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Presentation Outline

»Why are we motivated to study the electrothermal
instability (ETI)?
- Overview of recent liner dynamics research on Z

»What is the current state of the art in ETI research?
- Overview of recent (Late Start LDRD funded) ETI
research on Zebra at U. of Nevada, Reno

»What is needed to greatly advance our
understanding of the electrothermal instability?
- Overview of proposed research to study metals
with “engineered” defects




"WIAgLIF: Fuel pre-heat & magnetization allow “slow”
implosions to achieve significant fusion yield
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“The magneto-Rayleigh-Taylor (MRT)
instability poses the greatest threat to this
(MagLIF) approach to fusion.”

e  S.A. Slutzetal, PoP17,056303 (2010);
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Since the 1950s, niuch z-pinch research has been rooted in
understanding and mitigating MHD instabilities
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Presentation focuses on liner dynamics; primary diagnostic
on Z is two-frame monochromatic (6.151 keV) radiography*
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’?‘Bxperiments have focused on developing predictive
capability of instability growth of imploding liners
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~w='Experiments have focused on developing predictive
capablhty of 1nstab111ty growth of imploding liners
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~w='Experiments have focused on developing predictive
capablhty of 1nstab111ty growth of imploding liners

(b) GORGON 3D
(random pert.)

Observed MRT amplltude is
not linearly proportional to
the amplitude of the initial

perturbations.
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~w='Experiments have focused on developing predictive
capablhty of 1nstab1hty growth of imploding liners

Observed MRT amplltude is
not linearly proportional to
the amplitude of the initial

perturbations.
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Changlng the orientation of
the machining grooves from
azimuthal (lathe) to axial
(broaching) had little impact

on MRT development
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marv of Z liner dynamics results > Open questions remain!

»MRT is larger amplitude and more highly
azimuthally correlated than expected = Does
something other than surface roughness seed MRT?
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-~ Electrothermal instabilities are driven by Joule heating
and arise when resistivity (n) depends on temperature (T)

Condensed Metal -
e M/OT>0 E=nj*
* 1My« T2 1T ‘

* Drives nonuniform
phase change and

expansion N>,

on/dT>0

ETI strata, which are aligned
with the magnetic field, are —
potentially a highly effective —

seed for MRT!

ETI grows rapidly near melt

For “thick” metals (liners or rods) which support 3D current
flow, ETI physics is significantly more complex




2D simulations show electro-thermal instabilities
develop after melt and seed later MRT growth

Locations with initially higher Joule
heating vaporize/expand first—> Density
perturbation forms

The Magneto-Raleigh Taylor (MRT)
instability grows from the ETI seed,
and begins to dominate

Non-linear MRT growth redistributes
liner mass; large amplitude
perturbations persist and grow
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K.J. Peterson et al., Phys. Plasmas 19, 092701 (2012)




Liners on Z do not implode until the current exceeds 10 MA
Liner surfaces are nonuniformly Joule heated by >5 MA/cm lineal
current density before bulk implosion begins
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Joule heating driven instabilities may dominate
throughout much of the experiment!



*»If MRT is seeded by ETI, simulations suggest that the
ETI-driven density perturbation can be mitigated!

Co’:ﬁng ; Thick (>10 um) insulating coatings mitigate

| effects of ETl and reduce seed for MRT growth
2 ym
coating ;

' No ETI (striation) growth in the dielectric
gooa’tilrr:cj:] Nonlinear mass redistribution from ETI

is significantly tamped by the coating

S0 — Reduces seed for MRT growth

| — Reduces integral instability growth
100 um
coating |

0.340 . *K.J. Peterson et al., PRL 112, 135002 (2014)
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interface>x,; ¢ 1oy~ 100 cm?/g, Kcy 61 1ev~10 cm?/g

As metal is heated: hotter

dn (T
dT

colder

> ()

