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High Performance Computing ).

= Whatisit?

= Massively parallel systems, typically made of many small commodity
servers networked together, performing a few large or many small
tasks.

= Why do we need it?

= You use supercomputers everyday:
" Google (capacity computing)
= Weather forecasts (capability)
= Amazon (capacity computing)
= And the products of research conducted with supercomputers
= Qil discovery and extraction
" Drug research
* Fundamental science (physics, chemistry, etc.)



Exascale: Why? ) .
= Why do we need an Exascale computer?

= Explore new areas of science

= Whole Earth climate modeling
= Better understand the effects of climate change

= Whole Earth system modeling
" Energy and Economic modeling

= New high-energy/Quantum physics questions
= Huge datasets from CERN

= Simulating the human brain

= Currently we can simulate a rat’s brain, or a simplified cat brain



Moore’s Law — Current Challenges @i

= Growing transistor density has continued despite a halt in
increasing clock frequency
= Vendors provide more CPU cores on the same chip
= How do we use these cores effectively?

= Alternative architectures like GPUs and many core processors
like KNL (Intel Phi)
= Can we take advantage of many-core architectures?
= What bottlenecks exist?

= What applications map well to alternative computational
architectures?




Moore’s Law — Future Challenges = @

= Fetching data for the cores becomes the dominant activity in
terms of energy.

= Memory per core is dropping

= Memory becomes a major performance and energy
bottleneck

= Some alternatives have been proposed

= Hybrid Memory Cube consortium
= Vertically integrated DRAM over a logic base with silicon vias
= Much higher bandwidth (~240GB/s)
* Lower power consumption (70-90%)
= High Bandwidth Memory (HBM)
= Bandwidth (up to 256 GB/s)

= Both are TSV reliant




Exascale Challenges ) .

Exascale provides a unique challenge
Many existing models will not work well for Exascale

One of the largest challenges is meeting the power budget
(20-30 MW)

We could build an Exascale like system out of current
technology, but it would require 100s of MWs of power




History of Supercomputing ).
= Exascale computing is hitting a power/reliability wall

= We hit a power/reliability wall in the 1950s with vacuum
tubes

= Many thought ENIAC would never work due to the unreliability of
vacuum tubes

= Solved the power-reliability problem with the transistor

= Power/heat problem is back again!

= Miniaturization made possible by integrated circuits and
printed circuit boards




Exascale Challenges ) .

= Networks: The focus of this talk!

= How do that many threads communicate effectively?

= Are we still going to use a message passing + X type programming
model for communication?

" |t looks like we’re stuck with MPI
* Too much money/time has been invested in MPI programs

= How does the message passing model effectively scale to Exascale
sizes?

" One leading interconnect, InfiniBand, has issues with scalability
= Can we even match messages in software anymore?



Sandia
Exascale Challenges ) ez,
= Applications:
= How can applications take advantage of billion way parallelism?

= What subset of applications are even viable at Exascale?

= How do we debug a billion thread program?
" We need some automated tool assistance
= Current parallel debuggers are not up to the task

= New debuggers must be fast enough to be tolerable
— Cannot have multi-minute latency on a single debugger step/command
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Exascale Computing

= Key challenge approaches from SNL:
= (Operating System

= Kitten — Lightweight OS for supercomputing

— Successor to the long line of lightweight HPC kernels (SUNMOS, puma,
cougar, catamount)

= Networks

= Portals
— Bull BXI — Portals hardware ASIC
— Provides matching in hardware (as opposed to IB)
— Low latency, high bandwidth
— Designed to support MPI

= Threads

= Qthreads
— Many lightweight threads overseen by “shepherds”
— Scheduling approaches for HPC, including power/energy concerns
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Exascale Computing )

= The power budget: not just about energy
= The relative cost of energy is important, but not the #1 concern
= Peak power is a major issue

= Constrained to 20-30 MW? How much can we fluctuate up/down?

