcc, a0 = 7.71 a.u). The metric for this benchmark is the
maximum total wall time to run a single self-consistent iteration
with three non-self-consistent inner iterations. Runs of Qbox on
9418 nodes on Trinity, with an input of 8,800 atoms were
compared to 6,144-node baseline run on Cielo with an input of
2880 atoms. The computation complexity grows as the cube of
the number of atoms. This gave a complexity increase of 166.37.
The run time ratio was measured to be 0.208, resulting in a CI
metric value for Qbox of 34.7.

Figure 3 summarizes the measured CI performance for each of
the Tri-Lab applications and the average of the three
applications. The achieved average CI performance of 14.517
exceeds the target of 4.0 set for Phase 1. Investigations on
performance optimizations with input parameter changes and run
time optimizations such as threads per MPI rank and MPI task
rank ordering are available in [9].

2) Sustained System Performance(SSP) benchmarks
A second performance goal was a target System Sustained
Performance (SSP) of 400. SSP [8] is computed using the
geometric mean of the run time of eight application benchmarks
at various scales as shown in Table 1. The measured performance
on Trinity running these applications was 500.

Trinity Cl performance relative to Cielo; Target
=4.0
100.0
8
¥ 34.700
=
<
g
E 14.517
>
o4
s 100
E
P 4.842
g 4.009
©
g I I
(=]
€
[}
-8
1.0 ;
Sierra Nalu Qbox PARTISN Average Cl

Figure 3: Trinity Capability Improvement Performance

Table 1: Trinity System Sustained Performance (SST) results

Application Name MPI Tasks Threads |Nodes Used| Reference Tflops Time (seconds) Pi
miniFE(Total CG Time) 49152 1 1536 1065.151 49.5116| 0.014005964
miniGhost(Total time) 49152 1 1536 3350.20032 1.776+01| 0.122949267

AMG(GMRES Solve wall Time) 49152 1 1536 1364.51 66.233779| 0.013412384
UMT(cumulativeWorkTime) 49184 1 1537 18409.4 454.057| 0.026378822
SNAP(Solve Time) 12288 2 768 4729.66 1.776+02] 0.034793285
miniDFT(Benchmark_time) 2016 1 63 9180.11 377.77| 0.385726849
GTC(NERSC_TIME) 19200 1 300 19911.348 868.439| 0.076425817
MILC(NERSC_TIME) 12288 1 384 15036.5 393.597| 0.099486409
Geom. Mean=| 0.052990429

ssp=| 500.0176846

As part of acceptance, some of the SSP applications were run
at near full scale using “extra-large” inputs. This performance
data together with important micro-benchmarks like OMB, SMB,
STREAM, IOR, and PSNAP provide important insights into
Trinity performance. These are discussed in [9].

B. File System Performance

The Trinity parallel file system is implemented using the
Lustre-based Cray Sonexion 2000 product. The file system is
divided into two equally sized scratch file systems. Phase 1
consists of approximately one-half of the LNET routers, thus
bandwidth performance is expected to be one-half of the fully
deployed phase 2 system. As part of acceptance, optimally tuned
IOR benchmark runs were defined to achieve maximum
performance. Maximum performance was evaluated while
scaling stream counts per OST and processor counts per node.
The benchmark was run against both scratch file systems to
verify functionality and performance. File-per-processor (N-N)
IOR runs exhibited performance of 600 GiB/s using 8 streams per
OST and 2 processors per node . Optimally tuned shared file (N-
1) IOR runs yielded performance of 350-400 GiB/s using 32
processors per node and a transfer size of 8MiB. The file was
targeted to a Lustre directory striped nearly full OST count wide
with a Lustre stripe size of 8M to match the transfer size.

Performance sweeps and IOR tuned to match application

N-N Write

450
400 B
350 BRI
300 EE B
250 IR Ei

200 W EN “4M Transfer Size

150 B BB
100 | % 8M Transfer Size
50 T

0 -

GiB/s

N F 0 O N F 0 OV N F © O
M O N 1N —H N ¥ O O 0 O ™
— N 1N © O O W M N W

— N < © O N 0

- oM O

Processor Count

Figure 4: Trinity N-N write performance

N-N Read

“4M Transfer Size

& 8M Transfer Size

N ¥ 0 O N F © O N F © O
M O N 1N = N F O O 0 O ™
— N 1N ©O O O = oM N

- N ¥ 0 © N W

- oM O

Processor Count

Figure 5: Trinity N-N read performance

patterns are shown in Figures 4 through 7. The tests were
configured to write 1GiB per processor and were executed on one
of the two scratch file systems. Figure 4 shows file-per-processor
(N-N) write results using 32 processors per node and transfer
sizes of 4MB and 8MB. Peak performance of 401 GiB/s
occurred at the 32K and 64K processor count. Read performance
peaked at 420GiB/s at a processor count of 64K, as shown in
Figure 5.

