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Big Picture Goal:

Design scale computational models with quantum accuracy.

Computational Models at Various Scales

@ Quantum < Density Functional Theory
o Atoms & Molecules < Molecular Dynamics
@ Molecules to Continuum <— Peridynamics

e Continuum / Design / Experiment < Local PDE

v

Bridging with Weak Peridynamics

Machine— Learning Statistical
IAPs Coarse— Graining MSFEM

P
DFT— *MD~— 7 PD PDE/PD
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Peridynamic Model*+?

o Let Q CRY d € {1,2,3} be a bounded body.

@ Any point x interacts directly with any point in
He={y e : [x—y|<d}.
@ 0 - horizon, Hy - family of x.

Minimization of Potential Energy — Peridynamic Equation of Motion

p(X)Uft(Xv t) = LU(X, t) + b(X7 t)7

where L is internal force density,

Lu(x,t) = f(u,q,x,t) dg.
Hx
u — displacement field, b — external force density,
p — density, reference configuration, f — pair-wise bond force density.

1S, Silling, Reformulation of elasticity theory for discontinuities and long-range forces, 2001.
25, Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive
Modeling, 2007
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Linearized Model

o For small displacements,

p(X)uw(x,t) = 5 C(x,q,t)(u(q, t) — u(x,t)) dg+ b(x, t).

e C(x,q,t) - tensor-valued micromodulus function, describes linear material.

@ Assumes small displacements, but allows material failure.
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Weak Peridynamic Problem34

@ For convenience, define the bilinear forms,

(u, v)p:/ﬁpuv dx, (u, v):/ﬂuv dx,
)= [ v(x){ / Cla)(u(a) ~ u() dq} d
-/ Clxa)(u(a) ~ ub))(¥(a) ~ ¥(x) da o

3B. Aksoylu, M. Parks, Variational theory and domain decomposition for nonlocal problems,
2011

4X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a
peridynamics model of mechanics, 2011
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Weak Peridynamic Problem34

@ For convenience, define the bilinear forms,
(u,v), = /quv dx, (u,v) :/qu dx,
()= [ v { [ clxauta) - ux) da o
= [ | clxaeta) - u()(vla) = v(x)) da o,

@ Multiply by v € V, with V to be be determined, and integrate to obtain:

(uee(t), v), + a(u(t),v) = (b(t),v) < dynamic problem,
a(u,v) = (b,v) < static problem.

3B. Aksoylu, M. Parks, Variational theory and domain decomposition for nonlocal problems,
2011

4X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a
peridynamics model of mechanics, 2011
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Energy Space

@ What is the natural space in which to seek weak solutions?

@ Define,

llull :// C(x,q)(u(q) — u(x))* dq dx,
QJa
and the energy space
E={v:Q—=R? : ||v]ls < c0}.

@ Reasonable assumptions on C = || - ||¢ is a semi-norm on &, and
£ =L1%Q).

| - e is not a norm on &: If v = constant a.e., then ||v||¢ = 0.

@ What about boundary conditions?
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Volume-Constraints®

@ There is no trace in L2, problem ill-posed with standard boundary condition.

@ The model is nonlocal: consider x with dist(x, 9Q) < §; x wants more
information.

SM. Gunzburger, R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal
boundary value problems, 2010
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Volume-Constraints®

@ There is no trace in L2, problem ill-posed with standard boundary condition.

@ The model is nonlocal: consider x with dist(x, 9Q) < §; x wants more
information.

Q' = QU Qc, where Q¢ is a volume surrounding Q such that dist(9Q,0Q") > §.

Qe
Q.

Q@
o0Q —
o0Q'—

Volume constraint in Q.

SM. Gunzburger, R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal
boundary value problems, 2010
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Volume-Constraints®

@ There is no trace in L2, problem ill-posed with standard boundary condition.

@ The model is nonlocal: consider x with dist(x, 9Q) < §; x wants more
information.

Q' = QU Qc, where Q¢ is a volume surrounding Q such that dist(9Q,0Q") > §.

Volume constraint in Q. Qe
Q.

Q@

0Q —

@ Define Q' —

V={vef& : v|g, =0}

@ V: Hilbert space with inner product a(, -).

@ || - |l¢ is the norm on V induced by a(-, -).

o Let A € L(V, V') be the operator induced by a(-,-), and write b(-) = (b,) € V'.
@ Weak form, homogeneous Dirichlet peristatic problem:

findue Vst Au—be V°.

SM. Gunzburger, R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal
boundary value problems, 2010
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Multiscale Finite Element Method: Overview

Model problem: FEM for the Dirichlet Poisson Problem

@ QCRY V=HQ)
@ a(u,v) = [qaVu-Vv, f(v)= [y Fv, F € L%(Q)

@ o : Q — Ris highly oscillatory, non-degenerate, bounded

@ 7" regular triangularization of Q, V" C V: FEM subspace with basis {#;},

v

MSFEM Motivation

@ Resolution required for {¢;},{\/:1 to capture oscillations due to « intractable

@ Enhance ¢; by a local (element) computation to include « oscillations

MSFEM

@ For each T; € T", define ai(u,v) = fT' aVu-Vv

@ 7, VFC H&(T,-): triangularization and FEM subspace, respectively

@ For each i, and for each ¢; with supp(¢;) C T;
find g; € VS s.t. ai(qj, v) = —ai(¢j, v°), Vv e VS

i

@ Define ¢>JMS = ¢ +qj, and Vs = span{qﬁj}j'\’:1
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nlocal and Local MS Basis Function Compariso

o Mesh size: 0.001666, «(x) = (4 + 3sin(100x))™!, f=1.
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Local and Nonlocal MSFEM
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Convergence Tests
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Mixed-Locality (An eye ball test)

Local FEM 600 Nonlocal FEM 600

MI-MSFEM 6/30
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Model Problem

@ Let V be a Hilbert space with inner product (-,-) and norm || - ||v.
e B € L(V,V'): linear, continuous, coercive operator.

e f € V': continuous linear functional.

