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We explore polarized heavy quarkonium production using the color evaporation model at leading
order. We present the polarized to total yield ratio as a function of center of mass energy and
rapidity in p+p collisions. At energies far above the QQ production threshold, we find charmonium
and bottomonium production to be longitudinally polarized (Jz = 0). The quarkonium states are
also longitudinally polarized at central rapidity, becoming transversely polarized (Jz = ±1) at the
most forward rapidities.

I. INTRODUCTION

Even more than 40 years after the discovery of J/ψ,
the production mechanism of quarkonium is still not well
understood. Most recent studies of quarkonium produc-
tion employ nonrelativistic QCD (NRQCD) [1], which is
based on an expansion of the cross section in the strong
coupling constant and the QQ velocity [2]. The cross
section is factorized into hard and soft contributions and
divided into different color and spin states. Each color
state carries a weight, the long distance matrix elements
(LDMEs) that are typically adjusted to the data above
some minimum transverse momentum, pT , value. The
NRQCD cross section has been calculated up to next-
to-leading order (NLO). The LDMEs, conjectured to be
universal, fail to describe both the yields and polariza-
tion simultaneously for pT cuts less than twice the mass
of the quarkonium state. The polarization is sensitive
to the pT cut: the cut pT > 10 GeV was chosen to de-
scribe both the yield and polarization in Ref. [3] while
pT > 3m was chosen for the excited states ψ(2S) and
Υ(3S) in Ref. [4] to fit the polarization. The universality
of the LDMEs can be tested by using those obtained at
high pT to calculate the pT -integrated cross section. In
Ref. [5], the pT -integrated NRQCD cross section is cal-
culated with LDMEs obtained with pT cuts in the range
3 < pT < 10 GeV. The resulting midrapidity cross sec-
tions, dσ/dy|y=0, systematically overshoot the J/ψ data.
The lowest pT cut is most compatible with dσ/dy|y=0

while calculations based on higher pT cuts can be up to
an order of magnitude away from the data [5]. More
recent analysis has shown that the ηc pT distributions
calculated with LDMEs obtained from J/ψ yields using
heavy quark spin symmetry [6–8], overshoots the high pT
LHCb ηc results [9].

The Color Evaporation Model (CEM) [10–13], which
considers all QQ (Q = c, b) production regardless of the
quarks’ color, spin, and momentum, is able to predict
both the total yields and the rapidity distributions with
only a single normalization parameter[14]. The CEM has
so far only been used to predict spin-averaged quarko-

nium production: the polarization was not considered
before. This paper presents a leading order (LO) cal-
culation of quarkonium polarization in the CEM, a pT -
integrated result. Currently, there are no exclusive NLO
polarized QQ calculations on which to impose the HH
(H = D, B) mass threshold. Our calculation is a first
step toward a full CEM polarization result that provides
a general idea of whether there is any appreciable LO
polarization that might carry through to the next order
even though the kinematics are different. We will begin
to address the pT dependence in a further publication.

In the CEM, all quarkonium states are treated the
same as QQ below the HH threshold where the invari-
ant mass of the heavy quark pair is restricted to be less
than twice the mass of the lowest mass meson that can
be formed with the heavy quark as a constituent. The
distributions for all quarkonium family members are as-
sumed to be identical. (See Ref. [13] for a new treatment
of the CEM pT distributions based on mass-dependent
thresholds.) In a p + p collision, the production cross
section for a quarkonium state is given by

σ = FQ
∑
i,j

∫ 4m2
H

4m2
Q

dŝ

∫
dx1dx2fi/p(x1, µ

2)fj/p(x2, µ
2)

× σ̂ij(ŝ)δ(ŝ− x1x2s) , (1)

where i and j are q, q and g such that ij = qq or gg.
The square of the heavy quark pair invariant mass is ŝ
while the square of the center-of-mass energy in the p+p
collision is s. Here fi/p(x, µ

2) is the parton distribution
function (PDF) of the proton as a function of the fraction
of momentum carried by the colliding parton x at factor-
ization scale µ and σ̂ij is the parton-level cross section.
Finally, FQ is a universal factor for the quarkonium state
and is independent of the projectile, target, and energy.
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FIG. 1. Orientation of z-axis indicated by the dashed ar-
rowed line. Two proton arrows indicate the incoming beam
directions. If the final state heavy quark-antiquark pair have
the same helicity, then the total angular momentum along
the z-axis, Jz, is 0 while if they have opposite helicity, then
Jz = ±1.