It should be noted that these plots do not necessarily represent
peak performance. In some cases, the rates shown are 15% lower
than previous identical runs. A post analysis showed that the file
system problems did exist during the execution of the tests.

The phase 1 acceptance test included a test to dump 0.8TB in
20 minutes. This test was successful using IOR N-N targeting
both file systems simultaneously. The rates obtained were 686
GiB/s for write and 572GiB/s for read. This test used the optimal
8 streams per OST and 2 processors per node configuration
described previously.

The next set of performance sweeps were based on the N-1
strided 1/O pattern. The target Lustre directory was striped full
OST count wide and the stripe size was configured to match the
IOR transfer size. Figure 6 shows N-1 write performance as the
processor count is scaled. Peak N-1 performance of 301 GiB/s
occurred at a processor count of 64k and using a 4MiB transfer
size. Figure 7 shows the corresponding read performance.

N-1 Write
350
300 [—
250 -
<200 N
a
& 150 — ~ W4M Transfer Size
100 | 48M Transfer Size
50 B
0 -
N S 0O O N ¥ OO N T O O
M O N I - N F O O 0 O m
- N 1N O O O = MmN W1
— N ¥ 0 © N
- M O
Processor Count
Figure 6: Trinity N-1 write performance
N-1 Read
350
300 —
250 -3
<L 200 EE B
[
S 150 EEE D
100 s I . “4M Transfer Size
50 - E R B & 8M Transfer Size
0 -
N 0 O N F O OV N F 0 O
M VW N 1N = N ¥ O O © O ™M
- N 1N © O O = MmN W
— N ¥ 00 O N 0
- M O
Processor Count

Figure 7: Trinity N-1 read performance

Performance peaked at 330 GiB/s at a processor count of 64K.

To gain insight on the impact of Lustre DNE[11], metadata
performance was measured using mdtest targeting directories
hosted by all Metadata Servers (one directory per Metadata
Server). Results are shown in Figure 8. The goal of the test was
to create, stat, and delete 1 million files while varying processor
count. This test was run during acceptance and yielded peak
create, stat, and delete rates of 172k ops/s, 458k ops/s, and 259k
ops/s respectively.

Metadata Performance Using DNE (10
directories)

500000

450000

400000

350000

g 300000

(J -

E 250000 M File Create

© 200000 uFile Stat
150000 File Remove

A AR EREEE

0
1000 2000 5000 10000 50000 100000 200000

Processor Count

Figure 8: Trinity metadata performance

IV. BURST BUFFER INTEGRATION AND PERFORMANCE

A. Design

Trinity includes the first large scale instance of on-platform
burst buffers using the Cray DataWarp® product. The Trinity
burst buffer is provided in two phases along with the two phases
of Trinity. The phase 1 burst buffer consists of 300 DataWarp
nodes. This is expanded to 576 DataWarp nodes by phase 2. In
this section, unless otherwise noted, the phase 1 burst buffer will
be described.

The 300 DataWarp nodes are built from Cray service nodes,
each with a 16 core Intel Sandy Bridge processor and 64
gigabytes of memory. Storage on each DataWarp node is
provided by two Intel P3608 Solid State Drive (SSD) cards. The
DataWarp nodes use the Aries high speed network for
communications with the Trinity compute nodes and for
communications with the Lustre Parallel File System (PFS) via
the LNET router nodes.

Each SSD card has 4 TB of capacity and is attached to the
service node via a PCI-E x4 interface. The SSD cards are over-
provisioned to improve the endurance of the card from the
normal 3 Drive Writes Per Day (DWPD) over 5 years to 10
DWPD over 5 years. This reduces the available capacity of each
card. The total usable capacity of the 300 DataWarp nodes is 1.7
PiB.

The DataWarp nodes run a Cray provided version of Linux
together with a DataWarp specific software stack consisting of an
enhanced Data Virtualization Service (DVS) server and various
configuration and management services. The DataWarp nodes
also provide a staging function that can be used to
asynchronously move data between the PFS and DataWarp.
There is a centralized DataWarp registration service that runs on

one of the Cray System Management nodes. Compute nodes run
a DVS client that is enhanced to provide support for DataWarp.
The DataWarp resources can be examined and controlled via
several DataWarp specific command line interface (CLI) utilities
that run on any of the system’s nodes.

DataWarp can be configured to operate in a number of
different modes. The primary use case at ACES is to support
checkpoint and analysis files, these are supported by the striped
scratch mode of DataWarp. Striped scratch provides a single file
name space that is visible to multiple compute nodes with the file
data striped across one or more DataWarp nodes. A striped
private mode is additionally available. In the future, paging space
and cache modes may be provided. This section will discuss
LANL’s experience with striped scratch mode.

