

# A Text Mining and Information Extraction Tool for Unstructured Data

SAND2016-4133C

Arthur McDonald   Lanny Gilbertson   Tim C'de Baca

Advanced Software Engineering  
Sandia National Laboratories

National Laboratories Information Technology Summit, 2016



# Outline

## 1 Motivation

- The Problem

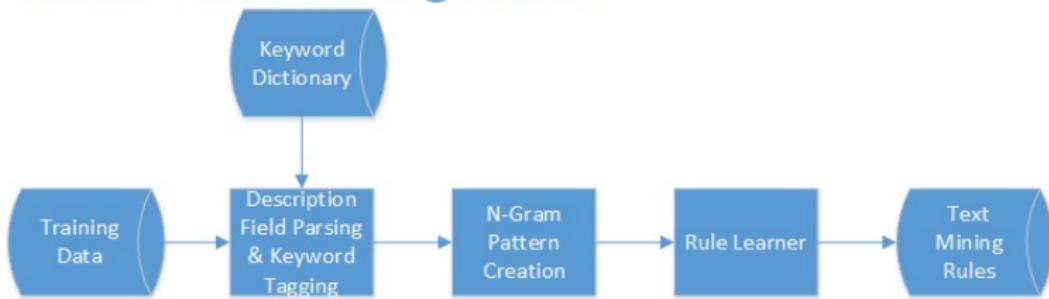
## 2 Our System

- FAA Natural Language Processor
  - Rule Learning
  - Data Extraction

## 3 Summary

- Future Work

# The Problem - Transport Aircraft Risk Assessment


- Defines a process for calculating risk in transport aircraft design.
- Uses the conditional probability that the occurrence of a fatigue crack will Not be Detected (ND).
- Defects (crack, corrosion, dent, etc.) are submitted to FAA by carriers in Service Difficulty Reports (SDRs).
- Approx. 1.4 million SDRs submitted since 1974.
- Report entry has no standardized required format. Technicians enter the data in an unstructured description field (text).
- Initial work involved manually sorting/searching SDR records for crack information - tedious and time consuming.
- FAA approached Sandia Labs for a software solution.

# The Problem - Information Extraction


- Approximately 5% of the SDR records have CrackLength column populated in database.
- Other 95% may or may not have crack length data in the unstructured Description field.
- How to find and extract this data?
  - Not an easy task - can not simply use SQL 'LIKE' statements or Regular Expressions.
  - Description field written in natural language by human technicians
    - Different variations of short-hand, misspellings, different units of measurement, etc.
- Solution: use natural language processing, machine learning, and text mining.

# The Process

## Learn Text Mining Rules



## Extract Data



# Sentence Parsing

- Split the sentence into tokens, using a set of delimiter characters.
- Remove stop words
- Tag each token based on a keyword dictionary.
  - Tokens are considered "unknown" if not in dictionary.

# Sentence Parsing

- Create N-Grams from the sentence.
  - 4-Grams for the sentence "The quick fox jumped over the dog":
    - The quick fox jumped
    - quick fox jumped over
    - fox jumped over the
    - jumped over the dog
- From each N-Gram, we now have a pattern using the tagged tokens.

# Sentence Parsing

## Example:

FOUND A 2 INCH CRACK AT OUTBOARD END OF RT  
HORIZONTAL STABILIZER

```
<found>FOUND</found> <num>2</num> <inch>INCH</inch>
<crack>CRACK</crack> <loc>OUTBOARD</loc> END
<loc>RT</loc>HORIZONTAL<struct>STABILIZER</struct>
```

# Other Sentence Pre-processing

- Convert number words into values:

ONE → 1

- Parsing tokens for inch markers:

1" → ⟨num⟩1⟨/num⟩ ⟨inch⟩INCH⟨/inch⟩

- Converting fractions to doubles:

1/4 → 0.25

- Metric to U.S. standard conversion:

$x$  millimeters to inches ( $\frac{x}{25.4}$ )

$x$  centimeters to inches ( $\frac{x}{2.54}$ )

# Pattern Rule Learning

- 16,000 SDR records with CrackLength column populated - use as training examples.
- Parse training examples, tag words found in dictionary, and create N-Grams.
- For each N-Gram in the training example, if the N-Gram contains the CrackLength value, create a rule from that pattern.
  - If the rule already exists, then increase the occurrence count of that rule.
- Rule patterns created from FOUND A 2 INCH CRACK AT OUTBOARD END OF RT HORIZONTAL STABILIZER:
  - found num inch crack
  - num inch crack loc

