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Overview )

= Differences and commonalities in pusher physics between
MDTI’s and traditional ICF

= Qur current state of knowledge
= Focused physics investigations

" [mportant questions




There is significant overlap of pusher physics in ) e,
magnetically driven implosions, but the differences
are important

Differences Similarities
= Adiabatic compression of fuel leads ® Liner areal density and ram
to a non-impulsive deceleration pressure asymmetries must be
phase minimized/controlled
=  Much lower velocity (70-100 km/s), = Liner kinetic energy must be
makes 1t difficult to assess residual efficiently converted to fuel
kinetic energy internal energy

= Thick liner with low IFAR,
potentially not all mass participating
in confinement

= Drive pressure continues to increase
w/ convergence (assuming good
current coupling)
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Existing data on the state and dynamics of the
liner during stagnation in integrated experiments

is limited
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Radiograph from T. J. Awe et al., Phys. Plasmas, 21,
056303 (2014) showing the modified MRT structure in
flight along with synthetic radiograph from a
GORGON calculation (inset).
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= In flight radiography reveals helical instability structure

on the the liner

= Emission of stagnation column has helical structure
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Emission from liner material at large radius
shows that the helical structure persists through
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= Helical striations in self-emission come from late time compression of
outer liner material (~4-5 ns after stagnation)

= Not obviously connected to the helical structure of the column




In some experiments we can see evolution e,
of “breaks” in the emission column
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= The gaps are consistent with those seen in higher energy, time integrated
imaging
= Could be caused by locally high liner areal density or by gaps in hot fuel




Residual motion > ~15 km/s can be detected with ) i,
high-resolution spectroscopy
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Assuming no crystal deformation,

XRS3 instrument with E/AE ~ 3500 modest line shifts indicate v, , < ~15 km/s
detects K-shell emission from Fe impurities

in Be liner from plasma with T, > 1 keV

—Ti=0 Fe Hea
----- Ti=0,v=25km/s
—Ti=1keV
Ti=2keV
——Ti=3keV
outside lin er.”
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Line ratios, shifts, and widths provide information From outside liner

on source T, n,, Tion, Vpue & I- Line widths

indicating T,,, > T, might reveal turbulent residual
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Liner conditions are determined in multiple ways e

e Late-time images of emission from outside liner constrains final radius to ~0.8 mm;
assuming no mass loss this indicates liner pR ~ 1 g/cm? and liner p ~ 20 g/cm3

» Differentially filtered diodes show similar peak powers through 10 and 30 mils kapton,
indicating significant liner absorption (for Te = 3 keV, liner pR ~ 1 g/cm?)

 Differentially filtered hard-x-ray pinhole images indicate pR = 0.9 g/cm?

» Absorption edge depths from Fe impurities in cold Be indicate liner pR = 0.9 g/cm?

* Shape of absorption edge indicates T~ 20 eV

* Plasma polarization shift of Fe K fluorescence lines indicates liner p ~ 19 g/cm3

While ionization of 3d electrons can cause small redshifts in Ka, only
enhanced screening (plasma polarization) can cause redshifts in Kj3

0.008
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Clear indication of Be downscatter @&,
seen in nTOF data

= Data is consistent with ~1
g/cm? Be at stagnation

Ti = 3 keV pRy =1 g/cm”

| = In the same range as
Data: Radial

~ —— MONP: Radial , ] inferred via x-ray data
i Data: Axial 1

- —— MONP: Axial | = Significant scatter

’ ’ background makes

quantitative determination

1 challenging

] =  Work in progress to better
characterize detector

response and scattering
environment

—
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. = We need the communities
help to resolve this issue
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*Data and calculations provided by K.D. Hahn
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Combining axial pre-magnetization with a dielectri@ ot
tamper results in enhanced in-flight liner stability
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T.J. Awe et al. Phys. Rev. Lett.

Add Bz=7 T 111, 235005 (2013)

CR=R, (t=0)/R, (t)=21!