A DataWarp allocation is normally configured by job script
directives. Trinity uses the Moab Work Load Manager (WLM).
The WLM reads the job script at job submission time and records
the DataWarp directives for future use. When the requested
DataWarp capacity is available, the WLM will start the job. Prior
to the job starting, the WLM uses DataWarp CLI utilities to
request instantiation of a DataWarp allocation and any requested
stage-in of data from the PFS. After the job completes, the WLM
requests stage-out of data and then frees the DataWarp allocation.
The stage-in and stage-out happen without any allocated compute
nodes or any compute node involvement. The DataWarp
allocation is made accessible via mount on only the compute
nodes of the requesting job. Unix file permissions are effective
for files in DataWarp and are preserved by stage-in and stage-out
operations.

A DataWarp allocation is normally only available for the life
of the requesting job, with the exception of a persistent DataWarp
allocation that may be accessed by multiple jobs, possibly
simultaneously. Simultaneous access by multiple jobs is used to
support in-transit data visualization and analysis use cases.

B. Integration

Correct operation of DataWarp in conjunction with the WLM
was achieved after several months of extended integration testing
on-site at LANL. Numerous fixes and functional enhancements
have improved the stability and usability of the DataWarp feature
on Trinity. Due to this effort, production use of DataWarp has
been limited as of late April, 2016.

C. Performance

All performance measurements were conducted with IOR. The
runs were made with:

* 1 reader or writer process per node

* 32 GiB total data read or written per node

e 256,512 or 1024 KiB block size

¢ Nodes counts from 512 to 4096

¢ The DataWarp allocation striped across all 300

DataWarp nodes

These characteristics were selected to approximate the 10
patterns expected when applications use the HIO library.
Additional investigation and optimization of 10 characteristics is
needed. Results are shown in Figures 9 through 12.

N-N DataWarp Write Max

DataWarp N-1 Max Read

1000
800 — -
8 600 -
E 400 w256k
© 512k
200 - = 1024k
0 -

512 1024 2048 4096

Nodes

512

1024 2048 4096
Nodes

1000
800 B
8 600 — -
E} 256k
& 400
© “512k
200 1024k
0
512 1024 2048 4096
Nodes
Figure 9 - DataWarp N-N Write Speed
N-N DataWarp Read Max
1200
1000
o 800 B
2
g 600 — - L 256k
© 400 w512k
200 - £1024k
0 -
512 1024 2048 4096
Nodes
Figure 10 - DataWarp N-N Read Speed
DataWarp N-1 Max Write
600
L256k
K512k
£1024k

Figure 11 - DataWarp N-1 Write Speed

Figure 12 - DataWarp N-1 Read Speed

V. SYSTEMS MANAGEMENT AND INTEGRATION

A. ACES/Cray Collaboration

ACES and Cray have been collaborating on the
Rhine/Redwood (CLE 6.0/SMW 8.0) software release while it
was still in active development and through several beta releases
until the release of UP00O in December 2015. This collaboration
is unprecedented for Cray and it has proven to be very
successful. As new releases of CLE 6.0/SMW 8.0 became
available, system administrators at ACES would install, test, and
give feedback directly to the developers. Through this tightly
coupled collaboration, Cray was able to deliver a more refined
and administrator friendly version of both the CLE and the
SMW management tools because of the exposure of this product
to a customer in the field. More often than not, the developer’s
implementation on an internal system in a controlled
environment is not always adaptable to the customer managing a
Cray machine at a site. Because of the close relationship with
Cray, the ACES administrators had a rapid feedback cycle. The
early use of CLE 6.0 at LANL uncovered a variety of bugs and
design issues, as well as producing several new ideas which
improved the eventual deployment on Trinity. This collaboration
also provided invaluable experience to the ACES system
administrators who would eventually support Trinity in
production.

B. Early Experience with Rhine/Redwood

Trinity is the first Cray system to deploy the new CLE
6.0/SMW 8.0 system management software. This release pair is
a complete redesign and modernization of the software stack,
positioning Cray closer to industry standards than ever before.
However, this new design brings new challenges. At the heart of
Rhine/Redwood is an advanced ‘configurator’ which, paired with
the Ansible configuration management utility, handles the
complete prescription of all system components - from SMW to
compute and even external login nodes. The ACES systems team
has worked extensively with Cray to refine and guide the
development of CLE 6.0/SMW 8.0 (6.0/8.0) codenamed
Rhine/Redwood (R/R) so that it is functional, scalable, and its
system management is automatable. The ACES team has also
strived to see that the new release would be a more robust

product for the larger Cray administrator community. The work
in this section describes the administrative decisions made by the
ACES team and how our implementation provides system
stability and consistency, reducing downtime and improving the
user experience.
1) Pre-Release Evaluation and Preparation