At leading order, the rapidity distribution, dσ/dy, is

dσ

dy
= FQ

∫ 4m2
H

4m2
Q

dŝ

s

{
fg/p(x1, µ

2)fg/p(x2, µ
2)σ̂gg(ŝ)

+
∑

q=u,d,s

[fq/p(x1, µ
2)fq/p(x2, µ

2)

+ fq/p(x1, µ
2)fq/p(x2, µ

2)]σ̂qq(ŝ)
}
, (2)

where x1,2 = (
√
ŝ/s) exp(±y). We take the square of the

factorization and renormalization scales to be µ2 = ŝ.

II. POLARIZED QQ PRODUCTION AT THE
PARTON LEVEL

At the parton level, the leading order calculation forces
the final state QQ pair to be produced back-to-back with
zero total transverse momentum. We define the polar-
ization of the QQ pair to be either transversely polarized
(Jz = ±1) or longitudinally polarized (Jz = 0) in the
helicity frame where the z axis is pointing from Q to Q
along the beam axis as shown in Fig. 1. Note that we are
not distinguishing the S = 1 triplet state from the S = 0
singlet state. This will be addressed in a future publi-
cation, together with the separation into orbital angular
momentum, L, states.

At leading order, there are four Feynman diagrams to
consider, one for qq annihilation and three for gg fusion.
Each diagram includes a color factor C and a scatter-
ing amplitude A. The generic matrix element for each
process is [15]

Mqq = CqqAqq , (3)

Mgg = Cgg,ŝAgg,ŝ + Cgg,t̂Agg,t̂ + Cgg,ûAgg,û . (4)

As previously mentioned, there is one diagram only for
qq → QQ, thus a single amplitude, Aqq. However, there

are three diagrams for gg → QQ at leading order, the ŝ,
t̂ and û channels. In terms of the Dirac spinors u and v,
the individual amplitudes are

Aqq =
g2s
ŝ

[u(p′)γµv(p)][v(k)γµu(k′)] , (5)

Agg,ŝ = −g
2
s

ŝ

{
− 2k′ · ε(k)[u(p′)ε/(k′)v(p)]

+ 2k · ε(k′)[u(p′)ε/(k)v(p)]

+ ε(k) · ε(k′)[u(p′)(k/′ − k/)v(p)]
}
, (6)

Agg,t̂ = − g2s
t̂−M2

u(p′)ε/(k′)(k/− p/+M)ε/(k)v(p) , (7)

Agg,û = − g2s
û−M2

u(p′)ε/(k)(k/′ − p/+M)ε/(k′)v(p) .(8)

Here gs is the gauge coupling, M is the mass of heavy
quark (mc for charm and mb for bottom), ε represents
the gluon polarization vectors, γµ are the gamma matri-
ces, k′ (k) is the momentum of initial state light quark
(antiquark) or gluon, and p′ (p) is the momentum of final
sate heavy quark (antiquark).

The amplitudes are separated according to the Jz of
the final state, Jz = 0 or Jz = ±1 . The total amplitudes
are calculated for each final state Jz while averaging over
the polarization of the initial gluons or the spin of the
light quarks, depending on the process, in the spirit of
the CEM.

