
1 

Final Report 
 DOE DE-FG02-07ER46393 

Mechanical Behavior and Radiation Effects, Office of Basic Energy Sciences 
Cornell University 

Deformed Materials: Towards a Theory of Materials Morphology Dynamics  
James P. Sethna,	sethna@lassp.cornell.edu 

Laboratory of Atomic and Solid State Physics, Clark Hall, Cornell University,  
Ithaca, NY 14853-2501 

June 28, 2017 
 
Executive summary 

This grant supported work on the response of crystals to external stress.  Our primary work 
described how disordered structural materials break in two (statistical models of fracture in 
disordered materials), studied models of deformation bursts (avalanches) that mediate deformation 
on the microscale, and developed continuum dislocation dynamics models for plastic deformation 
(as when scooping ice cream bends a spoon, Fig. 9).   
Glass is brittle -- it breaks with almost atomically smooth fracture surfaces. Many metals are ductile 
-- when they break, the fracture surface is locally sheared and stretched, and it is this damage that 
makes them hard to break. Bone and seashells are made of brittle material, but they are strong 
because they are disordered -- lots of little cracks form as they are sheared and near the fracture 
surface, diluting the external force.  We have studied materials like bone and seashells using 
simulations, mathematical tools, and statistical mechanics models from physics. In particular, we 
studied the extreme values of fracture strengths (how likely will a beam in a bridge break far below 
its design strength), and found that the traditional engineering tools could be improved greatly. We 
also studied fascinating crackling-noise precursors -- systems which formed microcracks of a broad 
range of sizes before they broke.   
Ductile metals under stress undergo irreversible plastic deformation -- the planes of atoms must 
slide across one another (through the motion of dislocations) to change the overall shape in 
response to the external force. Microscopically, the dislocations in crystals move in bursts of a 
broad range of sizes (termed 'avalanches' in the statistical mechanics community, whose motion is 
deemed 'crackling noise'). In this grant period, we resolved a longstanding mystery about the 
average shape of avalanches of fixed duration (using tools related to an emergent scale invariance), 
we developed the fundamental theory describing the shapes of avalanches and how they are 
affected by the edges of the microscope viewing window, we found that slow creep of dislocations 
can trigger an oscillating response explaining recent experiments, we explained avalanches under 
external voltage, and we have studied how avalanches in experiments on the microscale relate to 
deformation of large samples. 
Inside the crystals forming the metal, the dislocations arrange into mysterious cellular structures, 
usually ignored in theories of plasticity.  Writing a natural continuum theory for dislocation 
dynamics, we found that it spontaneously formed walls -- much like models of traffic jams and 
sonic booms. These walls formed rather realistic cellular structures, which we examined in great 
detail -- our walls formed fractal structures with fascinating scaling properties, related to those 
found in turbulent fluids.  We found, however, that the numerical and mathematical tools available 
to solve our equations were not flexible enough to incorporate materials-specific information, and 
our models did not show the dislocation avalanches seen experimentally. In the last year of this 
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grant, we wrote an invited review article, explaining how plastic flow in metals shares features with 
other stressed materials, and how tools of statistical physics used in these other systems might be 
crucial for understanding plasticity. 
 
Project activities 
 
Below find a list of publications supported by this grant. A selection of these publications is 
described in detail. Publications since the last reporting period (end of this section) are in green. 
 
"Bending crystals: Emergence of fractal dislocation 
structures", Yong S. Chen, Woosong Choi,  Stefanos 
Papanikolaou, and James P. Sethna, Phys. Rev. Lett. 105, 
105501, 2010, see Computer models explain patterns in 
bent crystals (Anne Ju). 
This article presents a definitive 2D analysis of the 
predictions of dislocation dynamics theory that motivated 
our original proposal (Fig. 1). We present the grain-
boundary and cell-structure patterns formed by our theory 
in two dimensions with and without glide, with 
comparisons to experiments, correlation function analysis 
of the self-similar cell structures we observed, and fractal 
and scaling analysis of the strained crystals, replicating 
previous analytical approach to these experimental 
systems.  

 
A. Mesaros, S. Papanikolaou, C. F. J. Flipse, D. Sadri and 
J. Zaanen Electronic states of Graphene grain boundaries Phys. Rev. B 82, 205119 (2010), (Phys. 
Rev. B Editors’ Suggestion), arxiv:1007.1137.  
 