= |ssues for power generation facilities for large consumption swings over
very small time periods

= How do we cool off this 20 MW space heater?
= Traditional air cooling
= Cold water cooling

= Warm/hot water cooling (use the waste heat for heating buildings)
= Exotic cooling technologies (direct Freon, liquid gases)




Exascale Computing )

= Due to reliance on commodity components:
= |ndustry requires direction now
" |nvestment in alternative technologies (ex. Hybrid memory cubes)
= Decisions will affect consumer products over the next 10 years

= The commodity market drives the HPC market

= Cloud computing is bringing commercial computing closer in line with
traditional HPC

= Cloud apps are still capacity-apps, making use of parallelism easier
than for capability HPC applications.




Exascale Computing ) i,

= Networks: Where we are now

Source:
.top500.0r
www.top g 14




Exascale Computing ) .

= Processing: Where we are now

Projected Performance Development
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Exascale Computing

" Processing: where we are now

Trending towards
accelerators/alternative
architectures

Source:
.top500.0r
www.top g 16
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Exascale Computing

= Many-core is interesting, yet unknown

= Benefits:
= Massive parallelism,
= Low power consumption,
= Easy communication between local Accelerator/CP cores

= Drawbacks:
= Massive parallelism at the expense of core complexity
= Getting data to/from the cores can be difficult/slow/expensive (KNC)
= New programming paradigms (CUDA, OpenCL, Intel Phi)

17




Exascale Computing

= Many-core be a method to reach Exascale

Intel Phi is essentially a bunch of heavily modified Pentium CPUs
Added vector support

Extra cache size/levels

No legacy SIMD support (MMX etc.)

Good scalability, individual core performance could be an issue
= 1 Teraflop in a single KNC card (300W TDP)

First teraflop supercomputer was ASCI Red (SNL) in June 1997,
remained the fastest computer until late 2000.

= 9298 Pentium Il processors, 1600 sqgft, 850 kW of power.
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Exascale Computing ) 2,

Extreme Scale Communications at SNL




Brief Introduction to Portals ) s,

= Portals —Scalable Networking API developed at Sandia
= More than 20 years in development
= Each iteration = major changes

= Portals 1, 2, and 3 used in large systems
= Portals 3 network for most commercially successful Cray machine
= Seastar interconnect was used for many years

= Portals is designed for MPI
= Also support for one-sided SHMEM-type models

= Portals 4

= Native Network API for Bull’s BXI interconnect 20




Portals 4 — Modern Network API ) o,

= Portals has evolved since Seastar
= Better support for one-sided communications
= Tweaks to APl to prevent protocol quirks that lead to slowdown

= Portals 4 has rich support for
= Triggered operations (key for complex offloading)
= Atomic operations
" One-sided communications

= Portals 4.0.2 released last year
= 4.1 coming this calendar year
= 4.2 close after that depending on HW vendor capabilities

21




Current HPN APIs rh) pes

= Verbs — current interface for InfiniBand and iWARP devices
= Developed originally as an API for high performance storage
= Has technical/semantic mismatches with HPN needs
= Very verbose programming API

= UGNI - current interface for Cray Gemini/Aires networks
= Specifically for Gemini/Aires hardware
= Short message optimizations (GNI Short message SMSG facility)

= Portals4 — open interface specification from SNL, interface for
Bull BXI
= Scalable connectionless API
= Unexpected message support
= Message matching operations

= Asynchronous (independent) progress
22




Why not Verbs? ) i,

= Simple communication code (send from one peer to another)
= Verbs: > 650 lines of code

= Portals: ~125 lines of code

= Does not support features like Tag Matching or Active
Messages

= Memory registration nightmare

* Forced to manage/pin currently registered memory

= Very hardware centric API

= Can cause application development difficulties

23
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= QOpen Fabrics Interface (not Verbs 2.0)
= Sockets-like API for interfacing with multiple “providers”
= Providers can support a subset of possible interfaces

= Libfabric will continue to support Verbs, just hide some of the details
from the application

