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Power Grid Components ) .

This presentation
focuses on
Transmission-level
integration




Renewable Integration Challenges @
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Frequency Regulation ) .

= For a motor-generator, the equations of motion are

TURBINE SHAFT GENERATOR

dw
]Esz_Te_KDw

T, T,
" For constant T,,, (mechanical power),
load 1T, frequency load {, frequency T
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What is Mode Shape?
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" Mode shape is defined by | ' ' _
= Amplitude at each location 0(\/\AA/\./\/\’V¥‘v

= Phase at each location y
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Visualizing Mode Shape ) ..

= Mode shape defined by

F = Amplitude
ritish Columbia™ A {l‘l‘d Saskatchewan = Phase

R
= Visualization approaches:
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Visualizing Mode Shape — Compass
Plot
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Classical approach presented in Graham

Rogers’ book, “Power System Oscillations” 11




Small Signal Stability ) s,

Small signal stability — response to small disturbances (e.g. linear model is
applicable)

Given a nonlinear system model
&= f(x,u) y=g(z,u)
Assume a small perturbation about an operating point

r =xo+ Ax
uw = ug + Au
Use a Taylor series expansion of the nonlinear function
A = AAx + BAu dr1 Oy, duy ou.
A= B =
Ay=CAx+ DAu
dfn fn dfn O
Lo~ o 5 e
990 99 99 90
Oxy oy, Auy Aty
C = D=
8gm P 8gm 8gﬂ e e 89”
| Ory Oz, ] | Juy A, _ 12




Why are we concerned? ) i,

= Power systems are susceptible to low frequency oscillations
caused by generators separated by long transmission lines
that oscillate against each other

= These oscillations are not as well damped as higher frequency
“local” oscillations

= High penetration of renewable generation can impact mode

shape and damping — potential reduction in reliability
August 10, 1996 Western Power System Breakup
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Why are we concerned? )

= There are several low frequency
oscillation modes in the Western
Electricity Coordinating Council
(WECC) region

= “North-South” mode nominally near 0.25
Hz (North-South mode A)

= “Alberta-BC” mode nominally near 0.4 Hz
(North-South mode B)

= “BC” mode nominally near 0.6 Hz

Iy
|

= “Montana” mode nominally near 0.8 Hz

= “East-West” mode nominally near 0.4 Hz




What happens with Increased
Renewables?
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Normalized Response Spectra
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» Mode frequencies increase (less inertia)
« Damping stays roughly the same (for moderate penetrations)




Excitation Methods for System Id [

= Natural disturbances
= Chief Joseph Brake (1.4GW, built in 1974)
= Pacific DC Intertie (PDCI) Modulation




Structured Perturbation Model ) B

= Given a linear system (can also be applied to a nonlinear
system):

5: = = Ar+ Bu,

= Partition the system into N-interconnected systemes:

N
S: i;=Az;+ ) €Az, i€N
=1
" e;; are the “structured perturbations”, design control system
so that system is stable as ¢;; € [0,1]

= \ector Lyapunov techniqgues provide a method for testing
stability?!

ID. D. Siljak, Decentralized Control of Complex Systems. Academic Press, 1991.




Power System 2-area Model ) .

= Partition the system

S: © = Ax+ Bu,
¥y = CT*
_In _T; 0 T
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Fig. 2. Two-area system digraph.




Power System 2-area Model ) .

= Structured perturbations - coupling uncertainty

T AL ] - D e T A ] - 1T i T 1T1 A
o [ =1 F | [ A || |arere] g || a5
| 1 i 1 i i i __" 2
(Awy | [ -2 = [Aw ] [ 5] 0 L1 Aw
s T 1T 0| as [T 0 AT || as

= (Can easily be rearranged to get the form:

S: &= A;x, -I-ZE‘U T, 1EN

= Local feedback—no uncertamty

= Global feedback — subject to the e coupling strength
uncertainty




Power System n-area Model ) S

= Local feedback — uncertainty in coupling

B IRV S S VA | I I - I
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= Global feedback — uncertainty in coupling and
communications
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Stability Test ) B,

= Construct an M-matrix,

i

S i A (AT AL)
YT 24T
| 8 Any (AfAG)
Anr(-) 1s the maximum eigenvalue
= where

the matrices H; and &; satisfy the Lyapunov matrix equation

ATH, + H A, +G, =0 (12)
= Test eigenvalues of W (must be positive) for stability

= Vary control gains, identify stability regions for
coupling/communications uncertainty
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Example Stability Regions ) .

Stability Region (red), T=0.0010 Stability Region (red), T = 0.2000 Stability Region (red), T = 0.5000
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k12 (angle feedback gain) k12 (angle feedback gain) k12 (angle feedback gain)

"= Two area system with bandlimited local feedback

22



Overlapping decomposition ) .

= Uncertainty in tie line strength is overly conservative e;; €

[0,1]
= Qverlapping decomposition — share states with other
subsystems
[ A1 Ain | Aig |
A= | A | Az | Aas
| Aszr | Az2 Aszz

= Approach lends itself to power system model-based analysis
(e.g., MATLAB PST)

= More difficult with commercial simulation software (e.g.,
PSLF, PST)
= System linearization

= Making sense of states
23




Conclusions — Future Research ) =,

= Moderate renewable penetrations (e.g., up to 50% of load)
are not likely to cause any problems with inter-area
oscillations

= Moderate renewable penetrations may excite an East-West
mode in the U.S., additional analysis is underway

= Current/future research topics include:

= Vector Lyapunov techniques for modelling communications
uncertainty and model uncertainty

= |mpact of latency, availability, and scalability (e.g., communications
range) on performance of distributed control systems for solar
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