D. G. Galanakis and S. Papanikolaou Nodal-Antinodal dichotomy from pairing disorder in d-wave 
superconductors, Phys. Rev. B 82, 060507(R) (2010). 
 
S. Papanikolaou and J. J. Betouras First- order versus unconventional phase transitions in three-
dimensional dimer models Phys. Rev. Lett. 104, 045701 (2010). 

 
Fracture strength of disordered media: Universality, interactions 
and tail asymptotics, Claudio Manzato, Ashivni Shekhawat, Phani 
K. V. V. Nukala, Mikko J. Alava, James P. Sethna, and Stefano 
Zapperi, Phys. Rev. Lett. 108, 065504, 2012.  See "Physicists 
predict when brittle materials fail" (Anne Ju). 
Our fuse-network model for fracture (Fig. 2) addressed several key 
questions for rare event failure estimation. (1) The failure 
distribution (crucial for practical engineering applications) is not 
well described by the commonly used universal extreme-value 
distributions (Weibull, Gumbel, or Fréchet), even for relatively 
large systems. (2) The distribution does obey the weakest link 

Fig. 2: Fuse network model for 
fracture 

 

Fig. 1: Our dislocation dynamics model (a,b), 
compared to experiment (c,d), showing the 
formation of cellular dislocation structures. 



3 

hypothesis for rather small sizes; the long-range interactions between cracks do not qualitatively 
change the failure mechanisms. This hypothesis underlies the coarse-graining renormalization-
group transformation that underlies extreme value statistics: why doesn’t it work? (3) The failure 
distribution is nicely described by a disorder-based nucleation theory (originally due to Duxbury). 
(4) The nucleation theory, for large enough sizes, will eventually converge to the Gumbel 
distribution – but very slowly. Two sigma into the tails, the convergence reaches 1% accuracy only 
for samples larger than the observable universe. 
 
Avalanche Spatial Structure and Multivariable Scaling 
Functions; Sizes, Heights, Widths, and Views through 
Windows, Yan-Jiun Chen, Stefanos Papanikolaou, James 
P. Sethna, Stefano Zapperi, and Gianfranco Durin, Phys. 
Rev. E 84, 061103 (2011). (Selected for PRE 
Kaleidoscope) 
 
"Is dislocation flow turbulent in deformed crystals?", 
Woosong Choi, Yong S. Chen, Stefanos Papanikolaou, 
and James P. Sethna, Computing in Science and 
Engineering 14, 33 (2012). 
Our invited paper on the analogies between dislocation 
evolution and fully-developed turbulence, Is dislocation 
flow turbulent in deformed crystals?, was published in a 
special issue of CiSE (Fig. 3).  It addresses in detail the 
subtle issues of defining good convergence in the 
continuum limit of theories that form delta shocks and 
fractals that inevitably extend to the lattice scale.  
 

"Theory of dielectric breakdown and avalanches at the 
non-equilibrium Mott transition", Ashivni Shekhawat, 
Stefanos Papanikolaou, Stefano Zapperi, and James P. 
Sethna, Phys. Rev. Lett. 107, 276401 (2011).  
Our manuscript explained the avalanche behavior seen 
during metal-insulator transitions in strongly correlated 
electron materials. Ashivni’s analysis used classical 
dielectric breakdown models – strongly related to the fuse 
network models we use to study fracture – demonstrating 
that the electronic physics that underlies the transition 
isn’t relevant for understanding the macroscopic non-
equilibrium behavior. We also predict a new phase 
transition at lower resistive contrast (Fig. 4). 
 

"Universality beyond power laws and the average avalanche shape", Stefanos Papanikolaou,  
Felipe Bohn, Rubem L. Sommer, Gianfranco Durin, Stefano Zapperi, and James P. Sethna Nature 
Physics 7 316-320 (2011). 

Fig. 4: Nonequilibrium phase diagram for 
metal-insulator avalanche behavior. 