The ACES team received a beta release of 6.0/8.0 in early
June 2015 and installed it on a Test and Development System
(TDS). Our experience with the initial install itself was difficult
for a variety of reasons. The system management philosophy is
radically different under 6.0/8.0 than with previous versions,
making the learning curve for this new release difficult. A
significant amount of time is required to perform the first install
of Rhine/Redwood on a system that has never before seen the
stack, even on a small TDS like ours. This is due to the fact that
there is no upgrade process from the previous 5.x/7.x version to
6.0/8.0. The SMW and boot RAID are required to be reformatted
and reconfigured for the new version. Once the base install of the
SMW is completed, the new system must be defined using the
configurator’s “question and answer” text-based interface. This is
a tedious process in which the administrator must specify, by
hand, many of the details of the system’s configuration, such as
its entire network profile. The ACES team provided significant
feedback to Cray on the issues that were encountered and feature
requests to be included in future releases many of which were
already in the process of being implemented in Cray’s
development release.

With subsequent releases of 6.0/8.0, new features were
added such as worksheets. Worksheets allow the administrator to
pre-configure the system’s detail and then import those
configurations into the configurator tool. These worksheets can
then be used moving forward if the SMW would ever need to be
reinstalled. Worksheets provide a mechanism to prepare for an
initial install of a system as well. If its worksheets are fully
populated, then most of the system will be prescribed on import,
greatly simplifying the initial install process. However, we have
learned there is still extensive work to be done after the initial
install and boot of the system. Even so, the ACES team could
quickly see the value in Rhine/Redwood’s new philosophy and
the flexibility that it provided. The removal of the shared root
space, the advent of customizable images, and the use of Ansible
plays to prescribe each node allow for much more flexibility and
scalability than the functionality that was previously provided in
5x/7.x.

2) Configuration Management

The ensuing work, post-install, was to learn how to effect
change onto the system. The administration team was faced with
the challenge of implementing its own configuration management
strategy or to somehow make use of Cray’s Ansible system to
apply changes. At first it was decided to try to supplement Cray’s
Ansible infrastructure to fully prescribe the machine. This initial
strategy proved to be the wrong path for a few reasons. First, if
there was an issue with any defined Ansible play it most likely
caused a failure in the boot process. The symptoms of these
errors would typically mislead the administrator into searching
for a system problem that had no association to the real Ansible
failure. Secondly, the administrators realized that adding
ancillary plays to Cray’s Ansible playbooks increased the overall
node boot time due to the additional burden of processing those
plays. Therefore, it was decided to restrict the number of plays to
be as few as necessary. Third, Cray’s Ansible framework is truly
intended to be run only once at boot time of the node. Execution
of the full playbook is a lengthy process and resource-intensive.

Therefore, a small subset of plays is selected to be run at a
specified interval to maintain the configuration of a node
throughout its lifecycle. Compute nodes are of even more
concern because, while it is desirable to keep them updated, the
overhead of running Ansible while jobs are executing is too high.
It is a widely accepted fact that OS and network jitter can have a
large impact on job performance. To mitigate this problem, the
ACES team decided to implement a lightweight, disjoint Ansible
play that would run in TORQUE’s epilogue after a job was
completed to update the node.

All of the challenges and issues with using the new CLE 6.0
software required a considerable amount of time and effort to
overcome. Initially there was very little documentation so
learning the new software consisted of trial and error, trying new
things to see what would break. Another pain point was that
Cray’s Ansible infrastructure would take control of certain
configuration files that are traditionally handled by the site’s own
configuration management strategy. The difficulty arises when
more than one player is found playing in the same sandbox. One
example of this is the management of the sshd service. Cray’s
Ansible play needs to configure the daemon at install time in
order to have a functional system. However, conflicts may
surface once the site decides to extend the customization of the
configuration that Cray prescribes. At what priority should site
plays be run when they conflict with vendor plays? How should
configuration incompatibilities between site and vendor be
handled? What about those configuration files whose content is
only partially prescribed and the site needs to extend the
prescription? Overcoming these issues is still an ongoing work
for the most part. Workarounds have been implemented to solve
many of these issues, but a better long-term strategy from Cray is
required.

3) External Login Nodes

Another new feature of the CLE 6.0 stack is the replacement
of the Bright Cluster Manager software used to provision the
esLogin nodes. Cray has deployed OpenStack on the
provisioning node, which is named the Cray System Management
Software (CSMS) system. The key feature of this change is that
the newly-named eLogin nodes are built from the same images
that the internal systems are built from. This allows for a
commonality between the system software and package versions
found in all image types. The programming environment (PE) is
also shared between the internal system and eLogin nodes.
Unfortunately, the security model of OpenStack, by default, is
not solid enough to meet the rigorous standards of the
Department of Energy. Cray and ACES have worked closely to
resolve these issues and help steer the CSMS product to have a
better security posture.

