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ABSTRACT
We present a task-based domain-decomposition precondi-
tioner for partial differential equations (PDEs) resilient to
silent data corruption (SDC) and hard faults.

The algorithm exploits a reformulation of the PDE as a
sampling problem, followed by a regression-based solution
update that is resilient to SDC. We adopt a server-client
model implemented using the User Level Fault Mitigation
MPI (MPI-ULFM). All state information is held by the
servers, while clients only serve as computational units. The
task-based nature of the algorithm and the capabilities of
ULFM are complemented at the algorithm level to support
missing tasks, making the application resilient to hard faults
affecting the clients.

Weak and strong scaling tests up to ∼ 115k cores show
an excellent performance of the application with efficiencies
above 90%, demonstrating the suitability to run at large
scale. We demonstrate the resilience of the application for a
2D elliptic PDE by injecting SDC using a random single bit-
flip model, and hard faults in the form of clients crashing.
We show that in all cases, the application converges to the
right solution. We analyze the overhead caused by the faults,
and show that, for the test problem considered, the overhead
incurred due to SDC is minimal compared to that from the
hard faults.

1. INTRODUCTION
The reliability of extreme-scale computing machines is ex-

pected to decrease as these systems become increasingly
more complex [1, 6, 7]. This is due to a combination of
factors including, e.g., the presence of many components
characterizing these systems, the variable operational modes
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(e.g. lower voltage to address energy requirements) and the
increasing complexity (e.g. more, smaller transistors). Since
failure rates for these post-petascale systems are projected
to be in the order of tens of minutes [20], fault tolerance
and resilience will become a necessity. Programming mod-
els and applications will require a resilient infrastructure to
be suitable for fault-free simulations over a large number of
nodes for reasonable amounts of time. Assuming complete
reliability will be highly unrealistic. This sets the need to
develop resilience-aware applications for exascale.

Two main categories of system faults can be identified,
namely hard and soft faults [6, 14]. Hard faults can cause
partial or full computing nodes to fail, or the network to
crash. According to [18], the majority of failures affecting
application users involves single node failures in large PC
clusters. Currently, application checkpoint-restart (C/R) is
the most commonly used tool for dealing with hard faults
[6]: it involves killing all the remaining processes of a pro-
gram execution, and restarting the program from the most
recent global snapshot of the application. In future extreme
scale systems, it might not work as well because the time
for C/R will exceed the mean time to failure [6, 16, 7], and
it can lead to substantial overhead depending on the simu-
lation size [3]. An interesting work trying to address these
scaling issues has been developed in [21]. The authors ex-
plore an emerging resilient programming model called Local
Failure Local Recovery (LFLR) providing application devel-
opers the ability to recover locally and continue application
execution when a process is lost. This study is an example
fitting the general framework mentioned above, i.e. design-
ing resilience-aware applications.

Silent errors are more subtle than hard faults because they
can go undetected and do not kill the running application,
e.g. in the case of silent data corruption (SDC). Soft faults
cause incorrect arithmetic or storage. The key feature of
silent errors is that, being undetected, there is no oppor-
tunity for an application to directly recover from the fault
when it occurs. Sample studies of the effects of SDC on
iterative solvers can be found in [4, 10, 12, 11].

This work presents a task-based domain-decomposition
preconditioner for partial differential equations (PDEs) that
is resilient to SDC and hard faults. The problem is refor-
mulated such that the PDE solver is reduced to a number
of independent tasks to favor concurrency and parallelism.
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Resilience to SDC is achieved at the algorithm level by ex-
ploiting a reformulation of the PDE as a sampling problem,
followed by a solution update through data manipulation
based on robust regression yielding resilience to SDC. This
is complemented by supporting resilience to hard faults, us-
ing a server-client model (SCM) implemented using the User
Level Fault Mitigation MPI (MPI-ULFM), a fault tolerance
capability proposed for the MPI standard that enables a
fault-tolerant MPI framework. All state information is held
by the servers, while clients only serve as computational
units. The server-client programming model provides a task-
based infrastructure that can potentially address some of
the concerns related to energy consumption and resiliency
at extreme-scale. The task-based nature of the algorithm
and the capabilities of ULFM are complemented at the algo-
rithm level to support missing tasks, making the application
resilient to hard faults affecting the clients.

