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Introduction

* Predicting optimum zones for completion
In shale difficult.

* Approach is to relate lithologic
observations to mechanical properties at
multiple scales.

« Use as data for mechanical modeling.
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Methods

* 40 cm diameter core from TerraTek quarry

* Mineralogical and textural characterization
— Macroscopic
— Optical petrography
— BSE, X-ray mapping
— Micro-CT
* Mechanical tests
— Axisymmetric compression (1x27)
— Cylinder splitting (1x0.57)
— Mechanical modeling



Dark gray to black calcareous and
noncalcareous shale

Offshore and open-shallow marine
environments

Late Cretaceous Interior Seaway

The “Cheese Wheel”

— Interlaminated fine mud, medium/coarse
mud, and very fine sand

— 1-3 mm laminae

— Parallel lamina, wavy-lenticular lamina,
ripple forms, and bioturbation

— Sandy medium Mudstone (smM)
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Slice 2
Core Block

Long side

Slice 1 Short side

- » medium Mudstone » sandy coarse Mudstone
» sandy medium » mixed muddy Sandstone and
Mudstone sandy coarse Mudstone




Macroscopic Description-XRD

Face of XRD XRD cut A
CutA

XRD is
commonly used
for baseline
characterization
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From: Hart et al. (2013)
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Macroscopic Description-XRD
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* Macro-
lithofacies
consist of
several
MICro-
lithofacies
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Microscopic Description-Petrography

" v— 5

Mudstone

7> coarse
Mudstone

» sandy medium
Mudstone

» sandy coarse
Mudstone

» muddy
Sandstone

R » bioturbation

= » planner
laminated

M 3 ripple
laminated

- # lenticular
laminated

SSD » soft sediment
deformation

14




- » fine Mudstone

- » medium Mudstone

- » coarse Mudstone

- » sandy medium Mudstone

» sandy coarse Mudstone

» muddy Sandstone
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Compositional Heterogeneity
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(XRD)
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BSE Mineralogy
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Intermediate
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Mechanical Testing

High Bay Compressive Tests — Brazilian Tensile Strength
— Eight Tests Test
— Two tests run at each * Fourtests
condition — One perpendicular to
« Unconfined (UCS) bedding
¢ 50 MPa Mean Stress — One at 45 degrees to
100 MPa Mean Stress bedding
« 200 MPa Mean Stress = e el e
bedding

— Perpendicular and parallel to
bedding



Strain (%)

Maximum Axial Strain

Mean Stress (Mpa)

¢ Perpendicular /
B Parallel
—— Linear (Perpendicular)
| | =——Linear (Parallel)
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Shear Stress (VM pa)
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Geomechanics-Conceptual Model
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Relating Heterogeneity to Strain

« Multiple scale micro-CT

Image stacks for Mancos MicroCT Image of 1”
shale core Mancos shale
(17 microns

resolution)

3D view of natural and artificial fractures
(arrows) in clay-rich weak layers terminated by
stiff layers. Relatively large white spots
represent pyrites that are used to estimate 3D
deformation of shale during mechanical testing
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Indirect Tensile (Brazilian Tests)

|

Indirect Tensile (Brazilian Tewigh speed

Two perpendicular and two
camera parallel to bedding samples

Paint markers: Digital Image
Correlation to estimate 2D strain on
the surface




Indirect Tension Test Results
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Tensile Strain Distribution (Digital Image Correlation)




Indirect Tension Test Results

Front Back
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Micropillar Compression

Load vs. Displacement Slope

1410° !R"‘-"!‘ Pi"?r EJq:'erImentsI
1.2 10° - W.ﬁ'
E 1"}5 I . . T . . . .
S a0 L . ] e Focused Ga+ lon Milling and SEM imaging , including
g ot \ Tt @ iEha RN pillar machining and slice-and-view
§ ot bl [‘ — IJL *Micropillar compression (load vs. displacement)
S/ == performed with a nanoindenter and flat diamond indenter
o I i ] .
0 400 800 1200

Dizplacement (nm)



Conclusions

Macroscopic and microscopic lithofacies have
distinctively different mechanical properties.