## Rule Table:

|     | nlp_rule_id | pattern                   | type     | score   | created_from_sdr_id | occurs |
|-----|-------------|---------------------------|----------|---------|---------------------|--------|
| 277 | 4190        | crack num inch struct     | CRACKLEN | 0.96784 | 110745              | 873    |
| 278 | 4498        | unknown found num loc     | CRACKLEN | 0.96000 | 204569              | 24     |
| 279 | 5311        | found crack crack num     | CRACKLEN | 0.96000 | 855961              | 24     |
| 280 | 4477        | crack sizeattr equals num | CRACKLEN | 0.95652 | 194913              | 22     |
| 281 | 4688        | struct found crack num    | CRACKLEN | 0.95652 | 258101              | 22     |
| 282 | 4307        | num inch struct num       | CRACKLEN | 0.95360 | 159059              | 740    |
| 283 | 4348        | found num inch sizeattr   | CRACKLEN | 0.95238 | 161595              | 40     |
| 284 | 4893        | crack crack num inch      | CRACKLEN | 0.94285 | 335273              | 33     |
| 285 | 4411        | found unknown crack num   | CRACKLEN | 0.94244 | 173624              | 131    |
| 286 | 4853        | crack num struct unknown  | CRACKLEN | 0.94230 | 320573              | 49     |
| 287 | 4327        | found struct crack num    | CRACKLEN | 0.93769 | 160550              | 602    |
| 288 | 4316        | crack num sizeattr at     | CRACKLEN | 0.93750 | 160087              | 15     |

# Crack Length Rule Learning

---

**Algorithm 1** Crack Length Rule Learning Algorithm

---

```
1: procedure LEARNLENGTHRULE(Training example  $s$ , Sentence  $s$ )
2:    $crackLength \leftarrow sdr.CrackLength$ 
3:   for each N-Gram  $n \in s.ngrams$  do
4:     if  $crackLength \in n$  then
5:        $newRule \leftarrow n.pattern$ 
6:       if  $newRule \in RuleSet$  then
7:          $RuleSet(newRule).Occurs++$ 
8:       else
9:          $RuleSet \leftarrow RuleSet \cup newRule$ 
10:      end if
11:    end if
12:   end for
13: end procedure
```

---

# Rule Scoring

- After rule pattern discovery, run each rule on the training examples to check if it covers the example.
- Assign a score for each learned rule:

$$Score(rule) = \frac{rule.Pos}{rule.Pos + rule.Neg}$$

- A rule positively covers if the pattern is found in the example, and the value found in the pattern equals the CrackLength value.
- A rule negatively covers if the pattern is found in the example but the value found in the pattern does not equal the CrackLength value.

# Scoring Algorithm

---

**Algorithm 2** Rule Confidence Scoring Algorithm

---

```
1: procedure CONFIDENCESCORE
2:   for each rule  $r$  do
3:      $Positives \leftarrow 0$ 
4:      $Negatives \leftarrow 0$ 
5:     for each training example  $te$  do
6:        $tempdata \leftarrow \text{ExtractData}(te, r)$ 
7:       if  $tempdata \neq \text{null}$  then
8:         if  $tempdata.\text{Contains}(te.\text{CrackLength})$  then
9:            $Positives++$ 
10:        else
11:           $Negatives++$ 
12:        end if
13:      end if
14:    end for
15:     $r.\text{Score} \leftarrow \frac{Positives}{Positives + Negatives}$ 
16:  end for
17: end procedure
```

---

# Data Extraction

- Determine "good" ruleset to use based on Score and Occurrence values.
  - Rule score > 0.85 and occurrence > 20.
  - 44 crack length rules.
- Run ruleset against entire SDR database to extract CrackLength values.
  - Over 61,000 crack lengths extracted.
  - What about false positives?
  - Manual validation by an FAA expert.
- Most accurate rules were created from 4-Grams, but missed approximately 15,000 records on first pass.
  - Also include the rule with pattern "num inch crack"
- Multiple rules might extract duplicates - keep track of position of extracted data to avoid extracting the same value.