40-micron-thick dielectric
tamper applied to 180° of Al rod

N 2
KCH, 6.1 keV 10 cm®/g

0.350 C
X (cm)

Directly compare coated/uncoated surface in a single experiment



~wAdding a 70-micron-thick dielectric tamper dramatically
alters MRT growth on a solid (R;,=3.43 mm) Al rod
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~wRapidly accelerated aluminum liners 2 Tamper again

greatly reduces cumulative MRT growth
Dielectric coated Uncoated
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T.J. Awe et al., Phys. Rev. Lett. 116, 065001 (2016)
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C1ov%.60% = 0.-82 Cw% w0, = 0.05 Correlation of low/high
e " density material may

impact coupling of drive
field to MRT

= TAI; (2)Ar;(2)dz / \/ J2 Ar; (ZWZT Ar; (2)dz

C,;=1; perfect correlation
C; =0; no correlations
C; =-1; perfect anti-correlation

UNCOATED: High
correlation allows unimpeded
magnetic field to readily
couple to instabilities

— — COATED: dielectric-sourced
1.5 2 2.5 3 15 2 2.5
S : uncorrelated plasma mass
(Transmission %—color): , ,
(10-blue), {15—green), (20-magenta), surrounds metal; impairs field
(40—black), ( ), and ( ). from driving MRT




"'ﬂ&ding a 70-micron-thick dielectric surface coating
greatly enhances the stability of imploding liners!
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marv of Z liner dynamics results > Open questions remain!

» MRT is larger amplitude and more highly azimuthally correlated

than expected—> Does something other than surface roughness seed
MRT?

» Adding a dielectric tamper to solid rods and
imploding liners reduces cumulative MRT
amplitudes by ~10X-2> Does the dielectric tamper
mitigate mass redistribution from ETI (ETI is NOT
directly observed)?
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m&_’—like instabilities develop on premagnetized liners
Implosion symmetry increases
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"Well-connected helical structures are easily traced
through multiple cycles

72480, t1=3094.3ns

3.5 40
High-density structures ] AN
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“sees” structures at % )
“front” and “back” of Zis
liner, so structures with %
positive and negative slope "
are observe. This results 05
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Arsimple cylindrical helix model fits the data well
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My, Bo~=B, early in the experiment, but presumably
Bo>>B, throughout the entire implosion

‘ ¢ g=tan’!(B,/Bg)$>pz=2na(B,/Bg) \

%T: —20 10000
— ¥ /7 | —_—
= £ 15 1000 =
S & B L N =
== O.lout—> >
! ' = [ z, out 2
- o= V4 l_) -l;
B ooy | &
E 8 b’ 4. -
=9 2925 2975 3025 3075
- Time [nS] T.J. Awe et al. Phys.

Plasmas 21, 056303 (2014)



'MHD sims show that an initial helical perturbation will
grow in amplitude and pitch angle as the liner converges

Seed perturbation Synthetic radiograph Density Slices through Mid-plane
5 degrees 3080ns 3098ns 3094ns 3098ns

(¥
o
¥

*#**GORGON simulations by Chris Jennings*

7.2 degrees

10.2 degrees




’mnarv of Z liner dynamics results > Open questions remain!

» MRT is larger amplitude and more highly azimuthally correlated
than expected—> Early in the current pulse, does something other
than surface roughness provide the dominant seed for MRT?

» Adding a dielectric tamper to solid rods and imploding liners
reduces cumulative MRT amplitudes by ~10X-2>Does the dielectric

tamper mitigate mass redistribution from ETI (ETI 1s NOT directly
observed)?

» Axially premagnetized liners develop helix-like
instabilities and implode with higher symmetry than
non-premagnetized liners—> Are helix-like J
instabilities seeded when B ~B,? If so, what physical
mechanism leads to the formation of a helical
perturbation?

Sandia
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mining axial premagnetization with a dielectric tamper
for ETT mitigation results in unprecedented liner stability

AddB=7T

(

»
L Y.
e

v
L g g R T

Add dielectric
mass tampers;
ETI mitigation

B, t+dielectric

T.J. Awe et al. Phys. Rev.
Lett. 111, 235005 (2013)

CR=R. (t=0)/R, (t)=21!

b < 3
-2.-15 1 -0.5

T.J. Awe et al., Phys. Rev.
Lett. 116, 065001 (2016)



’mnarv of Z liner dynamics results > Open questions remain!