C. Integrating New Technologies

Along with the new CLE 6.0 / SMW 8.0 software stack,
Trinity is also deployed with some new hardware technologies.
One such is the Sonexion 2000, which is a Lustre appliance.
This Lustre deployment has been split into two equally sized
39PB file systems. One of the new features of the Lustre server
on the system is DNE[11] which allows for multiple metadata
targets (MDT) to distribute metadata performance across
multiple servers. The current implementation of this feature,
however, requires the manual placement of directories onto a
specific MDT, forcing decisions to be made a priori by the user
to take advantage of this feature. However, the ACES team has
not enabled user control over the placement of directories on a
specific MDT. This configuration will be controlled

administratively upon request since it is important to maintain an
even distribution of users across the platform.

Another new technology deployed on Trinity is Cray’s
DataWarp burst buffer solution. These SSD-endowed nodes
allow for an intermediary scratch file system to interpose
between the compute resource and parallel file system.
Integration of this technology into the machine has been another
one of the more difficult problems the administrators have faced.
The interaction between the workload manager, Moab, and the
DataWarp API has been an ongoing effort. Users need an on-
demand allocation of the DataWarp file system on a per-job
basis, along with a definition of the granularity and striping
across multiple burst buffer nodes to achieve maximum
performance. The complexities in scheduling these resources
and the multitude of DataWarp failure modes have caused a
variety of error scenarios that are difficult to recover from. The
administrators have encountered orphaned allocations from dead
jobs, and burst buffer nodes in a failed state. When these
problems arise, their solution is not always intuitive and the
recovery procedure is only now being documented to restore
functionality to the system. As the DataWarp project matures
however, and the Moab code improves to handle the scheduling
of these resources, the administrators expect many of these
failures to be handled more gracefully by the system. This will
eventually make the recovery and restoration of the DataWarp
service less burdensome.

D. Current Challenges

The current challenges that face the ACES administrative
team are reliable boots, DataWarp at scale, and monitoring.
Boot reliability is an ongoing issue, but is being actively
investigated by Cray engineers. Boot integrity is a source of
frustration for Cray administrators as well. All complete-system
boot failures carry a large opportunistic cost in valuable uptime
to users due to the necessity of the bounce, and route, which
accompanies each boot process. Other failure modes may occur
if the collection of Ansible plays malfunctions or is loath to run
at all. This can leave the end node in a state in which no remote
connectivity is possible. The only way to analyze such a failure
is to use xtcon to connect to the node and inspect its Ansible
logs. If a large set of nodes fail in this way, though, it is
extremely difficult to recover apart from a full system reboot.
Cray’s Scalable Services system affords a parallel boot process
by distributing configuration through various tiers, which are
ideally comprised of existing service nodes. There have been
obstacles with this composition in practice however, and
currently a small set of re-purposed compute nodes are required
to handle these duties. Cray has done extensive testing in this
area and found that there is a small set of frequently accessed
files that should be moved into the node’s RAM image to reduce
network load during boot. Compute nodes are being used for
this task because they have much more memory available for
Scalable Services to cache these distributed file systems. The
practice of stealing compute resources for this purpose is a
source of concern to the ACES team, but these issues are being
addressed and should be fixed soon.

Another challenge for the administrators has been deploying
and testing DataWarp at scale. There has been ongoing work
with Cray and Adaptive to fully deploy an end-to-end solution.
Many of the issues have arisen from the fact that ACES utilizes

an external host for the workload manager and does not run the
Moab server on the SDB. This has led to a number of
communication and timing faults with the scheduling and
management of DataWarp resources. Many of these issues are
exposed on the small TDS so much of the testing has not been
attempted at full scale on Trinity — yet another concern for the
ACES administration team. There has not been enough
exposure time to DataWarp and the Moab scheduler to be
comfortable recovering from the failure modes that might arise.
This will only be compounded when the system is in the
classified network where debugging these issues becomes a
serious effort.

Monitoring is another area in which much has been done in
preparation for the sheer volume of log and performance data
that Trinity will generate on a daily basis. Estimates are that
about 4TB of uncompressed data will flow from the machine per
day. Resiliency and failure tracking are a few of the many areas
of interest in these logs. Features such as enhanced MCA
logging [12] and SSD drive telemetry data [13] allow ACES to
track failures and component health of the system. Collection
and analysis of this aggregation of information has required the
ACES team to develop an external monitoring cluster simply to
store and process this bulk of data throughout the life of the
machine.

E. Continuing Collaboration

Cray and ACES both continue to collaborate on the security
and functionality issues that are encountered with this current
release version of CLE 6.0. The features and fixes provided in
CLE 6.0 UPO1 promise to be a great improvement over the
existing version and the ACES team is eager to begin testing it
out. This will also be the first public release of this product
which will expose it the entire Cray community, which will
invite more feedback and drive the product to maturity.
Software historically takes many revisions to improve in
functionality and reliability and the ACES team looks forward to
the continued development and improvements made to the Cray
software management stack.

