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Motivation

Big Picture Goal:

Design scale computational models with quantum accuracy.

Computational Models at Various Scales

Quantum ← Density Functional Theory

Atoms & Molecules ← Molecular Dynamics

Molecules to Continuum ← Peridynamics

Continuum / Design / Experiment ← Local PDE

Bridging with Weak Peridynamics

DFT

Machine−Learning
IAPs

++
MD

Statistical
Coarse−Graining

++
PD

MSFEM
--
PDE/PD
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Peridynamic Model1,2

Let Ω ⊂ Rd , d ∈ {1, 2, 3} be a bounded body.

Any point x interacts directly with any point in
Hx := {y ∈ Ω : |x − y | < δ}.
δ - horizon, Hx - family of x .

Minimization of Potential Energy → Peridynamic Equation of Motion

ρ(x)utt(x , t) = Lu(x , t) + b(x , t),

where L is internal force density,

Lu(x , t) =

∫
Hx

f (u, q, x , t) dq.

u − displacement field,

ρ − density, reference configuration,

b − external force density,

f − pair-wise bond force density.

1S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, 2001.
2S. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic States and Constitutive

Modeling, 2007
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Linearized Model

For small displacements,

ρ(x)utt(x , t) =

∫
Hx

C(x , q, t)(u(q, t)− u(x , t)) dq + b(x , t).

C(x , q, t) - tensor-valued micromodulus function, describes linear material.

Assumes small displacements, but allows material failure.
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Weak Peridynamic Problem3,4

For convenience, define the bilinear forms,

(u, v)ρ =

∫
Ω

ρuv dx , (u, v) =

∫
Ω

uv dx ,

a(u, v) = −
∫

Ω

v(x)

{∫
Hx

C(x , q)(u(q)− u(x)) dq

}
dx

=

∫
Ω

∫
Hx

C(x , q)(u(q)− u(x))(v(q)− v(x)) dq dx ,

Multiply by v ∈ V , with V to be be determined, and integrate to obtain:

(utt(t), v)ρ + a(u(t), v) = (b(t), v) ← dynamic problem,

a(u, v) = (b, v) ← static problem.

3B. Aksoylu, M. Parks, Variational theory and domain decomposition for nonlocal problems,
2011

4X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a
peridynamics model of mechanics, 2011
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Energy Space

What is the natural space in which to seek weak solutions?

Define,

‖u‖2
E =

∫
Ω

∫
Ω

C(x , q)(u(q)− u(x))2 dq dx ,

and the energy space

E = {v : Ω→ Rd : ‖v‖E <∞}.

Reasonable assumptions on C ⇒ ‖ · ‖E is a semi-norm on E , and
E = L2(Ω).

‖ · ‖E is not a norm on E : If v = constant a.e., then ‖v‖E = 0.

What about boundary conditions?

T. Costa, S. Bond, D. Littlewood NlMSFEM



Volume-Constraints5

There is no trace in L2, problem ill-posed with standard boundary condition.

The model is nonlocal: consider x with dist(x , ∂Ω) < δ; x wants more
information.

1 Ω′ = Ω ∪ Ωc , where Ωc is a volume surrounding Ω such that dist(∂Ω, ∂Ω′) ≥ δ.

2 Volume constraint in Ωc .

Define

V = {v ∈ E : v |Ωc = 0}.

V : Hilbert space with inner product a(·, ·).

‖ · ‖E is the norm on V induced by a(·, ·).

Let A ∈ L(V ,V ′) be the operator induced by a(·, ·), and write b(·) = (b, ·) ∈ V ′.

Weak form, homogeneous Dirichlet peristatic problem:

find u ∈ V s.t. Au − b ∈ V o .

5M. Gunzburger, R. B. Lehoucq, A nonlocal vector calculus with application to nonlocal
boundary value problems, 2010
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Multiscale Finite Element Method: Overview

Model problem: FEM for the Dirichlet Poisson Problem

Ω ⊂ Rd , V = H1
0 (Ω)

a(u, v) =
∫

Ω
α∇u · ∇v , f (v) =

∫
Ω
Fv , F ∈ L2(Ω)

α : Ω→ R is highly oscillatory, non-degenerate, bounded

T h: regular triangularization of Ω, V h ⊂ V : FEM subspace with basis {φi}Ni=1

MSFEM Motivation

Resolution required for {φi}Ni=1 to capture oscillations due to α intractable

Enhance φi by a local (element) computation to include α oscillations

MSFEM

For each Ti ∈ T h, define ai (u, v) =
∫
Ti
α∇u · ∇v

T ε
i , V ε

i ⊂ H1
0 (Ti ): triangularization and FEM subspace, respectively

For each i , and for each φj with supp(φj ) ⊆ Ti

find qj ∈ V ε
i s.t. ai (qj , v

ε) = −ai (φj , v
ε), ∀vε ∈ V ε

i

Define φMS
j = φj + qj , and V h

MS = span{φj}Nj=1
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Multiscale Finite Element Method: Example

Multiscale basis function, 2d
linear Poisson with periodic
heterogeneity and ’hat’ functions
at both scales

Image credit: [Y. Efendiev, T.
Hou, Multiscale Finite Element
Methods, 2009]
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Nonlocal and Local MS Basis Function Comparison

Mesh size: 0.001666, α(x) = (4 + 3 sin(100x))−1, f = 1.
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Local and Nonlocal MSFEM
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Convergence Tests
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Mixed-Locality (An eye ball test)
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Model Problem

Let V be a Hilbert space with inner product (·, ·) and norm ‖ · ‖V .