» MRT is larger amplitude and more highly azimuthally correlated than
expected—> Early in the current pulse, does something other than
surface roughness provide the dominant seed for MRT?

» Adding a dielectric tamper to solid rods and imploding liners reduces
cumulative MRT amplitudes by ~10X->Does the dielectric tamper
mitigate mass redistribution from ETI (ETI 1s NOT directly
observed)?

» Axially premagnetized liners develop helix-like instabilities and
implode with higher symmetry then non-premagnetized liners—> Are
helix-like instabilities seeded when B,~Bg? If so, what physical
mechanism leads to the formation of a helical perturbation?

»Premagnetized & dielectric coated liners implode
with unprecedented symmetry-> Can such results be
explained without detailed knowledge of helical
instability and ETI seeding?




* SulmI marv of Z liner dynamics results 2 Open questions remain!

» MRT is larger amplitude and more highly azimuthally correlated than
expected—> Early in the current pulse, does something other than
surface roughness provide the dominant seed for MRT?

» Adding a dielectric tamper to solid rods and imploding liners reduces
cumulative MRT amplitudes by ~10X->Does the dielectric tamper
mitigate mass redistribution from ETI (ETI 1s NOT directly
observed)?

» Axially premagnetized liners develop helix-like instabilities and
implode with higher symmetry then non-premagnetized liners—> Are
helix-like instabilities seeded when B,~B4? If so, what physical
mechanism leads to the formation of a helical perturbation?

» Premagnetized & dielectric coated liners implode with unprecedented
symmetry—>Can such results be explained without detailed knowledge
of helical instability and ETI seeding?

Addressing the questions above requires data on the low-
temperature evolution of a metal carrying skin current




’Un‘p?ecedented data on low temperature nonuniform Joule
heating has given credence to ETI seeding of MRT

ETI stata grow in condensed metals at sub-eV temperatures
A 1 MA, 100 ns facility can access this physical regime

Spark gaps Gas  Water Load Vacuum
U of Nevada, Reno Zebra Facility . m\\ m— switeh  switches

=100 ns rise time (similar to Z) ] E‘” i [T

—=2>Nonuniform “skin” current et

—>Suite of low temperature (NIR to EUV) i

diagnostics suitable for ETI studies

Intermediate storage Pulse forming line

A '.JE ': . I l The “barbell load in knife-edge hardware” is carefully
1 H " designed to avoid non-thermal plasma formation

l mechanisms common to high-voltage generators
—>

<—D,=1.0 mm

: U i 2 frame gated imager:
da ,

2 ns and 3 um resolution




Perturbations in resistivity or current density seed nonuniform
Joule heating; surfaces were characterized prior to experiments

Al 6061 CM+EP
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Al 6061: Machined (CM) & Electropolished (EP)
Machining grooves—=>A~5 um, few-um amplitude
Resistive inclusions = surface and volumetric

Roughness Average, R,=170 nm

Al 6061: Diamond Turned (DT) & EP

Machining grooves removed via electropolishing
Resistive inclusions = surface and volumetric

Surface inclusions can be quantified:

R,=42 nm 100 defects/mm?2w/d>5 um

1,800 defects/mm? w/ 2.5<d<5 pm
8,400 defects/mm? w/ 1<d<2.5 um

over 200,000 defects/mm? with d<1 pm.

Al 5N (99.999% pure): DT & EP

Surfaces are nearly perfect, by comparison

No resistive inclusions
isolated surface defects do exist
R,=29 nm



The evolution of surface emissions from Joule-heated Al
rods can depend on alloy and fabrication technique
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Mnuniform self-emission from Al 6061 loads evolves rapidly
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T.J. Awe, et al., Submitted to Phys. Rev. Lett., May, 2016

2 frame gated imager with
2 ns and 3 um resolution captures
VIS/NIR emissions from the sub-eV
rod surface

Extreme diagnostic resolution
enabled a variety of first ever
observations!
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Nonuniform self-emission from Al 6061 loads evolves rapidly
Shot 3742, 111.1 ns [CZ) Shot 3740, 114.1 ns (C1)

= gaaui|

Surface Emissions evolve from...
» Discrete round Spots at ~600 kA

What seeds overheated spots?