The squared matrix elements, |M|2, are calculated for
each Jz. The color factors, C, are calculated from the
SU(3) color algebra and are independent of the polariza-
tion [15]. They are

|Cqq|2 = 2 , |Cgg,ŝ|2 = 12 ,

|Cgg,t̂|
2 =

16

3
, |Cgg,û|2 =

16

3
. (9)

C∗gg,ŝCgg,t̂ = +6 , C∗gg,ŝCgg,û = −6 ,

C∗
gg,t̂

Cgg,û = −2

3
. (10)

The total squared amplitudes for a given Jz state,

|MJz
qq |2 = |Cqq|2|Aqq|2 , (11)

|MJz
gg |2 = |Cgg,ŝ|2|Agg,ŝ|2 + |Cgg,t̂|

2|Agg,t̂|
2

+ |Cgg,û|2|Agg,û|2 + 2C∗gg,ŝCgg,t̂A
∗
gg,ŝAgg,t̂

+ 2C∗gg,ŝCgg,ûA∗gg,ŝAgg,û
+ 2C∗

gg,t̂
Cgg,ûA∗gg,t̂Agg,û , (12)

are then used to obtain the partonic cross sections by
integrating over solid angle:

σ̂Jzij =

∫
dΩ
( 1

8π

)2 |MJz
ij |2

ŝ

√
1− 4M2

ŝ
. (13)
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FIG. 2. The energy dependence of the longitudinal fraction
for production of charmonium (solid) and cc (dashed).

The individual partonic cross sections for the longin-
tudinal and transverse polarizations are

σ̂Jz=0
qq (ŝ) =

16πα2
s

27ŝ2
M2χ , (14)

σ̂Jz=±1qq (ŝ) =
4πα2

s

27ŝ2
ŝχ , (15)

σ̂Jz=0
gg (ŝ) =

πα2
s

12ŝ

[(
4− 31M2

ŝ
+

33M2

ŝ− 4M2

)
χ (16)

+
(4M4

ŝ2
+

31M2

2ŝ
− 33M2

2(ŝ− 4M2)

)
ln

1 + χ

1− χ

]
,

σ̂Jz=±1gg (ŝ) =
πα2

s

24ŝ

[
− 11

(
1 +

3M2

ŝ− 4M2

)
χ (17)

+
(

4 +
M2

2ŝ
+ 33

M2

2(ŝ− 4M2)

)
ln

1 + χ

1− χ

]
,

where χ =
√

1− 4M2/ŝ. The sum of these results,

σ̂Jz=0
ij + σ̂Jz=+1

ij + σ̂Jz=−1ij , is equal to the total partonic

cross section [16]:

σ̂tot.
qq (ŝ) =

8πα2
s

27ŝ2
(ŝ+ 2M2)χ , (18)

σ̂tot.
gg (ŝ) =

πα2
s

3ŝ

[
−
(

7 +
31M2

ŝ

)1

4
χ

+
(

1 +
4M2

ŝ
+
M4

ŝ2

)
ln

1 + χ

1− χ

]
. (19)

Having computed the polarized QQ production cross sec-
tion at the parton level, we then convolute the par-
tonic cross sections with the parton distribution func-
tions (PDFs) to obtain the hadron-level cross section σ
as a function of

√
s using Eq. (1), and the rapidity distri-

bution, dσ/dy, using Eq. (2). We employ the CTEQ6L1
[17] PDFs in this calculation and the running coupling
constant αs = g2s/(4π) is calculated at the one-loop level
appropriate for the PDFs. We assume that the polariza-
tion is unchanged by the transition from the parton level
to the hadron level, consistent with the CEM that the
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FIG. 3. The energy dependence of the longitudinal fraction
for production of bottomonium (solid) and bb (dashed). The
result is shown above 20 GeV to be above the BB threshold.

linear momentum is unchanged by hadronization. This
is similar to the assumption made in NRQCD that once
a cc is produced in a given spin state, it retains that spin
state when it becomes a J/ψ.

III. RESULTS

Since this is a LO calculation, we can only calculate
the CEM polarization as a function of

√
s and y but not

pT which will require us to go to NLO. However, the
charm rapidity distribution at LO and is similar to that
at NLO [18]. The same is true for J/ψ production in
the CEM. The only difference would be a rescaling of
the parameter FQ based on the ratio NLO/LO using the
NLO scale determined in Nelson et al [14]. The CEM
results are in rather good agreement with the data from
p+ p collisions [14].

