
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Performance Monitoring using Pecos

2016 PV System Symposium

Santa Clara, CA, May 10, 2016

Katherine A. Klise

Sandia National Laboratories, Albuquerque, NM

SAND2016-4303C



Overview

2

 Why use Pecos?
 Collect large amounts of data on 

multiple systems and locations

 Run automatic quality control tests on 
that data

 Alert system operators when the 
system has changed

 Generate reports

 Collect performance statistics to track 
long term system health

 Compare system performance across 
sites

 Pecos was developed specifically 
for solar photovoltaic system 
monitoring, but it can be 
customized for other applications

TOA5 CR1000 46385 CR1000.Std.24

CPU:ABQ_RTC_M
ET_2013_03_21.C

R1 58869 DataOut

TIMESTAMP
Global_Wm2_A

vg
Direct_Wm2_A

vg
Diffuse_Wm2_

Avg
Pressure_mBar_A

vg
WS_ms_M

ean Wdir_Mean

TS Deg

Avg Avg Avg Avg WVc WVc

3/26/2013 0:00 -1.16195 -0.45458 0 832.121 6.338 135.7

3/26/2013 0:01 -1.14918 -0.5455 0 832.123 5.8 136.4

3/26/2013 0:02 -1.14918 -0.52277 0 832.106 5.988 131.2

3/26/2013 0:03 -1.14918 -0.45458 0 832.0875 6.838 139.6

3/26/2013 0:04 -1.14918 -0.45458 0 832.0799 6.825 136.8

3/26/2013 0:05 -1.14918 -0.45458 0 832.0693 6.775 137

3/26/2013 0:06 -1.14919 -0.40155 0 832.0547 6.825 135.2

3/26/2013 0:07 -1.14919 -0.31063 0 832.0114 6.85 137.4

3/26/2013 0:08 -1.14921 -0.46217 0 832.0062 7.013 136.3

3/26/2013 0:09 -1.14922 -0.45459 0 832.0159 7 135.1

3/26/2013 0:10 -1.14922 -0.45459 0 832.0093 6.063 136.4

3/26/2013 0:11 -1.14921 -0.45459 0 832.0027 6.825 134.6

3/26/2013 0:12 -1.14921 -0.45459 0 831.9932 6.813 135.8

3/26/2013 0:13 -1.14921 -0.36367 0 831.9811 6.65 137.2

3/26/2013 0:14 -1.14921 -0.28791 0 832.0098 7 137.1

3/26/2013 0:15 -1.14921 -0.45459 0 832.0153 6.738 138.6

3/26/2013 0:16 -1.1492 -0.45459 0 831.9963 6.613 141.1

3/26/2013 0:17 -1.1492 -0.60612 0 832.0099 6.125 139.8

3/26/2013 0:18 -1.1492 -0.84099 0 832.0046 6.113 139.9

3/26/2013 0:19 -1.1492 -0.56066 0 832.0168 5.713 140.9

3/26/2013 0:20 -1.14919 -0.62884 0 832.0386 6.388 141.2

3/26/2013 0:21 -1.14919 -0.90917 0 832.0237 5.313 137.4

3/26/2013 0:22 -1.16196 -0.90917 0 832.0577 5.85 138.4

3/26/2013 0:23 -1.20026 -0.90159 0 832.036 5.7 140.1

3/26/2013 0:24 -1.2258 -0.77279 0 832.0469 6.5 141.2

3/26/2013 0:25 -1.14919 -0.53792 0 832.0455 5.963 139.3

3/26/2013 0:26 -1.14919 -0.45458 0 832.0388 6.388 135.4

3/26/2013 0:27 -1.14919 -0.45458 0 832.0197 6.275 138.8

3/26/2013 0:28 -1.14919 -0.44701 0 832.0442 6.538 135.1

3/26/2013 0:29 -1.1492 -0.45459 0 832.0578 6.6 139.3

3/26/2013 0:30 -1.14921 -0.54551 0 832.0469 5.638 139.3



Software Framework

3

 Open-source python package 
 Revised BSD License

 Software repository
 https://github.com/sandialabs/pecos

 Documentation 
 http://pecos.readthedocs.org

 Software testing results
 https://travis-ci.org/sandialabs/pecos

 https://coveralls.io/github/sandialabs/pecos

 ‘Getting started’ examples included with 
the software
 simple

 pv

 metrics

 dashboard

Pecos
modules

monitoring  base class used to run
quality control tests and store results

io  read data and write results to 
files/HTML formatted reports

metrics  compute performance 
metrics to track system health

graphics  format graphics for reports

utils  helper functions

pv  custom methods for PV 
applications

https://coveralls.io/github/sandialabs/pecos