=  Automatic and implicit progress models

Message Queue RDMA CM Services

\ J
Il

Fabric Interfaces

Verbs Provider

FI
A
Control Message RDMA Atomics

Interface Queue libfabric
CM Active Tag Collective ibverbs =
Services Messaging Matching Operations ] O
abstraction layer <
Addr. Triggered v =
Services Operations 0
d
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Verbs vs. OFI vs. Portals h) i

Code Verbosity

Semantics Match

OS bypass

Application Possible
bypass (if supported)
Connection model Connections/Con

nectionless

Yes
(if supported)

Tag Matching

Hardware

Interface

Hardware Yes
Collectives (if supported)




Understanding HPN ) S

= Designing/Developing network APIs requires research

= Understand the implications of design choices

= Need to understand network design tradeoffs with new core
architectures and communication mechanisms

Work with UNM on network research
= Do we need sophisticated NIC architectures?

= How does parallelism in the communication stack impact
performance?

= How well do alternative data movement techniques work?

= What are possible ramifications to alternative data movement

strategies?
26




Exascale Computing ) 2,

Extreme Scale Communications Research




Do we need sophisticated NICs? [,
= Understanding Hardware vs. Software approaches

= Onload (software) vs. Offload (hardware)

= Tradeoffs need to be understood for architectural changes

= |mpact of many-core on networking

= Motivate/demotivate use of offloading approaches like
Portals

Matthew Dosanjh, Ryan E. Grant, Patrick Bridges, Ron Brightwell, “Re-evaluating Network Onload vs. Offload for the Many-Core
Era”, IEEE International Conference on Cluster Computing (Cluster 2015), Chicago, IL, USA, September 8-11, 2015. (Acceptance
Rate: 24%).
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Offload vs. Onload ) i,

= Onloading allows for very easy matching between the
hardware and software layer semantics

= Offloading can provide better performance if well matched to
the application semantics without consuming computational
resources on the host

= Onloading relies on an abundance of (dedicated) high
capability fast cores to provide good network performance

= Offloading can provide hardware optimized approaches to
known operations (e.g. content addressable memory lookups
for matching)




Onload vs. Offload )

= Decreasing core frequency also impacts message rate

= Depends on how much HW support you have to help you (1.5% vs.
35.1% performance loss, offload vs. onload)
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MILC Runtime With Power

5500

5000

4500

4000

3500

Onload

Runtime (8S)

3000

2500

2000

5500

5000

4500 [~ N\

4000

3500

Offload

Runtime (S)

3000

2500

2000

650

570

- 490

- 410

- 330

- 250

570

490

410

330

-
-
-

250

170

—_—————

1 Node
1 Nodes Power

—————— 2

CPU Speed (GHz)

2 Nodes
Nodes Power

4 Nodes
4 Nodes Power

Power (W)

Power (W)

Sandia
National _
Laboratories

i

MILC is an application
that does a Lattice
computation

The performance of
MILC improves with
offload, especially at
lower frequencies and
when more nodes are
used
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LULESH Runtime With Power ) e
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Distribution of MPI Calls ) e,

MILC Makes 17x more MPI calls per second than LULESH

MILC LULESH

B Allreduce
B Allreduce .
recv
B Irecv o |
sen
@ Isend & Wait
ai
= Wait
| Waitall
B Other

® Other




Summary

= Offload has advantages with slower cores

= Bandwidth and latency advantages are clear

= Application impact is dependent on overall MPI usage
= MILC sees 7-10% performance impact from onloaded scaling
= LULESH not significantly impacted

= Expect that these results would be worse on many-core in
absolute terms
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Expect Worse Results ) .

= Even with hardware support, and similar frequency many-
cores are still dominated by deep out-of-order CPUs
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Modeling Many-Core Matching ) .