B, t+dielectric

0,_ s “N
-2.-15 -1 -
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T.J. Awe et al., Phys. Rev. Lett.
116, 065001 (2016)
Add dielectric

mass tampers;
ETI mitigation




Employing coated liners in a recent integrated experiment )
has demonstrated improved symmetry and reduced mix
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Uncoated: significant axial variation and Coated: improved axial uniformity;
Fe impurity emission 2 ~1% late-time Be Fe impurity emission = <0.1% late-time Be

Data courtesy Matt Gomez
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Slow, cold liner implosions are useful for directly = s

probing confinement of high pressure fuel (~100 Mbar)
in an ideal scenario

No laser preheat. = Radiography is used to measure the
no axial B-field. N i N = CR at stagnation
\ = Confinement time
e !l = Liner areal density
_ ‘ = Uniformity of stagnation column
Be Liner > =  Low current (12 MA), long pulse
Rip = 3.44 mm Ore— allows
AR = 0.4 mm Fug hfcllllllld = stagnation at large radius (400-500 um)
H = 6.5 mm =

Good resolution across stagnation column

Long dwell time to minimize motional
blurring and jitter issues

= Atwood number is low at stagnation
(~0.1), minimizing mix and
deceleration phase instability growth

[Mbar]
Current [MA]

Pmag

Rstag — 450 pIm O = ]{BT/EF ~ 0.05
pp = 10 g/cm3 I' = ze?/akpT ~ 6
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We were able to capture a radiographic sequence of
the entire stagnation phase in a magnetically driven

liner implosion
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The confinement time and stagnation
pressure are degraded compared to 1D
simulation
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El g = Assume y=4/3
k) % = Confinement metric:
E . P>0.85%P,
b 8 " tp=16ns
Oi ‘s = g, =135%+15ns
0 = P ,
: 5 ®  17% reduction in
— < confinement time and 14%
reduction in Pressure
= Gives ~25% reduction in Pt
T — fT R / C S
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including a = 1 ns uncertainty in radiograph timing T T
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Do our codes accurately reproduce the
liner density profile at stagnation?
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— What is the dominant cause of
t=3117 ns ] degraded confinement?

3117 (sim.)

P 3127 s ] e 1D Physics (e.g. EOS, ram pressure
3127 (sim) ]
] profile)

* Drive physics (current distribution
at late time, current losses at late
time)

* 3D physics not captured in current
calculations

Density [g/cm?]

Radius [mm]

—

= Even though Alegra matches the 1D trajectory very well
before disassembly, the radial density profiles don’t match

= [s this significant?

= May mean ram pressure profile is different, can degrade confinement,
cause shock to traverse liner faster, etc.

= May mean distribution of current is different than expected -




Convergent re-shock experiments are shedding
light on the non-ideal nature of stagnation
instability growth
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= A Be rod with a pre-imposed sinusoidal perturbation is placed on axis

= The target is filled with liquid D2

= The liner launches a shock in the D2 which grows and strikes the rod/fuel interface
= Interface is unstable to RM and RT

= After reflection, shock (now ~300 Mbar) crosses the interface again s




Two excellent radiographs have been obtained showing the () i
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evolution of a seeded perturbation during stagnation
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Spectral Power

Fourier Analysis shows growth of ...
smaller wavelength modes
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pt [g/cm?]

= Initial mode grows after 1%
shock

= Unseeded, small scale
perturbation appear

= After 2" shock, initial mode is
erased (RM phase inversion?)

= Small scale, highly 3D
structures dominate
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Preliminary attempts to determine
a “mix width” are encouraging

Areal Density [g/cm?]
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-15 * The deuterium is transparent

* The width of the transition from the Be rod to the region that is attenuated
only by the liner is denoted as the “mix” width (~10-90% width)

-2
= Abel inversions are noisy, it is best to attempt this analysis with the raw data
-1 05 0 05 1 = More sophisticated analysis will attempt to “remove” the liner attenuation
Radius [mm)] using fit to analytic profile
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Remaining questions are significant ™

= How does the helical MRT mode inflight couple to the helical morphology
of the fuel at stagnation

= How does this evolve dynamically? Need developments in theory and
experiment

=  What significance does this have in terms of integrated performance metrics
= How symmetric is the liner ram pressure?

= We need to measure the axially resolved liner areal density

= More sensitive x-ray spectrometer
= 1D space resolved nTOF?

= (Can down-scattered neutron imaging help us or will it be too complicated to
interpret?

= The evolution of azimuthal asymmetries is a major unknown
= How severely are the observed non-uniformities impacting performance?

= How can we leverage the “focused” experiments to help our understanding
of the integrated experiments?

= (Can we make the focused experiments even more 1D to help elucidate the
detailed physics related to late time drive, ram pressure profiles, EOS, etc.
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