ULFM provides three main capabilities in relation to fault
tolerance: the ability to continue the execution through pro-
cess failure, the detection and notification of process failure,
and revocation and correction of a broken communicator.
Among these, revoking and correcting a broken communi-
cator becomes increasingly more expensive as the size of
the target communicator increases. The SCM allows us to
avoid using these operations, because if a client crashes, its
information and local communicator do not need to be re-
constructed, since the server can simply continue with the
clients that are alive.

Our application can be seen as a preconditioner that will
enable today’s solvers to be used effectively on future ar-
chitectures by operating on subdomain levels. Strong and
weak scalability tests run up to ∼ 115K cores show a paral-
lel efficiency above 90%. We investigate the effects of SDC
in the form of random bit-flips, and hard faults injected as
client crashing, and quantify their impact on the overhead of
target stages of the application as well as the total overhead
of the application.

The paper is organized as follows. In § 2, we describe
the mathematical formulation; in § 3, we present the imple-
mentation details; in § 4, we discuss the results, focusing on
the scalability § 4.1, and resilience § 4.2. Finally, in § 5 we
present the conclusions.

2. MATHEMATICAL FORMULATION
This work focuses on 2D elliptic PDEs of the form

Ly(x) = g(x), (1)

where L is an elliptic differential operator, g(x) is a given
source term, and x = {x1, x2} ∈ Ω ⊂ R2, with Ω being
the target domain region. We focus on Dirichlet boundary
condition y(x)|x∈Γ = yΓ along the boundary Γ of domain
Ω. The discussion of 1D elliptic PDEs can be found in [19].
Elliptic equations are chosen because they represent a fun-
damental problem in physics. Extension to parabolic and
hyperbolic problems is in progress.

Figure 1 shows a high-level schematic of the algorithm’s
work-flow. The first step involves the discretization of the
computational domain, which is arbitrary, potentially het-
erogeneous across the domain, e.g. uniform, or non-uniform
rectangular grid, or a finite-element triangulation, etc.

The second step is the partitioning stage, where the target
2D domain, Ω, is divided into a grid of n1 × n2 overlapping
regions (or subdomains), with nk being the number of sub-
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Figure 1: Schematic of the work-flow of the algo-
rithm. For clarity, starting with stage 3 we only
show the steps for Ω01 but the same operations are
applied to all subdomains.

domains along the k-th axis. The size of the overlap does not
need to be equal and uniform among all partitions, and can
vary across the domain. The partitioning stage yields a set
of n1 × n2 subdomains Ωij , and their corresponding bound-
aries Γsij , for i = 0, . . . , n1− 1, and j = 0, . . . , n2− 1, where
Γsij represents the boundary set of the ij-th subdomain Ωij .

We define as our object of interest the set of solution
fields along the boundaries, which we denote y(x)|x∈Γsij

for

i = 0, . . . , n1− 1, and j = 0, . . . , n2− 1. Due to the overlap-
ping, each subdomain Ωij includes a set of inner boundaries,
Γin
sij , i.e. the parts of the boundaries belonging to the inter-

secting (neighboring) subdomains that are contained within
Ωij . The core of the algorithm relies on exploiting within
each subdomain Ωij the map relating the solution at the
subdomain boundaries, y(x)|x∈Γsij

, to the solution along

the inner boundaries, y(x)|x∈Γin
sij

. These maps can be writ-

ten compactly as

y(x)|x∈Γin
sij

= f (ij)
(
y(x)|x∈Γsij

)
, (2)

for i = 0, . . . , n1 − 1, and j = 0, . . . , n2 − 1. The system of
equations assembled from these boundary-to-boundary maps
collected from all subdomains, combined with the boundary
conditions on the full domain y(x)|x∈Γ, yields a fixed-point
problem of the form

y(x) = Fy(x), (3)

where y represents the vector of the solution values at all
subdomains boundaries. This problem is only satisfied by
the true solution. We remark that these boundary maps
f (ij) relate the y-values, since they are built from the re-
strictions of the subdomain solutions at the corresponding
boundaries.

