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OE Energy Storage Program Scope
To accelerate the development and adoption of energy storage the OE-Energy 

Storage Program is working across the entire technology development cycle



Traditional Grid

 One way flow

 Little/no renewable energy
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Energy Storage Is Critical to the Stability and 
Resilience of the Electric Grid

Today’s Grid

• Integration of grid-scale 

and distributed renewable 

generation beginning, but 

with limited penetration

Future Grid

• Storage provides buffering 

capability to enable high 

penetration of variable 

renewables and asset deferral for 

T&D systems (load management, 

ancillary services)

• Efficient two-way flow



Electric Utility Background

Made up of:

• Over 150 thousand miles of transmission lines (AC & DC)

• 10s of thousands of Generating Units totaling ~1000GW of total 

capacity

• Millions of transformers, relays, and controls

• 100s of Billions of dollars in total investments in transmission 

and distribution

Common AC voltages
 765kV
 500kV
 345kV
 230kV
 69kV
 30kV
 15kV
 4kV
 2kV
 600V
 480V
 240V
 120V

Transmission

Sub-Transmission

Distribution

First modern electric system developed in 1882 by 
Thomas Edison’s Pearl Street Electric in NYC



Electric Utility Major Blackouts
 Northeast Power Blackout August 14, 2003

 Western US Blackout August 1996

 High demand, heat wave, and sagging power lines

 New York City Blackout July 1977

 Northeast Blackout November 1965

Source: http://www.globalsecurity.org/eye/blackout_2003.htm

~50M people effected

~6Billion in financial losses



Other Electric Utility Challenges

Harmonic Distortion

Voltage Swells & Sags

Oscillatory Transients

Voltage Flickers

Frequency Oscillations

Subsynchronous Resonance



Energy Storage Rationale

 Transmission capacity limitations –
curtailment of renewable sources during peak 
energy production

 Next generation grid (i.e. Smart Grids) –
complex distributed controls of multiple 
sources and loads

 Increase penetration of variable energy 
sources (i.e. PV and Wind energy) –State 
renewable portfolio standards 

 Bidirectional flow of energy from distributed 
energy resources

 Transmission deferrals combined with load 

growth
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Source: Power Electronics for Renewable and Distributed 

Energy Systems: A Sourcebook of Topologies, Control and 

Integration



Energy Storage Systems contain 
three major components:

 Energy storage device
 Where energy is held until 

needed

 Ex: chemical/electrolyte (used in 
battery), flywheel, etc.

 ~25-40% of overall costs

 Power electronics
 Ensures proper and safe charge 

and discharge of storage device 
and can provide grid support 

 ~20-25% of overall costs

 Facilities (balance of plant)
 Houses all equipment, protects 

system from physical damage

 Can include HVAC

 ~20-25% of system costs
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Energy Storage System Configuration

Tehachapi Energy Storage System

Energy storage 

devices

Power 

electronics 

Facility
Other costs: consulting, financing, shipping, installation

Facilities

Power 

Electronics

Energy Storage 

Device



Transportable Energy Storage Systems

Benefits
 Lower Installation Cost

 Less Time from Installation to Operation

 Use at Multiple Sites Optimizes Overall System Use
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Batteries

Power Conversion System



Power and Energy
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Energy Storage Technologies
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 Pumped Hydro

 Compressed Air Energy 

Storage (CAES)

 Batteries

• Sodium Sulfur (NaS)

• Flow Batteries 

• Lead Acid

• Advanced Lead Carbon

• Lithium Ion

 Flywheels

 SMES

 Electrochemical Capacitors

Energy

Power

Two regimes, multiple technologies:
Power – short discharges (sec to min):

flywheels, capacitors, SMES, some batteries
Energy – long discharges (min to hr):

batteries, H2 fuel cells, CAES, pumped hydro



Energy Storage Classification
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Electromechanical 

Flywheels

Electrochemical

Batteries

•Ph-acid

•NiCd

•NaS

•NiMh

•Li-ion

•Metal Air

•Advanced Pb
Carbon

Flow Batteries

•ZnBr

•Vanadium Redox

Electrochemical 
Capacitors

Electromagnetic 

Superconducting 
Magnetic

Thermodynamic 

Compresses Air



Why is DOE OE/Sandia interested in 
power electronics?