## Extracted Data Table:

|     | extracted_data_id | extracted_data | data_type | sdr_id | nlp_rule_id | valid | position |
|-----|-------------------|----------------|-----------|--------|-------------|-------|----------|
| 129 | 169517            | 4              | CRACKLEN  | 3226   | 4134        | NULL  | 7        |
| 130 | 169518            | 4              | CRACKLEN  | 3228   | 4134        | NULL  | 7        |
| 131 | 201493            | 3              | CRACKLEN  | 3248   | 7414        | NULL  | 21       |
| 132 | 201494            | .125           | CRACKLEN  | 3248   | 7414        | NULL  | 22       |
| 133 | 184271            | 1              | CRACKLEN  | 3290   | 7411        | NULL  | 0        |
| 134 | 184272            | .75            | CRACKLEN  | 3290   | 7411        | NULL  | 11       |
| 135 | 184273            | 1.75           | CRACKLEN  | 3297   | 7411        | NULL  | 5        |
| 136 | 184274            | .75            | CRACKLEN  | 3299   | 7411        | NULL  | 5        |
| 137 | 159531            | 4              | CRACKLEN  | 3377   | 4101        | NULL  | 11       |
| 138 | 159532            | 3.75           | CRACKLEN  | 3379   | 4101        | NULL  | 7        |

## Extracted N-Grams Table:

|   | extract... | ngram                                                                      | nlp_rul... | sdr_id |
|---|------------|----------------------------------------------------------------------------|------------|--------|
| 1 | 247511     | <num>.5</num> <num>3</num> <inch>INCH</inch> <long>LONG</long>             | 7414       | 35     |
| 2 | 247512     | <num>3</num> <inch>INCH</inch> <long>LONG</long> <struct>FASTENERS</str... | 7414       | 35     |
| 3 | 247513     | <and>AND</and> <num>3</num> <inch>INCH</inch> <long>LONG</long>            | 7414       | 38     |
| 4 | 247514     | <num>3</num> <inch>INCH</inch> <long>LONG</long> <crack>CRACKED</crack>    | 7414       | 38     |
| 5 | 209303     | <and>AND</and> <num>19.5</num> <inch>INCH</inch> <crack>CRACK</crack>      | 7411       | 40     |
| 6 | 209304     | <num>19.5</num> <inch>INCH</inch> <crack>CRACK</crack> <loc>LT</loc>       | 7411       | 40     |
| 7 | 209305     | <found>FOUND</found> <num>2</num> <inch>INCH</inch> <crack>CRACK</crac...  | 7411       | 47     |
| 8 | 209306     | <num>2</num> <inch>INCH</inch> <crack>CRACK</crack> <at>AT</at>            | 7411       | 47     |
| 9 | 209325     | <num>.75</num> <inch>INCH</inch> <crack>CRACK</crack> <loc>NR</loc>        | 7411       | 460    |



# Data Extraction

---

**Algorithm 3** Data Extraction Algorithm

---

```
1: procedure DATAEXTRACT(RuleSet, SDRs)
2:   for each rule r  $\in$  RuleSet do
3:     for each Sentence s  $\in$  SDRs do
4:       if Match(r.pattern, s) then
5:         extracted_data  $\leftarrow$  token with num tag
6:       end if
7:     end for
8:   end for
9: end procedure
```

---

# Data Validation

7373H4

| ATA Code | Largest Cracks | Remarks                                                                                                                                      | Status                                  |
|----------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 5210     |                |                                                                                                                                              |                                         |
| 5210     | 2              | DURING SCHEDULED C3 CHECK, FOUND AFT ENTRY DOOR FWD LOWER CORNER CUTOUT CRACKED 2.0 IN. REPAIRED PER EA.;                                    | VALID                                   |
| 5210     | 1.5            | DURING SCHEDULED SERVICE CHECK, FOUND FWD ENTRY DOOR EXTERNAL SKIN CRACKED 1.5 INCH LONG AT FWD LOWER CORNER. REPAIRED PER SRM.;             | <span>Valid</span> <span>Invalid</span> |
| 5210     | 0.375          | DURING SCHEDULED B2 CHECK, FOUND AFT ENTRY DOOR UPPER RADIUS HINGE CUTOUT CRACKED .3750 INCH. REPAIRED PER BOEING STRUCTURAL REPAIR MANUAL.; | <span>Valid</span> <span>Invalid</span> |
| 5230     |                |                                                                                                                                              |                                         |
| 5230     | 437            | FORWARD CARGO DOOR SKIN CRACKED BETWEEN BS 415+7" TO BS 437+2". REPAIRED SKIN IAW EA.;                                                       | INVALID                                 |



# Summary

- Future work:
  - Learn rules for Number of Cracks:
    - INSPECTION FOUND TWO .125 INCH CRACKS IN TOP CENTER PANEL...
  - Learn rules for crack locations and/or structures.
  - Generalize the NLP engine for wider use in text mining and information extraction applications.
  - Better scoring algorithm - reduce number of false positives.
  - Get results from manual validation to determine accuracy of the rules used for extraction.