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Power Amplifiers and rf Switches

Power Conversion Applications

UWBG materials and devices may
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i Comparison of Materials Using Lateral ()
midimsE  Figure of Merit (based on conduction loss)
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Normalized Lateral Figure of Merit for ()
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» AlGaN-channel HEMTs offer meaningful LFOM
advantage over wide bandgap semiconductors at
elevated temperatures, but not at room temperature
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Prior work:

« Begun to address critical issues for UWBG semiconductors, such as Ohmic
contact, trends in breakdown, high Temp Ips-Vps, --.

* No prior research aimed at AIGaN alloys aimed at maximizing AlGaN LFOM
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10 pm D
SiN dielectric
n* GaN

48 nm AIN barrier

400 nm Al g5Gag ;15N channel

1.7 um AIN buffer

Sapphire substrate
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HEMT Structure and Geometry @“’
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Circular Geometry:
(edge effects unimportant)




Al, .-Ga, ;:N-Channel HEMT Growth and  (f) &=
Characterization
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Lnse HEMT Fabrication
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.

GaN: . GaN:
Si AIN barrier Si

Al, s5Ga, 15N channel

AIN nucleation and buffer layer

Sapphire substrate

Process Steps:

1. SiN deposition, photolithography, SiN etch, AIN etch, PR removal, GaN:Si regrowth,
SiN removal

2. Photolithography, ohmic metal deposition, litoff, RTA

3. Gate photolithography, evaporation, liftoff

4. SiN deposition, photolithography, SiN etch (pads)
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° Al, ¢:Ga, ;;N-Channel HEMT Shows Good ()&=,

s e Gate Control
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» Operates like Field Effect Transistor * Not Ideal in some Aspects

-
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Drain or Gate Current (mA/mm)

* Good pinchoff » Hysteresis in forward and reverse Gate

« Knee voltage linear with gate voltage sweeps

« Low drain and gate leakage currents » Source and drain contacts more rectifying
than Ohmic

« Large output conductance
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» Leakage current near measurement limit
« Similarly low gate leakage in Al, ,5:Ga, ;sN/GaN requires insulated gate (high interface
state density)
» Excellent subthreshold slope, 75 mV/decade
« Excellent lg\/loge ratio >107

» Leakage current near measurement limit



" Al, .-Ga, ;-N-Channel HEMT: Large () i

Ao Laboratories

LIWB&E

Schottky Barrier
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« Using Method in Z. Lin, Appl. Phys. Lett. 82, 4364 (2003)
« Comparison to Ni/Al, ,sGa, 7,5sN/GaN:
« @,=0.99 eV (A. C. Schmitz, Semicond. Sci. Technol. 11 (1996) 1464—1467)
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+ Compare against -Ga,O, FET: gate-connected fieldplate,
10 um g-d spacing (M. Higashiwaki, APL 103, 123511 (2013).
V,, =370 V




: Limitation of Al, ;-Ga, ;;N-Channel HEMT ()&=
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Significance of Al ;-:Ga, ;-N-Channel HEMT
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* FP = Field Plate
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« Standard gate — no fieldplate, 10 um
gate-drain spacing

« 1st HEMT is above Si line

» Expect 2.5x improvement from
implementing fieldplate

* 42x improvement based on
improved Ohmic contact and
R,~4200 Q/0

» To approach AlGaN line:

» 2x further improvement by
increasing ng

« Improve V,, with sophisticated
electric field management or
reduce gate-drain spacing

1.0E+06
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Summary

* Demonstrated the first AIN/Al, ¢:Ga, ;N HEMT

* Extended the Al-composition and Bandgap Range for
Al,Ga,  N-channel HEMTs to encompass the lateral figure
of merit’s maximum value for Al Ga, N alloys

* Established the rationale for UWBG AIN/AI, ;:Ga, ;5N high-
temperature superiority over AlGaN/GaN

* Demonstrated AlGaN-channel HEMT with:
e HEMT Breakdown Voltage of 810 V
e Excellent Drain Leakage Current and subthreshold Slope (75
mV/decade)
* Excellent Gate Leakage Current and @, (1.74 eV)

* Modeled Drain Leakage Current with Frenkel-Poole
Conduction