~ Shot 3740, 114.1 ns (C1)
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“Defects likely seed spot formation > the number of
spots is comparable to the number of surface defects
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seed the observed spots |
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Mnuniform self-emission from Al 6061 loads evolves rapidly
Sh0374, .'l ns 2) Shot 3740, 114.1 ns (C1)

= gamaul|

Surface Emissions evolve from

discrete round spots to...

» Merging azimuthally elongated spots
(on/0T>0) at ~650 kA

S MRS | \\hat physics drives elongation?
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Mnuniform self-emission from Al 6061 loads evolves rapidly

Shot3742,111j.n5[c2) Shot 3740, 114.1 ns (C1)
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Surface Emissions evolve from
merging elongated spots to...
» Azimuthally elongated strata

(n/OT>0) at ~700 kA

What physics drives merging?
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msm We emphasize the significance of the observation
§ of strata in the early heating phase

"8  —even if great care is taken to minimize
surface roughness, micron-scale overheated
spots merge to form elongated strata — )

azimuthally correlated strata then readily seed
M

RT growth.
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Mnuniform self-emission from Al 6061 loads evolves rapidly
Shot 3741, 121.6 ns (C1) Shot 3740, 121.5 ns (C2)

GO0
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k00 i 200 4010 500

Surface Emissions evolve from strata
To...

» Vertical plasma filaments (on/0T<0)
at ~750 kA




Shot 3742, 111.1ns (C2)  Shot 3740, 114.1 ns (C1)

G600

500 SREE
400
e
200 8 _

100 88

o e Y

GO0

ann

400

300

200

GO0

a00

400

300

200

100

200

200

Shot 3741, 121.6 ns (C1)  Shot 3740, 121.5 ns (C2)

200

nuniform self-emission from Al 6061 loads evolves rapidly

400

742, 115.2 ns (C1)

400

400

¥ 600

500

2 L 400

200

100

EEI DD 200 400 600
Shot 3741, 117.5 ns (C2)

g00

500
400
300 48
200
“on B

o ; -
B0 D 200 400 500

600

)

500
400
300
200

100

&
600 0 200 400 600

Axes in [um]

Surface Emissions evolve

from...

» Round Spots, to...

» Merging azimuthally
clongated spots (on/0T>0),
to...

» Azimuthally elongated strata
(on/0T>0), to...

» Vertical plasma filaments
(on/0T<0)

Data provide a wealth of new
information, yet the detailed
physics is not fully understood.
This motivates future study!




Nonuniform emissions from CM and EP Al 6061 loads evolves rapidly

Shot 3742, 111.1 ns (C2)
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Surface Emissions evolve from...

» Round Spots

To...

» Merging azimuthally elongated spots
(on/0T>0)

To...

» Azimuthally elongated strata
(on/0T>0)

To...

» Vertical plasma filaments (01/0T<0)

50000 3
e 3770 3783 Cameral
45000 b e 3740 T wineeien 3741 == Camera 2
'g 40000 —3742 — 3748 24
o 35000 : 3745 (5N)— ++e e 3749 (5%
N . A\ — 3753

g
g
L

Number of Pixels (2
g 8
8 8
—
| /

X 25000 i
2l o / P e\

Temperature [eV]

f
o
)

Mto

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Counts

Filaments are brighter than strata—> strata are brighter
than spots—>spots are brighter than background




Diamond turned + EP and conventionally machined + EP Al 6061

rods evolve i1s a similar manner...

Al 6061 CM+EP | | .
Shot 3742, 111.1 ns (C2) Shot 3740, 114.1ns (C1) | o et mcanmnny - Inclusions are
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Diamond turned + EP and conventionally machined + EP Al 6061

rods evolve i1s a similar manner...
snet 70 1125 peler) » Round Spots

Shot3//70,112.5 ns(C1)
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Diamond turned + EP and conventionally machined + EP Al 6061

rods evolve i1s a similar manner...
NI 6061DTHER > Strata w/ filaments

Shot3/83, 121.1 ns(C1)
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Diamond turned + EP and conventionally machined + EP Al 6061
rods evolve 1s a similar manner...
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Diamond turned + EP and conventionally machined + EP Al 6061

rods evolve i1s a similar manner...
heoRioniE > Sharp filaments

shot 3748, 125.3 ns (C1)
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Al 5N rods (which contain no inclusions) form fewer spots, and

strata formation 1s not observed

Al 6061 DT+EP AT5N DT -
_shot3770. 1125 ns(c1) fshotazas el a1c0n: (c2) Inclusions are absent;