We present the results as ratios of the cross section
with Jz = 0 to the total cross section. Taking the ratio
has the benefit of being independent of FQ. In the re-
mainder of this section, we discuss the energy dependence
of the total cross section ratios for both charmonium and
bottomonium (in the general sense as being in the mass
range below the HH threshold) as well as for cc and bb,
integrated over all invariant mass. We show the ratios for
charmonium and bottomonium production as a function
of rapidity for selected energies. Finally, we discuss the
sensitivity of our results to the choice of proton parton
densities.

A. Energy dependence of the longitudinal
polarization fraction

In this section, we compare the energy dependence of
the fraction σJz=0/σtot. as a function of center of mass
energy in p+ p collisions in Figs. 2 and 3. In the case of
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FIG. 4. The rapidity dependence of the longitudinal frac-
tion for production of charmonium at

√
s = 20 GeV (solid),

38.8 GeV (dashed), 200 GeV (dot-dashed), and 7000 GeV
(dotted). The distributions are symmetric around y = 0.

quarkonium, the integration in Eq. (1) is from twice the
quark mass to twice the mass of the lowest lying open
heavy flavor hadron. For open heavy flavor, the upper
limit of the integral is extended to

√
s.

1. Charmonium and cc

In Fig. 2 the charmonium production cross section is
calculated by integrating the invariant mass of the cc pair
from 2mc (mc = 1.27 GeV) to 2mD0 (mD0 = 1.86 GeV)
in Eq. (1). We see that ψ production (solid curve in
Fig. 2) is more than 50% longitudinally polarized for√
s > 10 GeV. At

√
s > 100 GeV, the production ratio

saturates at a longitudinal polarization fraction of 0.80.
The behavior of the total cc production fraction

(dashed curve in Fig. 2) is quite different. Instead of sat-
urating, like the charmonium ratio, it reaches a peak of
0.68 at

√
s = 84 GeV and then begins decreasing. This

is because of the approximate helicity conservation at
the parton level for M/

√
ŝ� 1. The narrow integration

range of charmonium production assures that charmo-
nium production never enters this region, keeping char-
monium longitudinally polarized.

2. Bottomonium and bb

The results for bottomonium and bb production are
shown in Fig. 3. Here, the integral over the pair invari-
ant mass is assumed to be from 2mb (mb = 4.75 GeV)
to 2mB0 (mB0 = 5.28 GeV). For the more massive bot-
tom quarks, the pairs start out transversely polarized for√
s < 40 GeV. Bottomonium production becomes domi-

nated by longitudinal polarization but the ratio saturates
at 0.90 for

√
s of ∼ 1 TeV, higher than the charmonium

y
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FIG. 5. The rapidity dependence of the longitudinal fraction
for production of bottomonium at

√
s = 20 GeV (solid),

√
s =

38.8 GeV (dashed), 200 GeV (dot-dashed), and 7000 GeV
(dotted). The distributions are symmetric around y = 0.

ratio at the same energy. The smaller longitudinal frac-
tion at lower

√
s for bottomonium is because of qq domi-

nance of the total cross section at these energies. As the
gg contribution rises, the longitudinal fraction increases.

We note that the point at which the bottomonium
fraction is ∼ 0.50,

√
s = 46.3 GeV, is similar to the

lowest energy at which Υ polarization has been mea-
sured,

√
sNN = 38.8 GeV. The E866/NuSea Collabo-

ration measured the polarization of bottomonium pro-
duction in p+Cu and found no polarization at low pT in
the Collins-Soper frame [19]. This result is compatible
with our own because at leading order, the polarization
axes in the helicity frame, the Collins-Soper frame, and
the Gottfried-Jackson frame frame are coincident [20].

Likewise, the turnover in the cc polarization is also ob-
served for bb but at a much higher energy,

√
s = 550 GeV.

Although the energy scale is higher, the peak in the bb
polarization ratio is almost the same as that for cc, 0.69.