 Needs:
 Reduce install cost/kW

 Decrease size and 
weight especially for 
transportable systems

 Improve integration 
control

 Increase reliability

 Increase efficiency

The PCS is a key component of the energy storage system.  
It can represent 20 to 60% of the total system cost.

Vpcc

Load



Energy Storage

AC

Source Power 

Conversion

System

(PCS)

Iout
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Power Conversion System

• Single-Phase and Three-phase DC/AC inverter topologies

• Heart of the system – semiconductor switches

• PWM signal is constructed. The sawtooth wave and reference 

signal are compared in a controller shown in the block diagram. 

The resulting PWM signal is sent to the Power Processor

Three-phase inverter

Construction of a PWM signal (output of 

a comparator (green) with a sawtooth

wave (blue) and a reference signal (red)



Battery Energy Storage System
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 Background

 Electrochemical energy storage device

 Consist of one or more cells, main 
components include cathode (+)/anode (-) 
terminals, electrolytes, and separator. 
Converts chemical energy to electrical 
energy.

 Pb-acid, Li-ion, NaS, Metal Air, Advanced 
Pb C, etc.

 Key design objectives – high cell voltage, 
high energy or power formats, safe 
systems, and high reliability

 Benefits

 Applications – wide spectrum from PQ to 
peak shaving

 Power & energy range, few kWs to 10s 
MW

 Challenges

 Power conversion system, batteries, grid 
interconnect

 Reliability, safety, round trip efficiencies Typical Electrical Configuration of a BESS

Rectifier/Inverter DC-DC

Grid PCC

Controls

Battery Module
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SOC, SOH, T, V, I

18650 Cell



Flywheel Energy Storage System
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Source: Beacon Power, LLC

 Background

 Kinetic energy storage device

 Low speed FW, steel, up to 300-400 
m/s tip speed

 High speed FW, composite, 600-1000 
m/s tip speed

 Benefits

 High power, high cycle, low energy 
applications (i.e. Power quality, 
frequency regulation, transient 
stability, UPS)

 Inherent long cycle life, >10^6 cycles 

 Energy range, < 1 kWh to 100s kWh

 Challenges

 High frequency composite FW -> high 
BW power conversion system

 Balance of system cost

𝐸𝑘 =
1

2
· 𝐼 · ω2

𝐼 =
1

2
𝑚(𝑟1

2+ 𝑟2
2)

𝐼 = 𝑚𝑜𝑚𝑒𝑛𝑡 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎

ω = 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑚 = 𝑚𝑎𝑠𝑠

𝑟 = 𝑟𝑎𝑑𝑖𝑢𝑠

𝐸 − 𝑚 𝑟𝑎𝑡𝑖𝑜 max~ 𝑤𝑚𝑎𝑥

Rectifier/Inverter Rectifier/Inverter

Grid PCC

Controls

3 phase 

permanent 

magnet 

motor

Typical Electrical Configuration of a FWES



Superconducting Magnetic Energy Storage System
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 Background

 Magnetic energy storage device

 Energy stored in magnetic field 
generated by the current in the 
superconducting coil (i.e. R ~0 ohms). 
Energy released when coil is 
discharged. 

 Since R~0 ohms, charge and 
discharge is very quick

 Benefits

 High power and cycling applications 
(Power quality, transient stability, 
frequency regulation, UPS)

 Power range, 10s MW to 100s MW

 Challenges

 Balance of system cost 

 Low energy density Typical Electrical Configuration of a SMES

𝐸 =
1

2
· 𝐿 · 𝐼2

Rectifier/Inverter DC-DC

Grid PCC

Controls

Superconducting 

Coil

Cryostat
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Other Energy Storage Technologies
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Compressed Air Energy Storage

Flow Battery Energy Storage

Electrochemical Capacitor Energy Storage



Examples of Large Energy Storage 
Demonstrations

 Golden Valley Electric 
Authority (GVEA), 
Fairbanks, Alaska
 Ni-Cd Battery (5kV, 3.68kAh)