In this work, rather than solving Eq. (3) directly, we con-
struct approximations (or surrogates) of the boundary-to-

boundary maps, which we call f̃ (ij). One of the main fea-
tures of the algorithm is that the construction of these maps
can be done for each subdomain independently from all the
others. This allows us to satisfy data locality, which is one of



the main factors contributing to scalability on extreme scale
machines. To build these surrogate maps, given a current
state of the solution at the subdomains boundaries, we use
a sampling strategy that involves solving the target PDE
equation locally within each subdomain for sampled values
of the boundary conditions on that subdomain, see stage
3 in Figure 1. These samples are used within a regression
approach to infer the approximate boundary-to-boundary
maps. For non-linear problems the maps are non-linear,
while for linear PDEs the boundary maps are linear [19].
Following the construction of the surrogate boundary-to-
boundary maps, we can then solve the system of boundary
maps, namely the approximate version of the fixed point sys-
tem in Eq. (2), which provides us with the new solution state
at all the subdomains boundaries and represents an approx-
imation of the true solution. An important measure of the
accuracy of the current solution y(x)|x∈Γsij

is the residual

z = Fy − y, (4)

which can be computed by extra subdomain solves using
boundary conditions defined by the current solution y, and
subtracting the corresponding current solutions y from the
resulting values at all boundaries. Given the fixed-point
problem in Eq. (3), the residual (4) vanishes if the current
solution y is the exact solution. In the case of linear PDEs,
because the boundary-to-boundary maps are linear, and as-
suming that all the regressions complete successfully, the
algorithm converges in one iteration.

The construction of the boundary-to-boundary maps plays
a key role for ensuring resilience against potential silent data
corruption (SDC) affecting the PDE samples. As shown
in [19], when inferring linear maps, using a `1-noise model
one can seamlessly filter out the effects of few corrupted
data. The `1 noise model yields the solution with as few
non-zero residuals as possible. Under the assumption that
faults are rare, the inferred maps will fit the non-corrupted
data exactly while effectively ignoring the corrupted data.
In the present work, we employ an iteratively re-weighted
least squares (IRLS) method, which is effectively equivalent
to a `1 minimization [8].

3. IMPLEMENTATION DETAILS
We have developed a parallel, C++ implementation of the

algorithm using a server-client model (SCM). This section
describes the SCM, its resilience properties, and how we
implement each stage of the algorithm to exploit its features.

3.1 Server-Client Model
To support resilience to hard faults, we exploit a server-

client programming model, and rely on the User Level Fault
Mitigation MPI (MPI-ULFM)1 [2], a fault tolerance capabil-
ity proposed for the MPI standard enabling a fault-tolerant
MPI framework.

The SCM structure involves a set of servers, each con-
nected to the same number of clients for resource balancing.
A schematic of the SCM structure is shown in Figure 2. A
client is defined as a set of MPI processes, and is designed
solely to accept and perform work without any assumption
on its reliability. There are three main types of communi-
cators involved. One communicator to include all servers,
allowing them to communicate between each other. One

1http://fault-tolerance.org/
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Figure 2: Schematic of the server-client structure.

communicator is defined for each cluster, including a server
and the root MPI ranks of all the clients associated with that
server. This cluster communicator is used by the servers to
interface with the root ranks of the clients. This allows to
optimize communication, since the client’s root rank receives
work from the server, and distributes it among the children
ranks within that client. This approach can be more effi-
cient than having the server communicating a task to each
child MPI rank in a client. One example is the case where
all ranks of a client live in the same node, so that one can ex-
ploit in-node parallelism and faster memory access. Lastly,
each client owns a communicator used for all the intra-client
communication. The clusters and all the clients are indepen-
dent, i.e. clients are only visible to the server within a given
cluster, and at any given time, each client is handling a dif-
ferent work unit. This design choice allows a client to fail
without affecting others.

The state information is distributed among the servers,
which are assumed to be highly resilient (safe or under a
“sandbox” model implementation). The sandbox model as-
sumed for the servers can be supported by software, hard-
ware or a combination of both. Software support can be ac-
complished via data redundancy and strategic synchroniza-
tion [17], [5], [13]. Hardware support involves the variable
levels of resilience that can be allowed within large computer
systems. The servers are responsible for generating work in
the form of tasks, dispatching them to their pool of available
clients, as well as receiving and processing them.

Separating the state from computation enables resilience
to hard faults. Clients crashing do not affect the state in-
formation safely owned by the servers, but only translate
into missing tasks. Besides, this has to be complemented by
designing an application/algorithm that can handle missing
data.