Figure 3: Dislocation dynamics (left) has 
strong analogies to turbulence (right). 
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This paper extracted universal, 
multiparameter scaling predictions from 
the mean-field theory, applicable both to 
the thin-film magnet experiments 
presented by our collaborators in the 
paper and also to most models of 
dislocation avalanches in crystals (where 
long-range elastic interactions make 
mean field theory valid). Stefanos 
Papanikolaou’s triumph in the paper was 
an analytic calculation of the average 

temporal shape of avalanches of fixed duration (Fig. 5) showing a crossover from parabolic 
behavior to a flattened shape as the duration becomes suppressed by the demagnetization factor – 
precisely matching experiments. 
 
A Striped Holographic Superconductor, R. Flauger, E. Pajer and S. Papanikolaou, Phys. Rev. D 83, 
064009 (2011). 
 
"Minimal model of plasma membrane heterogeneity requires coupling cortical actin to Ising 
criticality", Benjamin B. Machta, Stefanos Papanikolaou, James P. Sethna, and Sarah L. Veatch, 
Biophysical Journal 100, 1668-1677 (2011). 
 
Straining the identity of Majorana fermions, A. Mesaros, S. Papanikolaou and J. Zaanen, Phys. 
Rev. B 84, 041409(R) (2011). 
 
From damage percolation to crack nucleation through finite size criticality, Ashivni Shekhawat, 
Stefano Zapperi, and James P. Sethna, Physical Review Letters 110, 185505 (2013). (Editor's 
choice for a viewpoint, The Breaking of Brittle Materials by Elisabeth Bouchaud.)  
 
Quasi-periodic events in crystal plasticity and the self-organized avalanche oscillator, Stefanos 
Papanikolaou, Dennis M. Dimiduk, Woosong Choi, James P. Sethna, Michael D. Uchic, 
Christopher F. Woodward, and Stefano Zapperi, Nature 490, 517-521 (2012). See Slow avalanches 
'oscillate' toward new power law  (Anne Ju). 
We figured out why Dimiduk’s group was finding rate-dependent critical exponents in the 
dislocation avalanches seen in micropillar experiments. We hypothesized that there was a slow 
relaxation process competing with the avalanches, and developed several models to incorporate and 
explore this competition. We discovered that these models exhibited a new mechanism for 
avalanches – not self-organized criticality, not plain old depinning, but an oscillatory approach to 
the critical point. Large, rare avalanches throw one far from the critical point, leading to a quasi-
periodic series of large avalanches with a build-up in between. This behavior is captured in a 
simple model, in more realistic simulations, is exhibited in Dimiduk’s experiments, and appears 
also to be observed in earthquakes deep under the earth’s crust. 
 
Scaling theory of continuum dislocation dynamics: Self-organized critical pattern formation, Yong 
S. Chen, Woosong Choi, Stefanos Papanikolaou, and James P. Sethna, International Journal of 
Plasticity 46, 94-129 (2013). It gives full descriptions of the motivation and derivations of our 
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Fig. 5: Average temporal avalanche shape: thin film magnets (left) 
and mean-field theory (right).  
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equations of motion. It introduces a new model for 
forbidding climb, by coupling climb to a vacancy 
field (below) and then making the vacancies 
expensive; this reproduces a model originally 
proposed by Acharya (Fig. 6). It introduces true 
three-dimensional simulations of our model, 
which continue to show realistic cellular structures 
and evolution (Fig. 6). The clear distinction 
between cell walls (allowing climb) and grain 
boundaries (forbidding climb) that we reported in 
our PRL disappeared in three dimensions, where 

all three models have similar morphologies and correlation functions. 
 
Visualization, coarsening and flow dynamics of focal conic domains in simulated Smectic-A liquid 
crystals, Liarte, Danilo B., Bierbaum Matthew, Zhang Muxin, Leahy Brian D., Cohen Itai, and 
Sethna James P., Phys. Rev. E 92, 062511 (2015). 
Metals and insulators form polycrystalline domains when cooled from the melt – almost perfect 
crystalline regions separated by sharp walls. Smectic A liquid crystals organize into focal conic 
domains, each of which contains almost perfect cyclides of Dupin, with singularities forming a 
confocal ellipse and hyperbola. (See also Fig. 8 below.) Our work appears to be the first to simulate 
these structures with a continuum theory; we also explored the coarsening behavior, compared to 
experiments in Itai Cohen’s group on the behavior under periodic shear, and confirmed a 
theoretical prediction and experimental realization for a continuous instability under dilation. We 
are refining our numerical approaches, and exploring alternative theoretical formulations. In an 
unexpected development, we find large regions in our simulations (and presumably in the 
experiments) that appear to decompose into fine, ramified wedges of focal domains. These appear 
to be a generalization of the lameller structures seen in martensites (see Weirdest Martensite 
below). 
 