B. Rapidity dependence of the longitudinal
polarization fraction

We now turn to the rapidity dependence of our result,
shown in Figs. 4 and 5. Four representative energies are
chosen to illustrate. The lowest values,

√
s = 20 and

38.8 GeV were the highest available fixed-target energies
at the CERN SPS for ion beams and the FNAL Teva-
tron for proton beams. The higher energies,

√
s = 0.2

and 7 TeV are energies available at the BNL RHIC and
CERN LHC facilities. The results are presented for pos-
itive rapidity only because the rapidity distributions are
symmetric around y = 0 in p+ p collisions.
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1. Charmonium

The rapidity dependence for the charmonium longitu-
dinal polarization fraction is shown in Fig. 4. The results
are given up to the kinematic limits of production. The
longitudinal fraction is greatest at y = 0 and decreases as
|y| increases. For the highest energies, where the longitu-
dinal polarization has saturated in Fig. 2, the ratio is flat
over a wide range of rapidity. The ratio remains greater
than 0.50 as long as the gg contribution, with a significant
Jz = 0 polarization, dominates production. As the phase
space for charmonium production is approached, the qq
channel, predominantly transversely polarized, begins to
dominate, causing the ratio to drop to a minimum of
∼ 0.30.

2. Bottomonium

The behavior of the bottomonium ratio as a function
of rapidity, shown in Fig. 5, is similar to that of char-
monium. The higher mass scale, however, reduces the
kinematic range of the calculation. It also results in near
transverse (Jz = ±1) polarization of bottomonium at
fixed-target energies. The calculation at

√
s = 38.8 GeV

shows that, at y = 0, the bottomonium ratio is consis-
tent with no polarization, as measured by E866/NuSea
[19]. At

√
s = 20 GeV, not far from production thresh-

old, bottomonium is transversely polarized in the narrow
rapidity range of production.

C. Sensitivity to the proton PDFs

We have tested the sensitivity of our results to the
choice of PDFs used in the calculation. Since not many
new LO proton PDFs are currently being made available,
we compare our CTEQ6L1 results with calculations us-
ing the older GRV98 LO [21] set. We can expect the
ratio to be the most sensitive to the choice of proton
PDF because the PDFs can change the balance of gg to
qq production, especially at lower

√
s where the x values

probed by the calculations are large, x ∼ 0.1. In partic-
ular, bottomonium production at

√
s = 20 GeV is most

likely to be sensitive to the choice of PDF since the qq
contribution is large at this energy. The results should,
on the other hand, be relatively insensitive to the chosen
mass and scale values since these do not strongly affect

the relative contributions of gg and qq.
This is indeed the case, for bottomonium production

at
√
s = 20 GeV, close to the production threshold, the

largest difference in the longitudinal ratio for the two
PDF sets is 36% at y = 0. The sensitivity arises because
the gg contribution is predominantly produced with Jz =
0 while the qq contribution is primarily produced with
Jz = ±1. By

√
s = 38.8 GeV, the difference in the results

is reduced to 20%. At collider energies, the difference
is negligible. Since the gg contribution is dominant for
charmonium already at

√
s = 20 GeV, the charmonium

production ratio is essentially independent of the choice
of proton PDF. Thus, away from production threshold,
the results are robust with respect to the choice of PDF.

IV. CONCLUSION

We have presented the energy and rapidity dependence
of the polarization of heavy quarkonium production in
p+ p collisions in the Color Evaporation Model. We find
the quarkonium polarization to be longitudinal at most
energies and around central rapidity while the polariza-
tion becomes transverse as the kinematic limits of the
calculation, where qq production is dominant, are ap-
proached.

We note that the partonic cross sections, sorted by Jz
in this calculation, are still mixtures of total angular mo-
mentum J and orbital angular momentum L states. So
there is no immediate connection between these ratios
and the lambda parameter of the data. In future work,
we will extract the S = 1, L = 0 contribution from the
partonic cross sections to narrow down into three dis-
tinct angular momentum states of J = 1 in order to give
predictions for the polarization parameter λθ [20].

Because we have performed a leading order calculation,
we cannot yet speak to the pT dependence of the quarko-
nium polarization. We will address the pT dependence
in a separate publication.
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