3.2 Algorithm Implementation
As described in § 2, the algorithm comprises four main

stages: sampling, regression, boundary maps system solve,
and updating. Sampling and regression can be performed
independently and concurrently across all subdomains. As
such, they are implemented in the form of tasks executed
by the clients, and are therefore susceptible to the failures
occurring on the clients. On the other hand, the fixed-point
solve of the boundary-to-boundary maps system and the up-



Table 1: Scalability tests.
Weak Strong

Subdomains
182, 242, 302,
422, 482, 602 422

Subdomain size 1802 1802

Servers
36, 64, 100,

196, 256, 400
49, 98,

196, 441
Clients/server 64 64
Size of client 4 MPI ranks 4 MPI ranks

Total Cores
9252, 16448, 25700,

50372, 65792, 102800
12594, 25186,
50372, 113337

dating of the subdomains are executed by the servers, since
they fully own the state information. The system of equa-
tions built from the boundary maps is much smaller than
the original discretized PDE system over the full domain
grid, and so it fits on a small number of servers. Moreover,
the servers are assumed to be “sandboxed”, allowing us to
circumvent any potential data corruption during these two
operations. This design choice aligns with the concept of
selective reliability [4], where some parts of the algorithm
are assumed to be handled in a more reliable manner than
others.

4. RESULTS
All the results presented below are based on the following

2D linear elliptic PDE

∂

∂x1

(
k(x)

∂y(x)

∂x1

)
+

∂

∂x2

(
k(x)

∂y(x)

∂x2

)
= g(x), (5)

where x = {x1, x2}, the field variable is y(x1, x2), k(x1, x2)
is the diffusivity, and g(x1, x2) is the source term. This
PDE is solved over a unit square (0, 1)2, with homogeneous
Dirichlet boundary conditions. The diffusivity and source
fields are defined as

k(x1, x2) = 8.0 ∗ exp(−d(x1, x2)/0.025) + 2.0, (6)

g(x1, x2) = 2.0 ∗ exp(−d(x1, x2)/0.050)− 1.0, (7)

where d(x1, x2) = (x1 − 0.35)2 + (x2 − 0.35)2. To solve
the above PDE within each subdomain, we employ a struc-
tured grid and second-order finite differences to discretize
Eq. (5). The resulting linear system stemming from the
finite-difference discretization is solved using AztecOO, which
is part of Trilinos [15].

4.1 Nominal Scalability
Weak and strong scaling have been tested using the pa-

rameters listed in Table 1. All the runs were completed on
Edison (NERSC)2, a Cray XC30, with Peak performance
of 2.57 Petaflops, Cray Aries high-speed interconnect with
Dragonfly topology with approximately 8GB/sec MPI band-
width. The scalability has been performed without any
faults, and relying on the native Cray-MPICH. Ongoing
work is the scalability on Edison using ULFM-MPI.

Figure 3 shows the weak and strong scaling results. As
shown in Table 1, we set up the weak scaling by fixing the
number of clients per server and the amount of data owned
by each server, while increasing the problem size by adding

2http://www.nersc.gov
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Figure 3: Nominal weak and strong scaling results.

more clusters. This design imposes no constraint on the
problem size, since larger problems can be tackled by simply
adding more clusters. Figure 3 shows an excellent weak
scaling with efficiency settling around 93% up to ∼ 105K.

Strong scaling is based on fixing the problem size, and
testing how the application performs as we increase the com-
puting power. In this work, we increase the computational
power by increasing the number of clusters used in the SCM.
Figure 3 shows strong scaling results up to ∼ 115k cores,
which is close to Edison’s full capacity (∼ 133k). The re-
sults are excellent, only slightly deviating from the ideal
linear scaling trend superimposed with a dashed line. This
result confirms that despite the task-based nature of the
SCM, the application is not limited by communication, and
is well-suited for running at large scale.

4.2 Resiliency
In this section, we demonstrate the resilience to SDC and

hard faults, and discuss the associated overhead. SDC are
assumed to affect numerical data used in the algorithm, i.e.
we exclude other types of faults e.g., in data structures or
control flow [9]. We assume SDC to be caused by bit-flips
so the results below are based on a random bit-flip model.