B ∈ L(V ,V ′): linear, continuous, coercive operator.

f ∈ V ′: continuous linear functional.

We consider the abstract model problem,

find u ∈ V s.t. Bu − f ∈ V o .

T. Costa, S. Bond, D. Littlewood NlMSFEM



Ambulant Problem

V H ⊂ V , with basis {φi}NH
i=1 ← ’approximation space.’

IH : V → V H ← projection operator.

V r = Ker(IH) ← ’residual space.’

Note: V = V H ⊕ V r .

’Reconstruction’ R : V H → V and ’correction’ Q : V H → V r operators
defined by,

given φ ∈ V H , find Q(φ) ∈ V r s.t. B(φ+ Q(φ))− f ∈ (V r )o ,

and R(φ) = φ+ Q(φ).

V A := span{R(φi )}NH
i=1 ← ’ambulant space.’

Ambulant problem (finite dimensional):

find uA ∈ V A s.t. BuA − f ∈ (V A)o .

Lemma: equivalence of ambulant and weak solutions.

For any finite dimensional approximation space V H ⊂ V , the ambulant
and weak solutions are equivalent, i.e. ‖uA − u‖V = 0.
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Ambulant Galerkin & Petrov-Galerkin Methods

Let {V a}a, a ∈ (0,∞) be a family of Hilbert spaces satisfying,

1 For each a, VH ⊂ V a ⊂ V .
2 For each v ∈ V ∃ a sequence {va ∈ V a}a satisfying,

lim
a→0
‖v − va‖V = 0.

For each a, V r,a = Ker(IH |V a).

Define Ra and Qa by

given φ ∈ V H , find Qa(φ) ∈ V r,a s.t. B(φ+ Qa(φ))− f ∈ (V r,a)o ,

and Ra(φ) = φ+ Qa(φ).

Ambulant Galerkin Method

Define V Aa = span{Ra(φi )}NH
i=1, then

find uag ∈ V Aa s.t

Buag − f ∈ (V Aa)o .

Ambulant Petrov-Galerkin Method

Define V Aa = span{Ra(φi )}NH
i=1, then

find uapg ∈ V Aa s.t

Buapg − f ∈ (V H)o .

Theorem 1: AG Convergence

lim
a→0
‖u − uag‖V = 0.

Theorem 2: APG Convergence

lim
a→0
‖u − uapg‖V = 0.
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Why ’ambulant’: how does AFEM translate the problem on VH?

Let {ψi}Na
i=1 be a basis for V r,a and let {wij}ij , 1 ≤ i ≤ NH , 1 ≤ j ≤ Na be

defined by,

Ra(φi ) =

Na∑
j=1

wijψj .

Define,

BH ∈ RNH×NH : BH
ij = Bφi (φj),

Bpg ∈ RNH×NH : Bpg
ij = BRa(φi )(φj),

Bg ∈ RNH×NH : Bg
ij = BRa(φi )(Ra(φj)),

Br,a ∈ RNa×Na : Br,a
ij = Bψi (ψj),

BL ∈ RNa×NH : BL
ij = Bψi (φj),

BR ∈ RNH×Na : BR
ij = Bφi (ψj),

W ∈ RNH×Na : Wij = wij .

Then,

Bg = BH + BRWT + WBL + WBr,aWT ,

and

Bpg = BH + WAL.
T. Costa, S. Bond, D. Littlewood NlMSFEM



AFEM as ROM: how does AFEM reduce the problem on V a?

Define a basis for V a, {θi}NH+Na
i=1 ,

θi =

{
φi 1 ≤ i ≤ NH ,

ψi−NH NH + 1 ≤ NH + Na
.

Then define,

B ∈ R(NH+Na)×(NH+Na) : Bij = Bθi (θj),

W ∈ RNH×(NH+Na) : Wij =

{
δij j ≤ NH

wi(j−NH ) j > NH
,

or in blocks,

B =

(
BH BR

BL Br,a

)
, W =

(
INH

W

)
.

Then,

Bg = WBWT ,

and

Bpg = WB
[
INH 0

]
.
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From AFEM to Multiscale Finite Elements

V : functional space whose elements are defined on Rd .

V H is now a low DOFs finite element space.

Obtaining MSFEM from AFEM

1 Define the mesh in V a as a regular mesh refinement of the mesh in V H .

2 Restrict computation of Ra(φi ) to the support of φi .

3 Disregard f in computation of Ra(φi ).

Error induced by 2 and 3 (Order H).

Theorem 3: Source Removal →Orthogonality Preserving Translation

The map φ→ Ra(φ) = φ+ Qa(φ) where Qa(φ) is defined by,

find Qa(φ) ∈ V r,a s.t. B(φ+ Qa(φ)) ∈ (V r,a)o ,

is orthogonality preserving. In particular, if {φi}NH
i=1 is an orthogonal basis for

V H , then {Ra(φi )}NH
i=1 is an orthogonal basis for V Aa .
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Conclusions & Future Work

Conclusions

Demonstrated MSFEM performance for linear Peridynamic model in 1d

Demonstrated MSFEM performance for mixed nonlocal-local coupling
between scales

Introduced AGM as a strategy for mathematical analysis of MSFEM for
local and nonlocal models

Future Work

2d/3d?

Nonlinear constitutive models

Analysis of mixed-locality method with AGM
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