VI. APPLICATION READINESS — CENTER OF EXCELLENCE

The Trinity Center of Excellence (COE) provides a
collaborative long-term relationship between subject matter
experts (SME) from Cray and Intel, with ASC codes teams, to
support the transition of key scientific applications to Trinity.
Applications from all three nuclear weapons laboratories were
identified, to focus COE activities and limited resources. These
multiphysics applications often have millions of lines of code and
have additional complexity, such as having many third-party
software dependencies and supporting computational campaigns
that are long-running with performance profiles that can change
drastically throughout the lifetime of the run or by input deck.

A wide range of computational motifs and approaches are
important to mission-class applications including hydrodynamics,
linear solvers, deterministic transport, Monte Carlo, molecular
dynamics, and material contact amongst others.

Trinity provides codes with advanced high-performance
computing resources, however reaping the benefits by using them
effectively is non-trivial and creates a number of challenges for
our code teams. Effective use of Trinity involves the on-node
challenges of the Knights Landing processor including: 1)

enabling (or not hindering) compiler vectorization with AVX-512
instructions; 2) increasing parallelism to use the increased
number of cores and threads; 3) identifying data structures that
will benefit from residing in high-bandwidth memory and
explicitly managing the memory hierarchy. In addition, the
composed Trinity system provides both challenges and
opportunities, such as 1) using the burst buffer to reduce I/O
overhead and enabling new workflow capabilities within a
simulation run, 2) scaling simulations to utilize the massive scale
of the system, 3) managing simulation data on the large parallel
file system, and 4) identifying new workflow/simulation
capabilities to use the heterogenous composition of Trinity with
two types of nodes.

Vendor SMEs in performance optimizations, tools, compilers,
and hardware work closely with code teams to address effective
use of Trinity resources. COE activities began well in advance of
receiving the system. COE activities include:

* SME integration into daily code team development
activities,

* Application exploration using vendor tools,

* Training, workshops and working groups to share best
practices, and

* Early access to hardware and software.

This section describes some of the activities during the early
period of the COE when Knights Landing processors were not
generally available. However, significant progress was possible
through collaborative application exploration to identify where to
focus application development efforts, proxy application
development to enable future collaborations, and early access to
hardware and software with direct feedback to vendors.

A. Collaborative Application Exploration

Collaborative application exploration, often called ‘deep
dive’, ‘hackathon’, or the Intel-centric terms ‘discovery’ and
‘dungeon’ sessions, are an invaluable opportunity to help prepare
code teams to adjust to more complex hardware environments.
These activities brings vendor SMEs together with application
developers to identify where to focus application development
and see the impact of real-time code changes with feedback and
collaboration with tools and performance experts.

The vendor SMEs bring the domain knowledge of the
hardware, compilers, and performance analysis tools. The DOE
developers bring the domain knowledge about the physics in the
source code, as well as the architecture, design, constraints, and
portability goals of the application.

Deep dive activities with Cray SMEs focused on larger
simulation studies using Craypat and Cray performance tools.
Deep dives used testbed systems with roughly 100 nodes and
eventually utilized the Trinity Phase 1 Haswell partition as it
became available. Since testbed systems are installed at NNSA
facilities, this opened the code exploration activity to export
controlled codes, which was extremely valuable to LANL code
development activities.

The Intel-led discovery and dungeon sessions focused on on-
node performance, with discovery sessions hosted at NNSA sites
and dungeons hosted at Intel sites. A discovery session is a one
or two day working session with a couple of Intel SMEs and
DOE code developers. The dungeon session is typically a week
long focused time, where application or library developers (from
the DOE) are partnered with performance analysts, library and
tool developers and compiler specialists from Intel. The time is
used to engage in intensive behavior and performance profiling of

existing codes using tools and a variety of performance counters.
The analysis results of these activities are then used to drive
exploratory code modification to address bottlenecks.

As part of the COE effort, LLNL developers participated
with Intel developers in two Discovery sessions. The goal of
these Discovery sessions was to broadly identify bottlenecks in
certain areas of a code. Both sessions provided useful insight to
the developers. In the first session, one of the limiting factors
was related to cross section data lookup — which was expected.
However, another hot spot was related to pipeline flushes. By
design, Monte Carlo code has a lot of branching, and branch
mis-prediction resulted in a large number of stalls, which limits
single core performance.

In the second Discovery session focused on different
applications, code teams specifically wanted to analyze the
efficiency of a certain abstraction of the OpenMP layer. They
quickly identified a series of print statements that were slowing
down the code unnecessarily using the Intel tools and removed
them in real-time to improve performance. During the session,
they observed an unexpected performance in the abstraction
layer. It was unclear if this was 1) a real issue with the
abstraction, 2) an issue with Intel Vtune itself in how it collects
data, or 3) an issue with the OpenMP run time library. A
dungeon session is scheduled to further investigate these issues.