Both SDC and hard faults are only injected in the clients,
which is consistent with the SCM described previously, where
servers are assumed to be reliable, while no assumption is
made on the reliability of the clients. Hard faults are as-
sumed to occur in the form of clients crashing. The ad-
vantage of the SCM we are proposing is that when a client
crashes, we do not need to call expensive collective proce-
dures of ULFM to rebuild the client and fix communicators,
because the server can simply continue the execution using
only the clients that are alive. From a practical standpoint,
our implementation is based on each server probing the cor-
responding cluster communicator using MPI_ANY_SOURCE to
assess whether a new message is arriving from one of the
clients. If a client crashes, despite there are other pending
messages, the probing loop does not work because ULFM re-
ports the same error continuously (MPI_ERR_PROC_FAILED).
This problem can be solved by acknowledging the failure
using the ULFM function MPI_COMM_FAILURE_ACK, and then
continue the normal probing loop. This allows us to avoid
the need to reconstruct the broken client.



Leveraging a selective reliability approach [4, 9, 10, 12,
11], which lets algorithm developers isolate faults to certain
parts of the algorithm, SDC are only injected during the
sampling stage, while hard faults can hit both sampling and
regression.

4.2.1 Fault Injection and Model
To inject faults, we leverage the task-based nature of our

algorithm by choosing the number of faults as a percentage
of the nominal number of tasks to execute. This is done by
randomly selecting the set of task IDs off-line. This elim-
inates any dependency between faults’ occurrence and the
execution time, since the latter is machine-dependent.

For hard faults, when a client receives a black listed task
ID, the processes owning the MPI ranks within that client
are killed. This is possible because of the ULFM-MPI im-
plementation, which allows actual processes to be killed.

For soft faults, if a task is in the black list, we adopt
the following procedure: we draw a value, u, from a stan-
dard uniform distribution, and if u ≤ 0.5, the task data is
corrupted before the execution; if u > 0.5, the task data
is corrupted after its execution. This mimics corruptions
occurring when tasks are being transmitted to and from a
client, as well as those happening during execution. If a task
is corrupted before the execution, this translates into cor-
rupting all boundary conditions pertaining to that sampling
task, since the boundary conditions are the only informa-
tion needed to solve the elliptic PDE. If a task is corrupted
after execution, this translates into corrupting all points in
the solution, which means that even the inner points of a
subdomain can be affected.

4.2.2 Handling Faults
To guarantee the algorithm’s resilience to SDC and hard

faults affecting the sampling stage, the key condition to be
satisfied is that within each subdomain, the number of un-
corrupted collected PDE samples has to be greater than the
minimum set needed to have a mathematically well-posed
regression problem. This can be achieved by generating,
within each subdomain, more PDE samples than the mini-
mum set using an oversampling factor, ρ > 1, such that the
total target number of samples to generate is N = ρNs

nom,
where Ns

nom is the number of samples needed for the no-
fault case. In the present work, the oversampling is chosen
as the minimum value to mitigate the effect of the faults.
This is possible because we inject a known number of faults.
In general, the oversampling can be set based on estimating
the reliability of the machine, and inferring the likelihood
of faults occurring. During the sampling stage, we apply a
filter on the task data returned to the server to check that
it is within the interval (−100, 100) before the data is stored
within the corresponding subdomain. This interval is arbi-
trary, but can be estimated by either a domain expert or
by known physical bounds on the solution. This is the only
active “filter” that is needed by the application. Any other
corruption during the sampling does not need to be actively
detected, since it is seamlessly filtered out thanks to the
mathematical model used in the regression.

As previously mentioned, during the regression only hard
faults are injected. Hence, a client crashing yields the loss
of regression tasks. To overcome this effect, the server keeps
track of the regression tasks that have not come back, and
resubmits them until they return.
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Figure 4: Sample results of the clients’ work-load
distribution for various hard failures.

4.2.3 Test Problem and Execution
Resilience is tested using the PDE in Eq. (5), solved over

a structured uniform grid with 2512 grid points over the unit
square domain. We partition the domain using n1 = n2 = 3
subdomains, with an overlapping of 10 grid cells between
neighboring subdomains. This setting yields a total of 9 sub-
domains, each with a local grid of ∼ 902 grid points. Nom-
inally, this problem involves Ns

nom = 3249 sampling tasks,
and Nr

nom = 2136 regression tasks. The SCM structure in-
volves a single server holding the data, i.e. subdomains, and
uses 14 clients each made of 2 MPI ranks.

To explore the impact of SDC, we explore three percent-
ages, namely 0.25%, 0.5%, and 1.0%. For hard faults, we
consider cases with 2, 4 and 6 clients failing. These cases
correspond, respectively, to 14%, 28% and 42% of the com-
putational power. The number of failures chosen is admit-
tedly high, because our goal is to test the application under
various extreme scenarios.