Bulk properties may be misleading as they can
represent averages of mechanically
heterogeneous rock.

Microscopic heterogeneity controls the spatial
distribution of fractures.

Micro fractures may link up through failure of
micro-relays to form through-going fractures.

Mode of strain distribution Is in some respects
scale independent. 37
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A few reference slides
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Multiscale characterization of physical, chemical, and mechanical heterogeneity
of shale

Optical and Confocal Microscopy |

Focused-lon Beam & Broad-
Ion Beam for milling

Macroscopic and
microscopic lithofacies
(optical petrography)

3D multiscale microCT
X-ray probe and QEMSCAN for mineralogy

Electron Microscopy |
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BSE Mineralogy

Mechanical
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10 cm

45



Lithofacies Map
" | » medium Mudstone

Mudstone (smM)

» sandy coarse
Mudstone (scM)

» muddy Sandstone
(mS)/sandy coarse

Core Locations
» Splitting and
axisymmetric
» Axisymmetric
tests

Mudstone (scM) » Splitting tests
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Sample Orientation
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Shear Stress (MPa)

Experimental Determination of failure and response of Mancos shale parallel
and perpendicular to the bedding plane.

180 Specimen 14B
400
160
350
140
300 -
120
250 -
100 | g
=
& 200
80 [ o
5]
150 |-
60
Ax Stress-Ax Strain
Ax Stress-Lat Straini
& : : . 100 Ax Stress-Lat Strain2
40 * Perpendlm{lar Fam.Jre Points i SV Sdia
O  Parallel Failure Points Shear Stress-Ax Strain
20 Perpendicular Fit 50 -
Parallel Fit
0 1 1 1 1 1 1 1 1 1 ] 0 1 = 1 1 1 J
0O 20 40 60 80 100 120 140 160 180 20 -0 001 0 o e (e 04

Strain (in/in)

Mean Stress (MPa)

Above Left: difference between failure parallel and
perpendicular to bedding, perpendicular to bedding
shows a large drop in strength as mean stress
increases compared with parallel to bedding.
Above Right: Example stress—strain plots for a test
Far Left: Specimen cored perpendicular to
bedding, tested unconfined

Near Left: Specimen (14B) cored parallel to
bedding, tested at 200 MPa constant mean stress,
this is the sample shown in the plot above right.



BSE Mineralogy Mechanical
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Shale Poromechanics:
Heterogeneity, Flow, Failure, and Creep

Mechanical testing of failure

Parallel to
dding

Perpendicul
r to Bedding®

Mean Stress
Alarge drop(iMP@&gngth as mean stress
increases for perpendicular to bedding

Sheer Stress

Perpendicular Fit
Parallel Fit

Specimen 14B

400 0

Stress

Strain (in/in)
Example stress—strain plots for a test:

Specimen (14B) cored parallel to bedding,
tested at 200 MPa constant mean stress

1500 psi

Micropillar Compression

e Focused Ga+ lon MiII}F@SclHHIQEM imaging , including
pillar machining and slice-and-view

*Micropillar compression (load vs. displacement)
performed with a nanoindenter and flat diamond indenter
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Permeability and Porosity
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Mathematical development and validation for
estimating permeability and porosity of tight rocks
using type curve matching and Pseudo pressure



MlcrOCT Imaglng Of Sma(lﬁmage of 1" core Mancos

shale (17 microns resolution)

Multiple scale micro-CT image stacks for
Mancos shale and Marcellus shale are used to
characterize the impact of heterogeneous
materials (fractures and laminated materials)
on mechanical properties of shale

3D view of natural and artificial fractures (arrows) in clay-rich weak layers terminated
by stiff layers. Relatively large white spots represent pyrites that are used to
estimate 3D deformation of shale during mechanical testing