= Understanding how many cores to allocate to MPI matching
for many-core architectures is critical
= Heavy-weight vs. Light-weight cores have vastly different message
rate matching capabilities
= Modeling multiple cores used for MPI networking processing is novel

= |nforming future design with respect to core allocation
tradeoffs
= Compute cores vs. networking cores

=  Patrick G. Bridges, Matthew G.F. Dosanjh, Ryan E. Grant, Anthony Skjellum, Shane Farmer, Ron Brightwell,
“Preparing for Exascale: modeling MPI for many-core systems using fine-grain queues”, in Proceedings of
the 3rd Workshop on Exascale MPI held in conjunction with the International Conference for High
Performance Computing, Networking, Storage, and Analysis (Supercomputing 2015), Austin, TX, Nov. 15-
20, 2015.
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Modeling Many-Core Matching iL

(D

Del

Del

BW
N

Host 1
CPUs

NIC/ Host 2
Link CPUs

Figure 1: General Queueing Architecture of Model
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Model Station

Service Time

Parameters

plus wire latency

Host Core 1ns Visit counts set based on message length for

matching delay, eager message copy bandwidth,

and per-message protocol delays costs for onload NICs.
Link delay Offloaded protocol delays | Visit count set to the number of messages

that traverse the link to process a request

Link bandwidth

Serial flit processing time

Visit count set based on the total number of
flits that have to pass through a link to
process request
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Message Rate (Msg/sec)

Modeling Many-Core Matching
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= Model allows for many-core vs. heavy core comparisons
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Modeling Many-Core Matching ) .

= Future Work

= |nvestigate models for the Phiin more detail
= |ntegrated NIC models

= Large scale models with many nodes




How well do alternative data = e
movement techniques work?

Laboratories

= MPI One-sided communication (RMA)
= Promising communication model for many-thread/task approaches

= Problems this work addresses:
= Apps want to explore this communication models BUT....
= No functionality tests exist with multiple concurrent threads (MT)
= MPI code is not well tested
= Performance is not well understood
= Many options for memory window synchronization

= What works and what doesn’t?
= What's the best performance option?

= QOther Problem — How do we design algorithms to take full
advantage of this communication mechanism?

. Matthew Dosanjh, Taylor Groves, Ryan E. Grant, Patrick G. Bridges, Ron Brightwell, “RMA-MT: A Benchmark Suite for
Assessing MPI Multi-threaded RMA Performance”, in Proceedings of the 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2016), Cartagena, Columbia, May 16719, 2016. (Acceptance rate: 20%). 40




bandwidth (MiBps)

RMA-MT ) e

= Need simple micro benchmarks for testing performance and
functionality

= Need application proxies to to understand impacts on
potential production codes
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= Benchmarks were instructive

= Found numerous bugs in MPI implementations
= Segmentation Faults
" |Incorrect data transfers
= Performance issues

= Caught errors that could not be handled

= Performance was instructive

= Certain synchronization mechanisms that should be good choices were
not

— Optimizations are fixing these issues

= Resulted in numerous pull requests on the OMPI source code to fix
issues/performance

42




RMA-MT
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= Microbenchmarks were re-written in a naive manner to
demonstrate performance of existing algorithms

= The algorithms themselves should really be re-designed
= Different area of research (that we’re working on at SNL)

= Neglecting MiniFE-MVA
Performance is not that bad

Could be a lot better.
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RMA-MT ) o,

= Future Work

= Study performance on larger systems
= 512 processes is not enough for full production understanding
= Use a variety of system architectures

= Need to understand performance/functionality for more MPI
implementation code paths

= Demonstrate scaling to large scale (100,000s of processes)

= Currently work on a IEEE cluster paper with large systems
= Trinity, Cielo, TACC Stampede and production clusters at SNL




What are possible ramifications to

Laboratories

alternative data movement strategies?

= Remote Direct Memory Placement (RDMA) — underlying
mechanism to MPI RMA

= Fundamentally RDMA is another actor on memory, requiring
resources and creating contention

= Question: What impact does overlapped data movement
have when the NIC is moving data during computation

= Data may not be related to current computation (e.g. visualization or
analytic data for post compute phase evaluation)

= Cache injection strategies may be important here

Taylor Groves, Ryan E. Grant, Dorian Arnold, “NiMC: Characterizing and Eliminating Network-Induced Memory Contention”, in
Proceedings of the 30th IEEE International Parallel & Distributed Processing Symposium (IPDPS), May 23-27, Chicago, IL.
(Acceptance Rate: 23%). 45