The SNL developers participated in both discovery and
dungeon sessions as a natural evolution of the code exploration
process. Prior to the dungeon, discovery sessions were held to
gather performance profiles of the Sierra Mechanics engineering
analysis code suite. From these performance profiles, key areas
were identified to focus on for the dungeon session.

The focus of the SNL dungeon at Intel was on matrix
assembly and scalable linear solvers (domain decomposition and
multi-grid), and the underlying data structures of these
algorithms. Rather than extracting small code kernels for this
activity, which drastically shortens compile time and helps to
improve feedback from code changes, the SNL developers
brought a substantial portion of their software environment to
expose Intel SMEs to the real challenges faced by DOE
developers. These core components utilize the Kokkos parallel
performance portability abstraction library [20]. Initial findings
have shown slow dense-BLAS performance for very small matrix
operations — something previously unseen by both Cray and Intel
in many DOE benchmarks and mini-applications. In addition,
OpenMP tasking was found to be very limited in performance for
factorization kernels in the solvers. Performance issues found in
these studies are now being worked into future versions of math
libraries on the Trinity platform.

B. Proxy Applications

The development and use of proxy applications for Trinity
and future ATS machines provides key advantages. The proxy
application is designed to be freely distributable to vendors,
collaborators, other laboratories, and universities. The design of
the proxy application reflects the design of the larger application
that it represents. It is therefore not written to be the most
efficient source code for Trinity, but rather to represent the
current coding of a larger, portable application.

Quicksilver is an LLNL developed proxy application, which
reflects the physics and computer science of a larger Monte
Carlo transport code. It was developed as part of the COE effort
in preparation for porting code to Trinity and future ATS

machines. Quicksilver, and other proxy applications, provide a
manageable test bed to explore methods for refactoring a code
which may provide for better performance of the larger code
across a range of computer architectures. Approaches which
prove beneficial will then be implemented in both the proxy
application and the larger code.

Quicksilver is a freely distributable code, which solves a
simplified dynamic neutron transport problem. At 7000 lines of
code, it includes key computer science and physics features: It
may be compiled as a pure MPI or a hybrid MPI and threaded
code. It contains internal problem and mesh generation. Mesh
elements have 14 nodes and 24 faces. Mesh elements are single
material, and are assigned to domains using Voronoi
decomposition. Any number of domains (MPI ranks) are
supported. The default problem is a cubic source in the corner
of a cubic domain, but user defined geometry may consist of
any number of bricks and spheres, each with its own material
properties.

Quicksilver supports three reaction types: elastic scattering,
absorption, and fission. However as it is desired to simulate
materials with any number of reactions to investigate Trinity
hardware features and compilers, multiple copies of the three
basic types may be replicated so that each material may have
any number of reactions. Isotopes are used as an additional key
to the cross section data. They have no physical meaning, but
allow for the proxy app to simulate the larger code. Any number
of isotopes are supported. Cross section data is completely
synthetic, users may specify an arbitrary fourth degree
polynomial (in energy) to define cross sections. The number of
groups in the cross section tables and the source strengths may
be set at run time.

There are potential disadvantages of proxy applications. As
proxy applications are simplified from the original, they do not
completely represent the physics and computer science of the
original application. Memory access, cache usage, high-
bandwidth memory usage, threading, and vectorization are
difficult to exactly replicate in a smaller code. An approach
which looks promising in Quicksilver, may not perform as well
in the larger application. There is also a cost to develop and
maintain the proxy application. Still, evidence from proxy
applications used in other COE efforts show that the lessons
learned will pay back this investment.

C. Early Emulation Environments to Improve Levels of
Vectorization

A key determinant of performance for both the Haswell and
Knights Landing parts of Trinity is ensuring high levels of
vectorization (we note that a high proportion of compute
performance comes from both processor types having dual-
vector processor units). Since our users did not have access to
KNL hardware, we utilized Intel’s Software Development
Environment (SDE) for early programming environment
development [18]. While SDE does not provide accurate
performance timing information, the analysis information
provided does allow for detailed instruction breakdowns and
memory access behavior. In Figure 13 we show early
evaluations of the wuse of AVX-512 instructions in
unmodified/unoptimized codes for a range of mini-applications
and benchmarks compiled to run on Knights Landing. The use of

wide FMA, gather and scatter instructions are new for both
Haswell and KNL micro-architectures, AVX-512 is new for
KNL only. We have provided the SDE information back to our
development activities, ahead of having access to KNL, to
ensure we focus on, and improve, the levels of vectorization
being achieved.

