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• Objectives:
– Design and construct a prototype control 

system to damp inter-area oscillations by using 
HVDC modulation and real-time PMU 
feedback.

– Demonstrate the performance, reliability, and 
safety of this prototype control system by 
conducting closed-loop tests on the PDCI.

• Status: 
– A prototype control system has been 

developed, which modulates active power 
through the Pacific DC Intertie (PDCI) and uses 
frequency information from BPA-based PMUs 
for real-time feedback control.

– Development of the prototype control system 
is on schedule and progressing towards closed-
loop testing at Celilo in Summer 2016.



Expected Benefits

• Improved system reliability

• Additional contingency in a stressed system condition

• Economic benefits:
– Avoidance of costs from an oscillation-induced system breakup 

(e.g., 1996)
– Potential future reduced need for new transmission capacity
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Design Objectives for PDCI-based Controller

Feedback control
should be proportional 
to frequency difference
of the two areas
(Local minus Remote)


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PDCI



• Control Objectives:
– Dampen all modes of interest for all operating 

conditions w/o destabilizing peripheral modes
– Do NOT worsen transient stability (first swing) 

of the system
– Do NOT interact with frequency regulation



Final Controller Design
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• Based on:
– Extensive control theory 

analysis
– Many simulation cases
– Many years of actual 

system probing tests

• Local Location = Lower 
Columbia basin.  

• Remote Location = COI.
• H(z) = “Customized” 

Bessel derivative filter. 
• K = 5 to 15 MW/mHz
• Pmax ≈ 125 MW
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PDCI Probing Tests

– Low frequency probing tests (2009-2014) 
modulate PDCI by +/- 20 MW from 0.02 Hz to 5 Hz

– High frequency probing tests (2014) modulate 
PDCI by +/- 5 MW from 1 Hz to 28 Hz

– Goal of low frequency tests is to excite the 0 – 5 
Hz range of oscillations in WECC

– Goal of high frequency tests is to evaluate the 
dynamics of the PDCI system

– What we’ve learned
– Why this control didn’t work in 1970s
– New theory supported by tests
– Identified optimal feedback signal locations (local 

and remote)
– Feedback gain of 5 to 10 MW/mHz will provide 

SIGNIFICANT damping
– PDCI has adequate bandwidth
– Optimal design of feedback filter
– Extensive testing and fine-tuning of PMUs (on going)
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Redundancy and Diversity in Feedback
• Diversity ≡ Geographic Spread Redundancy ≡ 

Multiple PMUs/site
• Controller reads 8 PMUs each update cycle – 16.67 

ms).
– 4 local and 4 remote
– 16 possible PMU feedback pairs

• These 16 real-time feedback pairs, constructed in 
parallel, are prioritized off-line based on simulation 
studies.

• Controller continuously re-evaluates rankings of all 
16 pairs based on observed data quality and 
measured latencies. 

• Controller seamlessly switches to a different pair 
based on the most recent rankings of the 16 pairs.

• Typical latencies measured to date are well within 
tolerances.

– Network latencies of PMU data are 5-25 ms
– PDCI bandwidth >> 5 Hz with delay ≈ 20 – 25 ms
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∆����
(To PDCI)



Do No Harm:
Supervisory System Design

• Watchdog circuit is implemented in hardware and handles bumpless transfer, 
heartbeat, and emergency stop functions

• The asynchronous control loop handles estimation and monitoring functions 
that are slower than real time

• Real-time supervisor must detect and respond to grid conditions

Watchdog Circuit

Real-time 
(RT)

Control 
Platform

Asynchronous
Control 

Platform

ΔPcmd

Network
Interface
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Watchdog Circuit
• Installed on prototype at BPA in June 2015 and upgraded in November 2015
• Safety circuit monitors the heartbeat indicators and E-Stop button
• Overriding design philosophy was to make the system “failsafe” – failure of 

any component would safely disconnect the control system
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Real-Time Supervisor

• Immediately disarms controller if any abnormal 
condition is detected

• Oscillation detection
– Disarm controller if out-of-band oscillations are detected in 

feedback signal or on PDCI

• Islanding detection
– Disarm controller if islanding between local and remote signal 

locations is detected
– Uses local, remote, and relative frequencies; and relative angle 

tolerances to detect islanding

• PMU validity and time-latency management
– Bumpless switching between feedback pairs
– Disarm controller if no pairs available 

• Emergency stop
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Asynchronous Supervisor 

• Gain/Phase margin 
monitoring
– Assures controller is NOT

destabilizing any modes
– Requires periodic low-

level probing

• PDCI monitoring
– Makes sure control 

modulation is entering 
PDCI system
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Planned Schedule for Closed-Loop Demonstration

Start Phase II

Open-loop control 
testing and PMU 
latency analysis

Open-loop PDCI 
probe testing and 

PMU latency 
analysis

Closed-loop testing 
under PDCI probes 
and Chief-Jo brake 

pulses

Extensive closed-
loop testing to 

evaluate supervisor

Long-term 
extensive closed 

loop testing

Q1 FY16

Q4

Q1 FY17

Q4

Q2

Q3

Q2

Q3
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• Project will focus on control system deployment by 
demonstrating closed-loop operation.

• Phased approach  Gradual increases of power 
modulation magnitude and duration of closed-loop 
tests.

• Go/no-go decisions between phases based on analysis 
results.

• Communication network and cyber security issues will 
be a high priority.

Project Direction and Next Steps
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Damping Control using Distributed Storage

• Total storage capacity on order of 50 MW is sufficient
• With 10s of sites deployed, individual ESS capacity ≈ 1 MW is sufficient
• Control strategy uses ESS mostly providing other services  very little additional cost for large benefit
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