” some surface defects

remain
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Al 5N rods (which contain no inclusions) form fewer spots, and

strata formation 1s not observed

Al 6061 DT+EP
Shot 3770, 112.5 ns (C1)
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The number of spots increases with time (current), and there
are 2-9 times more spots/mm? for Al 6061 than for Al SN

600 : |
~_ 500 mCameral ®Camera2 % Al 6061 p 3740
£ 3770/ W
£ 400 7.
7] /3742
2 300 —
m Cd
2 %
© 200 [ ]
> % 3746) ’_3_?_‘,‘?——'-
3769 3772® | Time [ns]
105 110 115 120

100 defects/mm?w/ d>5 um

1,800 defects/mm? w/ 2.5<d<5 um
8,400 defects/mm? w/ 1<d<2.5 um
200,000 defects/mm? with d<1 pm

Defects of scale ~5 um may
seed the observed spots




3D MHD simulations of simplified, localized

perturbations (pits & 4*n inclusions) illustrate
for the first time how global ETI structures form
Simulations detail how current redistribution drives ETI

Isolated pits merge to form striations

Simulated emission (SPECT3D)
t=104 ns

FRONT: t=70 ns t=70 ns t=72.9 ns

(change to current)
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. . o 2 -0.002 0.000 0.002
Current bends around pit, driving enhanced J2/o and T at edge, and reduced o RO(cm)

there, effectively widening the separate perturbations until they correlate in T.

t=114 ns Hot spots around pits
TEMPERATURE ormlng plasma

Plumes expand
axially, forming
ETI filaments.

p=2 kg/m?3
isosurface




Md experiment will allow quantitative comparison with simulation

-Previous comparison with data was qualitative, due to uncertainties in impurity distribution and
composition. Now consider pre-machined perturbations, larger than the imager resolution limit
-Questions/discrepancies of interest:

GO0 f»]'q
Simulated emission (SPECT3D) Simulated emission 500 8 « IBE
t=99 ns t=104 ns Y Note difference in scale S8
ey G 10Y . . ! § 300
2x107 [ -
o e 100
pit centers 010
-20 pm 0 20 pm -20 0 20 Dn 200 400 GO0 um

*In simulation, bright spots appear in pairs above/below a pit, whereas data shows individual bright spots. Is
this due to time/space resolution limitations, or is hot spot evolution really different?

*In 2 adjacent pits, do simulations capture timing and qualitative features of azimuthal correlation?
*How do filaments from different pits interact? Do they repel?
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Simulatedge F n s
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0
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K’ Summary of experimental results

» MRT on imploding liners is larger amplitude and more
azimuthally correlated than expected. Changing the
orientation of machining grooves does little; early ETI growth
may explain these observations

» Dielectric coatings greatly reduced cumulative MRT growth,
likely through tamping ETI mass redistribution; ETl is NOT
directly observed

» Earliest nonuniform emission is from spots. The number of
spots is comparable to the number of micron scale inclusions

» Non-uniform Joule heating progresses from discrete round
spots, to elongated merging spots, to azimuthally correlated
strata; such observations can be explained by ETl-related
current redistribution.




mwork: Study electrothermal instability (ETI) growth
from z-pinches with engineered defects

Fully characterize

Fabricate loads with » .—‘ - dEfECt Structure
. N = >

Start with “blank canvas”  isolateddefects ~

* Single crystal Al
* DT+EP to Ra<50 nm

Target Fab
* Add engineered defects
hd
i ||
Simulate defect
Emphasis is placed on the driven ETI
development of greatly advanced \ POEROEROEoN
computational tools for the , TS
accurate modeling of ETI \‘
Optimize
\

Collect Data diagnostics

- Shot 3740, 114.1 n: {Cl} Shot 3741, 117.5 ns (C2)

. Experiment




