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Background

. L . . Nanostructure linked to meso-
with * Molecular dynamics simulations with fully- and macro-scale behavior

atomistic force field . .
* Oligomer ordering

* Highly temperature

Nanoparticles (NPs) self-assemble to form structures
nanoscale features that can be used 1n thermal, chemical,
mechanical and optical sensing or in filtration.

 Au NP cores with diamter d=4, 6nm

Experiments at Sandia and at Argonne’s Center for Nanoscale dependent

Materials showed that alkanethiol-capped gold-core NPs can be .  ~400K -> membrane
. . . . * S-(CH,). ,-X ligands

assembled 1nto two and three-dimensional arrays. Experimentally - CH n COOH rupture

it is difficult to measure how changes in oligomer coating = s or * Order correlates with

chemistry or in the environment, such as temperature or the n=12or18 Young’s Modulus

presence solvent or 10ns, affect the local structure of assembly.

e NP Membrane formed on water film .
* Membrane rolling

Molecular simulations are a natural tool for examining + After formation and drying

nanostructure. Work at CINT has used large-scale molecular * Water evaporated to form NP membrane . 5
. . . membranes with a free boundary role
simulations to explore the how molecular nanostructure influences .
: . . * Stress asymmetric through membrane
assembly properties at larger scales. * Periodic and open boundaries

* Liquid-vapor interface asymmetry persists in membrane
* Asymmetry for all core sizes and ligand lengths

* Equilibrated for 20+ ns with and without

water | 6nm n=12 COOH ' ' ]
6nm n=12 CHj4
. . . . ' 6nm n=18 COOH :
Previous Experiments and Simulation , | ’ 6nm n-18 GHis
, | — 6nm n=12 CH5 dry
g
Lin and co-workers! at = ;
Argonne's Nanoscience Center Oligomer end group influences @
demonstrated a reproducible membrane mechanical stiffness -1
way to make single-NP-thick and failure strength: 2
membranes.  Membranes are * Young’s modulus > 3 GPa for
-3 : : : : :

mechanically stable, with long-
range hexagonal NP order.
Strength and stiffness varies
with NP core and oligomer
coating composition.
Membranes are stable to ~400K.
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X=COOH
* 50% higher than X=CH,
* Good agreement with
experiment

MD simulations are 1deal for studying nanoscale assembly and
nanostructure. Nanostructure of 2D NP membranes due to end-
group chemistry and environment is directly related to mesoscale
properties.

Stiffness and strength reduced

for d=4nm
Lane and Grest? showed that the morphology of the NP oligomer

coating could vary greatly with small changes 1n core size, ligand COOH - stiffer and stronger
length, and solvent quality. This result suggests that NP-NP
interactions at the liquid-vapor interface could also vary strongly
with these parameters. The NP-NP interactions are relevant to self-
assembly. Understanding NP-NP interactions 1s critical to
understanding the membrane formation and ultimately the
membrane properties.

Simulations on 3D NP FCC lattice underway
* All-atom simulations capture
pressure response 1n NP crystal
* At high pressure deviatoric stress
drives sintering to form nanowires

* Hydrogen bonding 20
* Strong for COOH
g

* Oligomer pairin "-’E‘E‘ |
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