Fracture strength: Stress concentration, extreme value statistics and the fate of the Weibull 
distribution, Zsolt Bertalan, Ashivni Shekhawat, James P. Sethna, and Stefano Zapperi, Phys. Rev. 
Applied, 09/2014, Volume 2, p.034008, (2014). 
 
"Irregularization" of Systems of Conservation Laws, Hunter Swan, Woosong Choi, Stefanos 
Papanikolaou, Matthew Bierbaum, Yong S. Chen, James P. Sethna 
(https://arxiv.org/abs/1506.05743, unpublished). 
Mathematically and numerically our continuum dislocation equations are pushing new ground – 
they form δ-shocks, which are far less studied or understood than the standard step-like Riemann 
shocks that arise in hydrodynamics and traffic. Here these δ-shocks are physically representing 
grain boundaries and cell walls – clearly of physical interest even if dangerous mathematically. We 
explored why previous theories (Park and Arsenlis, Koslowski and LeSar) did not generate these δ-
shocks, and what is missing from current numerical and mathematical methods that is needed to 
incorporate materials-specific information about the dynamics of the cellular walls. 

(a) (b)

(c) (d)

(e) (f)

Fig. 6: 3D simulations of dislocation evolution with 
climb forbidden by vacancy-diffusion backpressure: 
dislocation density (left) and orientation field (right).  
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Measuring nonlinear stresses 
generated by defects in 3D 
colloidal crystals, Neil Y. C. 
Lin, Matthew Bierbaum, Peter 
Schall, James P. Sethna, and Itai 
Cohen, Nature Materials 15, 
1172 (2016). 
Themechanical, structural and 
functional properties of crystals 
are determined by their defects, 
and the distribution of stresses 
surrounding these defects has 

broad implications for the understanding of transport phenomena. When the defect density rises to 
levels routinely found in real-world materials, transport is governed by local stresses that are 
predominantly. Such stress fields however, cannot be measured using conventional bulk and local 
measurement techniques. Here, we develop SALSA, a method for theoretically calculating local 
stresses in an experimental colloidal system We report direct and spatially resolved experimental 
measurements of the nonlinear stresses surrounding colloidal dislocation defect cores (Fig. 7), and 
show that the nonlinear stresses at vacancy cores generate attractive interactions between them. 
 
Weirdest martensite: Smectic liquid crystal 
microstructure and Weyl-Poincaré invariance, 
Danilo B. Liarte, Matthew Bierbaum, Ricardo 
A. Mosna, Randall D. Kamien, and James P. 
Sethna, Phys. Rev. Lett. 116, 147802 (2016), 
pdf. (Cover story and Editor's Choice for PRL, 
Cornell chronicle story, and "Two different 
crystals can be described by the same 
mathematical rules", by Lisa Zyga at Phys.org.) 
Smectic A liquid crystals are crystalline in one 
direction and liquid in two (some are made, e.g., 
from stacks of soap films). They exhibit what 
must be the oddest of all materials 
morphologies: they show defects forming geometrically perfect ellipses and hyperbolas. Using our 
GPU simulations developed as an offshoot of our dislocation dynamics code, we have simulated 
these defect structures (Fig. 8). In this manuscript, we show that these defects are a kind of 
martensite, where the variants have circular and linear defects and the external symmetry group 
(usually crystalline rotations) is promoted to include Lorentz boosts and dilations. 
 
Deformation of crystals: Connections with statistical physics, James P. Sethna, Matthew K. 
Bierbaum, Karin A. Dahmen, Carl P. Goodrich, Julia R. Greer, Lorien X. Hayden, Jaron P. Kent-
Dobias, Edward D. Lee, Danilo B. Liarte, Xiaoyue Ni, Katherine N. Quinn, Archishman Raju, D. 
Zeb Rocklin, Ashivni Shekhawat, Stefano Zapperi, Annual Review of Materials Research, 47 
(2017). 