D. Early Evaluation of Compiler Toolchains

During the last three years, research staff preparing codes for
Trinity systems have been engaged with both Intel and Cray
compiler teams to ensure that bugs in the compiler tool chains
and resulting code performance are addressed earlier than in
previous procurements. There has been a particular focus on
OpenMP runtime performance for Haswell, and work is starting
to perform similar assessments on Knights Landing test systems.
We are pleased to report significant improvements in support
for C++, particularly C++11, on the most recent edition of the
Cray compiler environment. Using the full multi-physics
applications have also helped to identify compiler issues that
were only exposed when compiling very large and complex
applications. Very lengthy (hours) compile and link times and
reduced performance optimization are a common issue for the
larger codes. Improvements in the compiler’s ability to optimize

100% =
Logical
2 -
£ 80% Branching
2 .
2 B Mask Handling
= 60%
g Scatter
'5 40% Gather
=
= ®Data M
E 20% ata Move
= . Vector FMA
0% N ! < \2‘ W AVX-512
G &
le% g§ QSQ’ & ¥ \fo B AVX-Std
& <9

Figure 13 - AVX-512 Vectorization Levels in DOE Benchmarks
and Mini-Apps

through multiple layers of abstractions have significantly
benefited the overall performance.

E. Next Steps

Early COE activities created much needed collaborations
between vendor SMEs and DOE application developers and
paved the way for more rapid progress. COE activities will
escalate over the next couple of years as access to Knights
Landing processors becomes available, the programming
environment and tools provide full KNL functionality and
performance and become more stable, and Trinity is finally
delivered and open for production simulations. Code teams are
carefully balancing performance optimizations targeted for
Trinity, while keeping an eye toward performance portability, so
that codes can utilize ATS-2 ‘Sierra’, a GPU-enabled system in

the 2018 time frame [21], and future exascale systems in the
2023 time frame[22].

VII. ACKNOWLEDGEMENT

THIS WORK WAS CARRIED OUT UNDER THE AUSPICES OF THE
NATIONAL NUCLEAR SECURITY ADMINISTRATION OF THE US
DEPARTMENT OF ENERGY AT LOS ALAMOS NATIONAL
LABORATORY SUPPORTED BY CONTRACT NO DE-ACS52-
06NA25396 AND SANDIA NATIONAL LABORATORIES SUPPORTED
BY CONTRACT NO DE-AC04-94AL85000..

REFERENCES

[1] https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement

[2] D. Doerfler, M. Rajan, C. Nuss, C.Wright, and T.Spelce, “Application-
Driven Acceptance of Cielo, an XE6 Petascale Capability Platform,” CUG
2011, May 23-26 2011, Fairbanks, Alaska

[31 M. Rajan, C.T. Vaughan, D.W. Doerfler, R.F. Barrett, P.T. Lin,
K.T.Pedretti, and K.S. Hemmert, ”Application-driven Analysis of Two
Generations of Capability Computing Platforms: Purple and Cielo,”
Computation and Concurrency: Practice and Experience, 2012.

[4] http://www.sandia.gov/asc/integrated codes.html

[51 https://github.com/spdomin/Nalu

[6] Randal S. Baker and Kenneth R. Koch,"An Sn Algorithm for the
Massively Parallel CM---200 Computer", Nucl. Sci. and Eng., Vol. 128,
pp- 313-320 (1998)

[7] http:/gboxcode.org.

[8] https://www.nersc.gov/users/computational-systems/cori/nersc-8-

procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/ssp/

(9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

(21]
[22]

N. Wichmann, C. Nuss, P. Carrier, R. Olson, S. Anderson, M. Davis, R.
Baker, E. Draeger, S. Domino, A. Agelastos, and M. Rajan, “Performance
on Trinity (a Cray XC40) with Acceptance-Applications and Benchmarks,”
CUG 2016, May 8-11, 2016, London, UK.
https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

http://pubs.cray.com/#/Collaborate/00258285-FA/FA00258300/Distributed
Namespace (DNE) Feature

http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/enhanced-mca-logging-xeon-paper.pdf

http://www.intel.com/content/dam/support/us/en/documents/ssdc/ssd-
software/Intel SSD DCT_3_0_x_User Guide.pdf

https://github.com/trilinos

https://www.nersc.gov/users/computational-systems/cori/nersc-8-
procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/

http://pubs.cray.com/#/Collaborate/00258285-FA/FA00258300/Distributed
Namespace (DNE) Feature

http://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/enhanced-mca-logging-xeon-paper.pdf
http://www.intel.com/content/dam/support/us/en/documents/ssdc/ssd-
software/Intel SSD DCT 3 0 x User Guide.pdf

Bach, M., Charney, M., Cohn, R., Demikhovsky, E., Devor, T.,
Hazelwood, K., Jaleel, A., Luk, C.K., Lyons, G., Patil, H. and Tal, A.,
2010. Analyzing parallel programs with pin. Computer, 43(3), pp.34-41

https://github.com/kokkos
https://asc.lInl.gov/CORAL/

[http://www.exascaleinitiative.org/pathforward