Network Induced Memory Contentidh:-

= Data movement
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= Workloads:
= Microbenchmark: STREAM (modified for first touch)
= Proxy/mini apps: CNS, HPCCG, SNAP, LULESH, XSBench
= Application: LAAMPS

= Platforms
= |ntel and AMD architectures going back 4 generations (Intel)
= Variety of onload/offload InfiniBand NICs
= Xeon Phi (KNC)
= Large variation of memory bandwidths: 12.8-240 GB/s

= QObserved STREAM triad bandwidth with 51%-0% performance
degradation

47
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= |mpact on single node benchmarks (secondary node only
sends data, not involved in communication)

Sandy bridge >4 NiMC single node slowdown
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N
N
T

2.0p

1.8¢

1.6f

Normalized increase to runtime




Sandia

[ ]

|I1 National
N I IVI C Laboratories

= Application tests show large slowdown

Impact of NiMC on LAMMPS (64-8k)
(SandyBridge-X2-onload)
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= Multiple solutions to avoid this memory contention

= Can treat NiMC much like other minor disturbances in
execution like OS noise

= Easiest solution, use offloaded networking cards (current
generation only)

Impact of NiMC on LAMMPS w. Offload (64-8k)

(SandyBridge-X2-FDR-offload) Impact of NIMC on STREAM w. Core Reserv.
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Status/Future plans:

= Talked to Intel about onloaded Qlogic HCA performance

= Solutions coming for the use case/method used here

= Motivates further investigating cache injection from network
devices

= Results show that cache interference is a big problem

= |f we get more cache injection control in the future, how do
we use that to best advantage?

51



Exascale Computing ) .

Extreme Scale Power Research




Power Research at SNL ) i,

= Common Power control and monitoring interface
= Power APl — being used in ACES Trinity supercomputer

= Developed at SNL with community input (including UNM)

= Power API has progressed alongside exploratory research

= Research answering questions like:

Are there opportunities during 1/0 to save power (like checkpoints)?

What ramifications are there to power/energy saving runtime
approaches in the context of large systems (reliability)?

How do program optimizations impact power consumption on
different architectures?
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Saving Power During Checkpointing
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= Application starts checkpointing and wants to manage power
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Power for Exascale Computing ).

What ramifications are there to power/energy saving
runtime approaches in the context of large systems
(reliability)?




Retrospective on Power Saving
Techniques
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= Analyze history of energy saving methods

= NAS benchmarks — common comparison point
= Study:

= CPUSpeed (2005)

= CPU Miser (2007)

= PART (2005)

= ECOD (2009)

= NCSU method from 2006

= Jitter (2005)

= Adagio (2009)

= Green Queue (2012)

Ryan E. Grant, Stephen Olivier, James Laros, Allan Porterfield, and Ron Brightwell, “Metrics for Evaluating Energy Saving
Techniques for Resilient HPC Systems”, 10th Workshop on High-Performance, Power-Aware Computing (HP-PAC 2014),

Held in conjunction with the International Parallel and Distributed Processing Symposium (IPDPS 2014), Phoenix, AZ, May
19-23, 2014. 56
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Average and Best Case Energy-Reliability

Analysis of Techniques
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Analysis of Techniques .
= Results show that techniques are still quite helpful

= The most aggressive energy saving techniques suffer the most
from the reliability adjustment
= Have longer runtimes in exchange for greater energy savings

= |ncreases probability of failures happening during run

= Some techniques have applications that benefit from the
addition of reliability concerns

= Benefits of running at lower temperatures not explored
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Case Study ) =,

= Studied MAESTRO/RCR energy-efficiency techniques

= Detects memory bandwidth saturation and reduces thread
concurrency

= Scales back processor frequency on some threads to reduce memory
pressure

= Results improve by considering reliability as runtimes are
improved

= Qverall, a 2.9% average improvement in energy savings
numbers due to reliability
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Exascale Computing ) i,

Comparison of RCR Energy Savings for LULESH

N RCR Energy & Adjusted Reliable Energy
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o
©

o
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08

8 nodes 27 nodes
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Power for Exascale Computing ).