@ We consider the abstract model problem,

findue Vst Bu—feVe.
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

e Note: V=V"gp V.
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

o Note: V=V"gqVv
@ 'Reconstruction’ R : V¥ — V and 'correction’ Q : VI — V" operators
defined by,

given ¢ € V" find Q(¢) € V' s.t. B(¢p+ Q(¢)) — f € (V')°,
and R(¢) = ¢ + Q(¢).
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Ambulant Problem

o VM c Vv, with basis {qb,-},'.\’:’*l < 'approximation space.’
o /M v VM <— projection operator.
o V" = Ker(I") + 'residual space.’

o Note: V=V"gqVv
@ 'Reconstruction’ R : V¥ — V and 'correction’ Q : VI — V" operators
defined by,

given ¢ € V" find Q(¢) € V' s.t. B(¢p+ Q(¢)) — f € (V')°,
and R(¢) = ¢ + Q(¢).

o VA= span{R(q&,-)},’.v:’“’1 < "ambulant space.’

@ Ambulant problem (finite dimensional):

find v € VA st. Bu* — f e (V).

Lemma: equivalence of ambulant and weak solutions.

o For any finite dimensional approximation space V' C V, the ambulant
and weak solutions are equivalent, i.e. ||u”® — u||v = 0.

T. Costa, S. Bond, D. Littlewood NIMSFEM



Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V" find Q°(¢) € V" s.t. B(¢ + Q°(¢)) — f € (V°)°,
and R*(¢) = ¢ + Q*(¢).
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Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V' find Q*(9) € V"7 s.t. B(o+ Q°(¢)) — F € (V°)°,
and R(¢) = ¢ + Q°(¢).

Ambulant Galerkin Method Ambulant Petrov-Galerkin Method
Define V42 = span{R?(¢;)}, then Define V42 = span{R?(¢;)}*, then
find u® € V™ st find u™® € V™ st
Bu® — f e (V*)°. Bu™ — f e (V7).
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Ambulant Galerkin & Petrov-Galerkin Methods

o Let {V?},, a € (0,00) be a family of Hilbert spaces satisfying,

For each a, VH c V2 c V.
For each v € V 3 a sequence {v? € V?}, satisfying,

lim |lv —v?||y =0.
a—0

o For each a, V"? = Ker(I1"|v).
o Define R? and Q° by

given ¢ € V' find Q*(9) € V"7 s.t. B(o+ Q°(¢)) — F € (V°)°,
and R(¢) = ¢ + Q°(¢).

Ambulant Galerkin Method Ambulant Petrov-Galerkin Method

Define V42 = span{R?(¢;)}, then Define V42 = span{R?(¢;)}*, then
find u® € V4 st find u®® € V% st
Bu® — f e (V*)°. Bu™ — f e (V7).
Theorem 1: AG Convergence Theorem 2: APG Convergence
lim ||u — u®]|v = 0. lim ||u — u®*]v = 0.
a—0 a—0

vy o’
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Why 'ambulant’: how does AFEM translate the problem on V7

o Let {w;}fv;l be a basis for V"% and let {w;}ij, 1 <i < Ny, 1 <j <N, be

defined by,
N,
R(¢:1) = Z Wi ;.
j=1
o Define,
B" ¢ RM M . Bl = Boi(¢;),
B e R . BEF = BR(¢1)(¢)),
Bf c R"M . BE = BR(¢1)(R*(¢))),
B™ e R 1 Byt = Byi(yy),
Bt e RY*M . Bf = Byi(¢)),
Bf c R""Ne . B = Boi(1),
W e RN Wy =
Then,

B¢ = B" + BfW’™ + wB! + WB™*W ',
and
B¢ = B" + WAL



AFEM as ROM: how does AFEM reduce the problem on V27?

@ Define a basis for V?, {6;}?’:’*1+Na,

0, — bi 1<i < Ny,
' Yieny No+1< Ny+ N,

@ Then define,
B € RNHHN)X(Ny+Na) . B = B6i(6;),

W e RNHX(Ny+Na) W, = dij ./ < Ny
v WiG—ny) J > Ny

B" BF In,
B_<BL Br,a>7 W_(W>

B = WBW',

or in blocks,

o Then,

and
B” = WB [INH 0] .
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From AFEM to Multiscale Finite Elements

e V: functional space whose elements are defined on R¢.

o V" is now a low DOFs finite element space.

Obtaining MSFEM from AFEM

Define the mesh in V? as a regular mesh refinement of the mesh in v,
Restrict computation of R*(¢;) to the support of ¢;.
Disregard f in computation of R?(¢;).

@ Error induced by @ and B (Order H). )

Theorem 3: Source Removal —Orthogonality Preserving Translation

The map ¢ — R?(¢) = ¢ + Q?(p) where Q?(¢) is defined by,
find Q°(¢) € V™" s.t. B(o+ Q°(¢)) € (V™7)°,

is orthogonality preserving. In particular, if {¢; ,N:”l is an orthogonal basis for

V*# then {R"(d);)},{\l:”l is an orthogonal basis for V4.

T. Costa, S. Bond, D. Littlewood NIMSFEM



Conclusions & Future Work

Conclusions
@ Demonstrated MSFEM performance for linear Peridynamic model in 1d

o Demonstrated MSFEM performance for mixed nonlocal-local coupling
between scales

@ Introduced AGM as a strategy for mathematical analysis of MSFEM for
local and nonlocal models

Future Work
e 2d/3d?
@ Nonlinear constitutive models

@ Analysis of mixed-locality method with AGM
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