https://coveralls.io/github/sandialabs/pecos
https://coveralls.io/github/sandialabs/pecos
https://travis-ci.org/sandialabs/pecos
https://travis-ci.org/sandialabs/pecos
https://travis-ci.org/sandialabs/pecos
https://travis-ci.org/sandialabs/pecos
https://travis-ci.org/sandialabs/pecos
http://pecos.readthedocs.org/
http://pecos.readthedocs.org/
https://github.com/sandialabs/pecos
https://github.com/sandialabs/pecos
https://github.com/sandialabs/pecos


Installation

4

 Required dependencies
 Python 2.7

 pandas

 numpy

 matplotlib

 Optional dependencies
 pvlib

 pyyaml

 win32com

 nose 

 Build pecos from source
git clone https://github.com/sandialabs/pecos 

cd pecos

python setup.py install

 Install latest release using pip
pip install pecos



- Load database into a Pandas DataFrame
- Pandas includes methods to load time 

series data from files
- Pecos includes a method to load data 

from Campbell scientific formatted file

- Time series analysis with Pandas
- Statistics (i.e. sum, mean, max)
- Rolling window (i.e. moving average)
- Percent change
- Correlation
- Upscale/downscale 
- Fill/interpolate missing data
- Merge multiple databases
- Slice according to time and/or attribute
- Datetime functionality (timestamp strings, 

timezones)

- Add DataFrame to the PerformanceMonitoring
class

df = pd.from_excel(…)
df = pecos.io.read_campbell_scientific(…)

pm = pecos.monitoring.PerformanceMonitoriong()
pm.add_dataframe(df, ‘name’)

- Raw data column names can be renamed to 
common names for analysis

- Data columns can be grouped

trans = {
DHI: [Diffuse_Wm2_Avg],
DNI: [Direct_Wm2_Avg],
GHI: [Global_Wm2_Avg],
AC Voltage: [Sys1Vac_Avg, Sys2Vac_Avg],
AC Current: [Sys1Iac_Avg, Sys2Iac_Avg],
AC Power: [Sys1Wac_Avg, Sys2Wac_Avg]}

pm.add_translation_dictionary(trans, ‘name’)

pm.df[pm.trans[‘DHI’]]

Basic Workflow

5

Load time series data
From excel, csv, etc

Define system variables 
Translate data column names to 

common names

Define time filter
Conditional statement

Perform quality control tests
Timestamp errors

Missing data or corrupt data
Data out of range

Increment out of range

Compute metrics
Quality control index

Add composite signals
Relationship between data columns

Generate reports
HTML reports, csv results, metrics 

history

- Exclude specific timestamps from quality control 
tests

- Built in methods to extract clock time and 
elapsed time

- Compatible with pvlib sunposition calculations

clock_time = pm.get_clock_time() 
time_filter = (clock_time > 3*3600) &

(clock_time < 21*3600)
pm.add_time_filter(time_filter)

solpos= pvlib.solarposition.ephemeris(index, 
latitude, longitude)

time_filter = solpos['elevation'] > 10 
pm.add_time_filter(time_filter)

- Create new data from existing data

- Add modeled data values or relationships 
between data columns

- Composite signals can be used in the quality 
control tests

elapsed_time = pm.get_elapsed_time() 
wave_model = np.sin(10*(elapsed_time)) 
wave_model.columns=['Wave Model'] 
pm.add_signal('Wave Model', wave_model)

model = pecos.pv.basic_pv_performance_model(…)
mod = model['p_mp']
obs = pm.df[pm.trans['DC Power']]
RE = (np.abs(obs - mod))/obs
pm.add_signal('DC Power Relative Error', RE)

- Quality controls tests fall into five categories
- Timestamp test 
- Missing data test
- Corrupt data time
- Range test
- Increment time

- When a test fails, information is stored in a 
summary table. 