How do program optimizations impact power
consumption on different architectures?




Investigating architecture, power, Fes

Laboratories

and performance relations

= Explicit shock
hydrodynamics

= LULESH

= Optimizations

= Loop fusion (fu)

= Global allocation (ac)Power

= Data layout (dl)

= Metrics
= Time to solution
= Power

= Energy

Architecture

Architecture class
= Enterprise server - Intel Xeon

= | ow cost consumer - AMD Fusion
= Low power HPC - IBM BG/Q

Optimization
Optimization

Performance power

Energy Architecture %

Perforrq1ear§<¥e

Edgar A. Leon, lan Karlin, Ryan E. Grant, “Optimizing Explicit Hydrodynamics for
Power, Energy, and Performance”, IEEE International Conference on Cluster Computing
(Cluster 2015), Chicago, IL, USA, September 8-11, 2015. (Acceptance Rate: 24%). Best
Paper Award Winner

Original slides courtesy Edgar Leon, LLNL




Power per node at a glance: LULESH
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Optimizations: Improved runtime
and energy, power within 20%
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MPI analysis and verification iL
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Results from optimizations on single nodes carried over to node counts up to 64
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Zooming in:
5 code regions from application
developers view

RunTime (sec)

(oe]

60

40

20

Significant differences between regions

BG/ INT | FPU IPC L1H BW | Time
Q % % % GBI/s %

m 624 376 0321 772 13.72 21.62
455 545 0654 884 9.12 18.41

G 741 259 0.216 757 2088 1.46
62.5 375 0.554 93.6 1556 42.71
474 526 0541 904 18.38 15.80

NoOpt
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Effect of optimizations is region )
dependent

= Optimizations B Region1 H Region2 O Region3 O Region4 O Region5
benefit most

regions ] u

1.5

= Region 3 not
happy

= Region 5 favors
fu

1.0
I
|
]
]
|

0.5

= Optimal varies

by region
= Optimization | —‘ —‘ —‘ —‘

combinations
often increase
performance

Normalized RunTime to NoOpt
|

0.0

ac
ac+dl

dl

fu

fu+ac
fut+ac+dl
fu+dl

BG/Q architecture




Region 2: loop fusion effective )
across architectures
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Best optimizations for power, ) ..
energy, and performance

Best optimizations

= Overall “best” applies per-

region optimizations PCore  Neopt Neop v
PMem fu+dl fu+ac dl fu fu+ac fu+ac

= Largest region dominates § ey | | e )
Energy futactdl  fu+ac+d fu+d di fu fu+ac+d|
Only On BG/Q Time futac+dl  fu+ac+dl fu+dl fu+ac+dl fu+dl fu+ac+dl
PCore d futactdl  NoOpt d fu NoOpt

n Energy fOIIOWS runtime _‘é’, PMem fu futactdl  futdl  futactdl  futac fu+dl
] Power fu fu+ac+d fu fu+ac+d fu fu+ac+d
s Energy ac fu+ac+d fu fu+ac+d fu+ac fu+ac+d

= Core and memory power = .

Time ac fu+ac fu+ac+dl ac+dl fu+dl fu+ac+dl

optimizations often differ PCore  furac  fu  acd  fwsc  frac  fusac

PMem fu+ac fu fu+dl fu fu fu

= Memory power best with fu orer e o me e w8
Energy fu+ac fu+dl ac+dl fu+ac fu+ac fu+ac

Time  futac fu+dl d fu+ac fu+ac fu+ac

Optimizations such as fu help all objectives across architectures




SNL/UNM Collaborations ) o,

Accepted/Published Papers

= Taylor Groves, Ryan E. Grant, Dorian Arnold, “NiMC: Characterizing and Eliminating Network-Induced Memory Contention”, in
Proceedings of the 30th IEEE International Parallel & Distributed Processing Symposium (IPDPS), May 23-27, Chicago, IL. (Acceptance
Rate: 23%).