 46 MW for 5 minutes

 ABB power electronics

 SVC light pilot system near 
Norfolk, England
 Li-ion (5.8kV, 200kWh)

 600kW for 15 minutes

 ABB power electronics
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Silicon Semiconductor Device 
Capabilities

Trends:

• Increase Voltage/Current 

Ratings 

• Increase Switching Frequency

• Lower Switching Losses

• Improve Drives

• More Integration

– Self Protection & 

Diagnostics

• Lower Inductance

Source: Mohan, Undeland, and Robbins, Power Electronics: Converters, Applications and Design 3rd Edition (John Wiley & Sons, 2002)



WBG device benefits

 Advantages

 High Frequency Operation

 Lower Switching Losses

 Higher Blocking Voltages

 Higher Operating 
Temperature

 Higher Efficiencies
 Disadvantages

 Expensive

 Limited Current Level Source: Power Electronics Technology at the Dawn of the New Millenium – Status & Future



High Switching Frequency Benefits
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100 kHz Ferrite Transformer

8 kW – 328 grams (0.72 lbs)

60 Hz Si-Steel Transformer

7.5 kVA – 150 lbs

Source: Wolfspeed

Source: S. Kulasekaran, R. Ayyanar, S. Atcitty, 

Switching frequency optimization of a high-frequency link 

based energy storage system, IECON 2014-40th Annual 

Conference of the IEEE IES, Oct 29 -Nov 1, 2014, pp. 1847-

1853



Example Benefit of Using SiC switches
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 Miniaturize power 
electronics systems 
by employing WBG 
power devices in 
high temperature 
and high efficiency 
design

 Passive cooling

 Higher switching 
frequency

Source: Wolfspeed



Example: 30kW SiC Inverter

 Power Density Increase by >3X due to 
faster switching – From 6kHz to 20kHz

 Peak Efficiency Increase of ~ 2% 

 Power stage uses USCi 1200V SiC-JFET 
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1200V Si-IGBT

6kHz

Floor Mount

1200V SiC-JFET

20kHz

Wall Mount  

Paramete

r

Value Unit

RDS(on) 80 mW

VDS 1200 V

Tmax 175 °C

UJN1208K TO-247

30kW Bidirectional Inverters 

Source: USCi



High voltage SiC – reduce system, size and complexity

 To increase system 
bus voltage, multi-
level converter 
designs are typically 
used

 The number of power 
switches used in such 
systems can be 
reduced

 Fewer components –
lower cost, higher 
efficiency, higher 
reliability

26
Source: Wolfspeed



Thermal Management Reduction

• Current energy storage PCS use complex liquid cooling systems or hybridized 
liquid/forced air systems for the semiconductor switches and magnetics

– Bulky

– Maintenance cost can be high 

• WBG devices along with peripheral components having a higher temperature 
operation can reduce thermal management requirements

– Less efficient but smaller and cheaper cooling systems can be used 
resulting in higher power density PCS designs

– Lower maintenance cost

Source: Aavid Thermalloy

Source: EPC Power Corporation



Energy Storage Power Electronics Program

 Gate Oxide R&D
 Advanced 

Magnetics

 ETO

 SiC Thyristors

 Monolithically 
integrated SiC
transistors

 WBG 
Characterization & 
Reliability

 High energy 
dielectric capacitors

 SiC High 
Temp/density Power 
Module

 HV SiC JFET Module

 HV, HT Reworkable
SiC half-bridge 
modules

 Dstatcom plus energy 
storage for wind 
energy

 Optically isolated MW 
Inverter

 High density inverter 
with integrated 
thermal management

 High temp power 
inverter

 FACTS and Energy 
Storage

 Power smoothing 
and control for 
renewables

 Dual active bridge 
for advanced energy 
storage system 
designs

Materials R&D Devices Power Modules Power Conversion
System

Applications
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Contact

Stanley Atcitty (Stan), Ph.D.
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Sandia National Laboratories

Phone: 505-284-2701

Email: satcitt@sandia.gov