The results are presented in two parts: first, we focus our
attention on analyzing the effect of hard faults only; second,
we discuss the results obtained when both soft and hard
faults can occur during the execution. For each scenario, we
run an ensemble of 100 runs to have a statistically meaning-
ful result, and extract the main statistics.

4.2.4 Resilience Analysis
Figure 4 shows a comparison of the clients’ workload for

a sample run with no-faults, and runs with 2, 4 and 6 hard
faults randomly happening during the sampling stage. The
plot displays along the angular direction the client name,
and the data reported indicates the total number of tasks
being handled during the simulation. For the no-fault case,
the workload is fairly uniform: each client handles nearly the
same number of tasks. As the number of faults increases,
the asymmetry becomes increasingly more evident. As ex-
pected, increasing the number of faults causes the clients
that are alive to handle more and more tasks to compensate
for those that are dead. Even in the cases with faults, the



workload remains fairly uniform among the clients that are
alive.

Hard Faults Only. Figure 5 summarizes the main statis-
tics from the ensemble runs performed when only hard faults
are injected. Specifically, we show three radar-plots corre-
sponding to hard faults hitting only the sampling stage (a),
only the regression (b), and both (c). Each plot displays
the average value over the replicas of key quantities in the
following counter clock-wise order: the total, regression and
sampling overhead with respect to the no-fault case, the per-
centage of failed clients, and the boolean value identifying
convergence. In all cases, all the runs converged to the cor-
rect answer, proving that the application is resilient to hard
faults. Convergence is verified by checking that the root-
mean-square error of the residual in Eq. (4) is lower than a
specified threshold.

Figure 5a shows that when hard faults hit the sampling
stage, the regression is substantially more affected than the
sampling itself. This can be explained as follows: while
during the sampling hard faults occur at random and, on
average, are distributed across the full stage, the entire re-
gression stage has to be completed with reduced computa-
tional power. The total overhead is a weighted average of
the overhead from the sampling and the one of the regres-
sion. In this case, in order to make the application resilient,
we only need to run as many additional samples per subdo-
main as the number clients that crash. For the case with
2 clients failing, for instance, the overhead incurred in the
sampling is only about 5%, and the regression overhead is
about 14%. The total overhead thus end up being about
11%, despite the fact that this case corresponds to a 14%
loss of the computational power.

Figure 5b shows the results when hard faults occur only
during the regression. In this case, there is no need to have
any oversampling, yielding no overhead during the sampling
stage. All the overhead is within the regression stage. Again,
the results show the resilience of the application since it
converges in all cases. In this scenario, we highlight the
relationship between the percentage of failures and the total
overhead of the application: for 14%, 28% and 42% loss
of clients, we observe a total overhead of about 8%, 14%
and 20%, respectively, which is nearly half in all three case.
This is because the sampling stage has no overhead, since
all faults occur during the regression.

Figure 5c shows the results obtained when hard faults are
injected during both sampling and regression. The number
of faults hitting either stage is drawn at random, thus in-
volving scenarios where all faults hit the sampling, or just
the regression, or both. The results shown in panel (c) can
be seen as a combination of panel (a) and (b). It is inter-
esting to note how losing 14%, 28% and 42% of the clients
yields, respectively, a total overhead of 8%, 19% and 30%.

The three plots show, as expected, that the best case sce-
nario is when all faults are limited during the regression
stage because full computational power is available for a
longer part of the simulation. Overall, an interesting ob-
servation is that in all cases, the total overhead is equal or
lower than the loss of computational power.

Hard Faults and SDC. Figure 6 summarizes the main re-
sults from the ensemble runs performed when both hard
faults and SDC are injected. Each plot displays the average
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Figure 5: Results obtained from the ensemble runs
performed for the case with hard faults only. The
radar-plots correspond to the following cases: (a)
hard faults during sampling; (b) hard faults during
regression; (c) hard faults during sampling and re-
gression.
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Figure 6: Statistical results obtained from the en-
semble runs performed for the case with both hard
and soft faults. The radar-plots correspond to the
various levels of SDC injected, namely 0.25 % (a),
0.5 % (b), and 1.0 % (c).

value over the replicas of target quantities in the following
counter clock-wise order: the percentage of sampling tasks

affected by SDC, the boolean value identifying convergence,
the total, regression and sampling overhead with respect to
the no-fault case, the percentage of failed clients, and the ac-
tual number of tasks affected by SDC. We recall that SDC
are injected during the sampling stage, while hard faults are
injected during both sampling and regression. In this sce-
nario, the key to make the application resilient is to consider
an oversampling accounting for both the present of hard and
soft faults. For example, for 0.25% SDC and 4 hard faults,
this means generating about 13 more samples per subdo-
main with respect to the no-fault case.