= Matthew Dosanjh, Taylor Groves, Ryan E. Grant, Patrick G. Bridges, Ron Brightwell, “RMA-MT: A Benchmark Suite for Assessing MPI
Multi-threaded RMA Performance”, in Proceedings of the 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid 2016), Cartagena, Columbia, May 16719, 2016. (Acceptance rate: 20%).

= Patrick G. Bridges, Matthew G.F. Dosanjh, Ryan E. Grant, Anthony Skjellum, Shane Farmer, Ron Brightwell, “Preparing for Exascale:
modeling MPI for many-core systems using fine-grain queues”, in Proceedings of the 3rd Workshop on Exascale MPI held in conjunction
with the International Conference for High Performance Computing, Networking, Storage, and Analysis (Supercomputing 2015), Austin,
TX, Nov. 15-20, 2015.

= Matthew Dosanjh, Ryan E. Grant, Patrick Bridges, Ron Brightwell, “Re-evaluating Network Onload vs. Offload for the Many-Core Era”,
IEEE International Conference on Cluster Computing (Cluster 2015), Chicago, IL, USA, September 8-11, 2015. (Acceptance Rate: 24%).

Work In Progress

= Edgar Leon, lan Karlin, Ryan E. Grant, Matthew Dosanjh, “Program Optimizations: The Interplay Between Power, Performance, and
Energy”, submitted to Journal of Parallel Computing.

. Matthew Dosanjh, Taylor Groves, Ryan E. Grant, Patrick G. Bridges, Ron Brightwell, “Assessing MPI RMA-MT performance on Large-
Scale Systems”, submitting to Cluster 2016.

= Taylor Groves, Ryan E. Grant, Scott Hemmert, Simon Hammond, Michael Levenhagen, Dorian Arnold, “SAl: Stalled, Active and Idle,
Characterizing Next-Gen Networks”, submitting to Cluster 2016

. Taylor Groves, Ryan E. Grant, Aaron Gonzales, Dorian Arnold, “NiMC: Characterizing and Eliminating Network-Induced Memory
Contention”, to be submitted to IEEE Transactions on Parallel and Distributed Systems

Teaching Outreach

= Ryan E. Grant, Stephen Olivier, “Networks and MPI for Cluster Computing”, National Science Foundation/IEEE Technical Council on
Parallel Processing CDER Book Project on Parallel and Distributed Computing Topics for Undergraduate Core Courses. 1st Edition,
Morgan Kaufmann, ISBN: 9780128038994, Pages: 360. Acceptance rate: 23.3%. 71
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Future Outlook )

= Will we have Exascale machines by 2020? mid 2020s?

= Failure of a single element could doom all of the others

= Underperformance could be compensated for by overachievement
elsewhere

= Easy scaling is no longer reality

= Success means opening up completely new areas for
computational science
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Final Thoughts 1.

= Quantum computing could help solve some specific problems
much faster than we can today

= New architectures could alter the current rate of
improvement of memory

= Accelerator/Many-core architectures could be better
leveraged for a larger variety of applications

= Do we need a technology transition akin to the one from
vacuum tubes to transistors/integrated circuits?

73
-



Thank you ) B,

Questions?




Why Threading? h) .

= MPI use cases continue to evolve
= MPI+X implies the use of threads, e.g. OpenMP

= Potentially thousands of MPI processes on a single node
(without threading)

= Can complicate network resource management

= Sources of concurrency
= Many core architectures
= KNL
= |ncreasing core counts
= Traditional CPU design continues to add cores in new generations
= OpenMP
= Can we use MPI inside of OpenMP parallel regions?
= New runtimes

= Tasking runtimes potentially introduce many more concurrent uses of the
MPI library 75




Living in a World with Threads ) .

Desirable/required features:

= Low overhead
= Similar semantics to existing threading (minimal changes)

= Ease of programmability

= Each thread has access to the communication library (no

funneling)
= Also ease programmability, e.g. use MPI calls in an OpenMP region

= Communication endpoint granularity matched to the work

= Not too fine, not too coarse, just right...