- System name
- Variable name
- Start date
- End date
- Number of time steps
- Error flag

- For each test, the minimum number of 
consecutive failures can be specified

pm.check_timestamp(…)
pm.check_missing(…)
pm.check_corrupt(…)
pm.check_range(…)
pm.check_increment(…)

pm.test_results

- Track performance of time series data over time

- General metrics
- Quality control index
- RMSE
- Time integral

- PV metrics
- Energy output
- Insolation
- Performance ratio
- Performance index
- Energy yield
- Clearness index

- Metrics can be appended to a results file

pecos.metrics.qci(…)
pecos.pv.performance_ratio(…)
pecos.io.write_metrics(…)

- Monitoring reports (html) include
- Custom graphics
- Table and graphics of test results
- Performance metrics

- Test results file (csv) includes
- System/variable name
- Start and end time of failure
- Number of time steps involved
- Error flag

- Performance metrics file (csv) includes
- Running history of daily stats

- Dashboards (html) includes
- System summary 
- Link to monitoring report

pecos.io.write_monitoring_report(…)
pecos.io.write_test_results(…)
pecos.io.write_metrics(…)
pecos.io.write_dashboard(…)



Basic Example

6

 simple_example.py
 The data includes missing timestamps, duplicate timestamps, non-

monotonic timestamps, corrupt data, data out of expected range, data 
that doesn’t change, and data that changes abruptly.

 A = elapsed time in days

 B = uniform random number between 0 and 1

 C = sin(10*A)

 D = C+(B-0.5)/2



PV Workflow

7

Load time series data
Campbell scientific file format, 

merge electrical and weather data

Define system variables 
i.e. GHI = Global_Wm2_Avg
String current = [Str1Idc_Avg, 

Str2Idc_Avg]

Define time filter
Related to solar position and/or 

irradiance conditions

Generate a model 
Predicted performance using a pvlib

model

Perform quality control tests
Timestamp errors

Missing or corrupt data
Data out of range

Increment out of range

Compute metrics
Quality control index
Performance index

Energy yield
etc

Add composite signals
i.e. Total string current, inverter 
efficiency, normalized efficiency

Generate reports
Detailed monitoring reports 
Performance metrics history

Dashboards

Perform additional quality 
control tests 

Data out of range
Increment out of range

Add additional composite 
signals to compare the model 

to the data
i.e. Relative error in power output



PV Examples

8

 pv_example.py
 YAML configuration file

 Electrical and weather data

 Time filter based on sun 
position

 pvlib performance model and 
metric

 metrics_example.py
 Track long term system health

 Performance metrics from 
daily analysis



Dashboard Example

9

 dashboard_example.py
 Compare performance of several 

systems

 Generic dashboard

 Includes text, graphics, table and link



Future Development

10

 Integration with IEC 61724
 Photovoltaic system performance monitoring - Guidelines for measurement, data 

exchange and analysis

 Four types of filters
 Range, missing data, dead value , abrupt change

 Example quality control tests
 Power sensor is out of range if the value < -0.01*rating or > 1.02*rating

 Irradiance sensor is dead if the derivative < 0.0001 W/m2 while value > 5 W/m2 (15 
minute data)

 Temperature sensor is erratic if the derivative > 4 C (15 minute data)

 Precision requirements (Class A,B,C)

 Data binned into times when inverters were on line and off line

 Account for calibration accuracy

 Integrate performance model, compare expected power with measured 
power

 Compute metrics (performance ratio, power performance index, …)