First, all runs converge, demonstrating the resilience even
when both SDC and hard faults occur together. Second, for
a given number of hard faults, the results show an interest-
ing trend for the overhead in the sampling and regression
stages. For example, when the number of hard faults is 4,
a nearly four-fold increase in the number of SDC from 9
to 33 causes the sampling overhead to only increase from
9% (Figure 6a) to about 15% (Figure 6c). Similarly, the
regression overhead only increases from 30% to about 38%.
This yields the total overhead to only increase from 21% to
28%. A similar argument can be made for the other cases.
The total overhead of our application is thus only minimally
sensitive to SDC affecting the sampling stage. These results
demonstrate how well the application can tolerate soft and
hard faults.

5. CONCLUSIONS
This work discussed algorithm-based resilience to silent

data corruption (SDC) and hard faults in a task-based domain-
decomposition preconditioner for PDEs.

The algorithm involves four main steps: first, the domain
of the PDE is split into overlapping subdomains; second,
the PDE is solved on each subdomain for sampled values of
the local current boundary conditions; third, the resulting
subdomain solution samples are fed into a regression step to
build boundary-to-boundary maps; finally, the intersection
of these maps yields the updated state at the subdomain
boundaries.

Support to hard faults is enabled by relying on a server-
client model implemented using ULFM-MPI where all state
information is held by the servers, while clients are designed
solely as computational units. The application and parallel
implementation was tested for weak and strong scaling up
to ∼ 115K cores, showing an efficiency greater than 90%.

We used a 2D elliptic PDE, a fault model based on ran-
dom single bit-flip and target reliability assumption to show
that the application is resilient to SDC injected during the
sampling stage, and hard faults occurring during sampling
and regression. The resilience to SDC is inherent in the
algorithm thanks to the robust regression based on the `1
regression model, allowing to seamlessly filter out the effect
of corrupted data. The results are promising. They show
that the overhead due to the presence of SDC is minimal
compared to the contribution due to hard faults. Moreover,
the total overhead observed is never greater than the one es-
timated by accounting for the loss of computational power.

6. ACKNOWLEDGMENTS
This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, under Award Numbers 13-



016717. Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000.
This research used resources of the National Energy Re-
search Scientific Computing Center, a DOE Office of Sci-
ence User Facility supported by the Office of Science of the
U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

7. ADDITIONAL AUTHORS
Additional authors: Olivier LeMaitre (LIMSI, France, email:

olm@limsi.fr) and Omar Knio (Duke University, Durham,
NC, USA, email: omar.knio@duke.edu)

8. REFERENCES
[1] K. Bergman, S. Borkar, D. Campbell, W. Carlson,

W. Dally, M. Denneau, P. Franzon, W. Harrod,
J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,
M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, K. Yelick, K. Bergman,
S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, J. Hiller,
S. Keckler, D. Klein, P. Kogge, R. S. Williams, and
K. Yelick. Exascale computing study: Technology
challenges in achieving exascale systems peter kogge,
editor & study lead, 2008.

[2] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and
J. Dongarra. Post-failure recovery of mpi
communication capability: Design and rationale. Int.
J. High Perform. Comput. Appl., 27(3):244–254, Aug.
2013.

[3] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou.
Algorithm-based fault tolerance applied to high
performance computing. Journal of Parallel and
Distributed Computing, 69(4):410–416, Apr 2009.

[4] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and
M. Hoemmen. Fault-tolerant linear solvers via
selective reliability. ArXiv e-prints, June 2012.

[5] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and
M. Hoemmen. Fault-tolerant linear solvers via
selective reliability. ArXiv e-prints, June 2012.

[6] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer,
and M. Snir. Toward Exascale Resilience.
International Journal of High Performance Computing
Applications, 23(4):374–388, oct 2009.

[7] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer,
and M. Snir. Toward exascale resilience: 2014 update.
Supercomputing frontiers and innovations, 1(1), 2014.

[8] I. Daubechies, R. DeVore, M. Fornasier, and C. S.
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