= Fine granularity at endpoints requires networking resources
= Keeping track of many ranks, caching state related to these ranks, etc.
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The problem with threads

= Threads introduce significant issues with concurrency in

existing MPl implementations

Sandia
National

Laboratories

= MPI_THREAD MULTIPLE is hard and implementations don’t do it well

= Difficult to support concurrency without encountering conflicts

= Fixing MPI concurrency issues is hard, so multiple approaches

proposed:
= 1) Expose the parallelism (Endpoints)

= Allow individual threads to have ranks in MPI (rank space explosion)
= Exposes lots of complexity, thread addressability on the network
= General solution that is applicable to many problems

= 2) Allow for parallelism in a way that doesn’t require MPI to handle it

= New concept: threads can contribute independently to a larger
communication operation inside of MPI, doesn’t require the same

synchronization methods
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Message Rate (x1 06)

Exposing Parallelism in MPI )

0.8

0.6

Message Rate (x1 06)

B e el

Impact of communication concurrency on message rate per second
for P processes and T threads per process on an Intel Phi

Takeaway: Fewer threads =better performance, due to poor MP| multi-threading

James Dinan, Ryan E. Grant, Pavan Balaji, Dave Goodell, Douglas Miller, Marc Snir, Rajeev Thakur, “Enabling communication concurrency through flexible MPI Endpoints”,
International Journal of High Performance Computing Applications, Volume 28, Issue 4, pp. 390-405, November 2014. Impact factor: 1.63 78




Allow for Better Parallelism in MPl @&z,

= Concept of many actors (threads) contributing to a larger
operation in MPI

= E.G. many threads work together to assemble a message

= MPI only has to manage knowing when completion happens

= These are actor/action counts, not thread level collectives, to better
enable tasking models

= No heavy MPI thread concurrency handling required

= Leave the placement/management of the data to the user

= Knowledge required: number of workers, which is easily available
= Match well with Portals NIC capabilities

= Use counters for sending/receiving

= Utilize triggered operations to offload sends to the NIC
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Persistent Partitioned Buffers ) s,

= Expose the “ownership” of a buffer as a shared to MPI

= Need to describe the operation to be performed before
contributing buffer segments

= MPI implementation doesn’t have to care about sharing

= Only needs to understand how many times it will be called before the
operation can be completed

= Threads are required to manage their own buffer ownership
such that the buffer is valid

= The same as would be done today for code that has many threads
working on a dataset (that’s not a reduction)

= Result: MPI is thread agnostic with a minimal synchronization
overhead (atomic_inc)

= Can alternatively use task model instead of threads
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Example ) e,

= Like persistent communications, setup the operation

MPI_Partitioned_Send_Create(Comm, to_rank, to_tag, base_address, data_type,
count, num_ contributors, &request)

= Start the request
MPI_ Start(request)

= Add items to the buffer

#omp parallel for ...

MPI_Partitioned _ Add_to_buffer(MPIl_Request *request, const void *in_data_loc, int
count, MPI_Datatype type)

= Wait on completion
MPI_Wait(request)

= QOptional: Use the same partitioned send over again
MPI_ Start(request)
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Opportunities for Optimization ) s,

= MPI implementations can optimize data transfer under the
covers

= Subdivide larger buffers and send
data when ready

= Could be optimized to specific
networks (MTU size)

= Number of messages will be:
1 < #messages < #threads/tasks
For a partition with 1 part per thread

= Reduces the total number of
messages sent, decreasing
matching overheads




Different Approach to Threading =~ @&x.

= Partitioned buffer operations can always be consider as multi-
threaded

= Using partitioned sends doesn’t necessarily require locking in
other parts of the MPI library

= Technically, using partitioned buffers would work with
MPI_THREAD_ SINGLE
= Violates the definition of thread modes in the standard
= |f only using partitioned sends, no need for locking in the library

= Not part of this work but...

= Could examine alternative threading modes for MPI, where user
management of data is guaranteed and only inherently thread safe
operations are called
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