LETTERS NATUREMATERIALS DOI: 10.1038/NMAT4715
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Figure 3 | Dislocation stress. a, 3D reconstruction of a partial dislocation (red line) and the associated stacking fault plane (blue) analysed using the
dislocation extraction algorithm. b, Pressure and shear stress, �xz, around a dislocation determined using SALSA (left column), simulation (middle column),
and linear elasticity (right column). In each panel, the dislocation core is labelled with a green (?), and the stacking fault is indicated by a black dotted line.
The experimental and simulation data are depth-averaged. In simulation, the experimental particle positions are used to determine appropriate initial and
boundary conditions. The system is relaxed before recording the stresses to avoid particle overlaps due to featuring uncertainties. For the theory
calculation, we use the observed Burgers vector and orientation of the partial dislocation to calculate the corresponding stress fields. c, Both experimental
(exp.) and simulation (sim.) stress–strain relations show softening behaviours at strains |� |�0.08 (orange region). d, Shear modulus versus position for
fields within 2 µm of the purple arrow in b. The modulus decreases by ⇠50% at the defect core, which is approximately four particles wide. Since the
modulus value fluctuates in the grey area due to the sign changes in stress and strain, the corresponding points are removed for clarity.

experiments and literature values of the bulk (K = 93mPa) and
shear (µ=92mPa) moduli for our system’s volume fraction22, we fit
the pressure distribution by adjusting the three third-order isotropic
elastic constants. We find that the predicted stress distributions
quantitatively reproduce all stress components (last row of Fig. 2c)
as well as the radial pressure distribution (red line Fig. 2e).
Furthermore, the local modulus at the pressure ring region can be
determined from the fitting. We find that the bulk modulus at that
region more than doubles to 213mPa. This drastically increased
modulus is consistent with the value from numerical studies of bulk
hard spheres21,22 at the local interparticle spacing of the pressure
ring region. Overall, the strongly enhanced local modulus indicates
a significant hardening near the defect core.

While linear isotropic theory predicts no interaction between
vacancies, our findings indicate that vacancies attract within the
length scale associated with the pressure bump, as was predicted by
numerical studies8,23,24. This attraction can be understood by noting
that the volume change 1V due to one vacancy is negative and so
the P1V term in the elastic energy leads to a force that attracts that
vacancy to the pressure ring of the other (see Supplementary Infor-
mation). Therefore, we estimate the elastic energy of the attraction
⇠2.6kBT at r ⇠4a. Since this attraction is several times larger than
the thermal energy, it will significantly accelerate the aggregation
of vacancies. In an atomic crystal, this large vacancy aggregate will
form a void. For hard-sphere crystals without attractive interactions,
void formation is inhibited by large configurational entropies found
at very low equilibrium defect density. At the vacancy densities in
many experimental systems, however, voids form in equilibrium23

and neighbouring particles surrounding a void will ‘evaporate’ into
the void, filling it with liquid-state particles in local equilibriumwith
the surrounding crystal.

Dislocations are 1D topological defects whose collective
interactions determine macroscale plasticity including work
hardening, yield stress and fatigue. At the high defect densities
involved in such processes however, interactions are significantly
altered by nonlinear stress fields surrounding these defects. One
critical conjecture that has been widely employed in the dislocation
simulation literature is that the modulus softens at the dislocation
core7,25. This conjecture however, has never been validated.

To study the dislocation stress field using SALSA, we grow a
crystal on a patterned template with a lattice spacing 1.5% larger
than the equilibrium crystal lattice. A 3D reconstruction of the

particle configuration is shown in Fig. 3a. The dislocation (red)
delineates the lower bound of a stacking fault (green) embedded in
a crystalline region (blue), which has been clipped for visual clarity.
The dislocation is slightly curved (variation⇠2a) and aligned along
the y axis corresponding to the (11̄0) direction of the face-centred
cubic (fcc) lattice. The dislocation core is highlighted with a (?)
and has a Burgers vector 1/6(1̄1̄2), which corresponds to a Shockley
partial, the most prominent dislocation in fcc metals.

Using SALSA, we measure the stresses near the dislocation and
show the pressure (upper row) and shear stress, �xz (lower row),
in Fig. 3. The stress field is averaged along the dislocation line
to eliminate the e�ects of polydispersity. To confirm that SALSA
accurately extracts the stress features in this more complicated
defect structure, we compare the SALSAmeasurementswith stresses
calculated by direct Brownian dynamics simulations that are seeded
by the experiment data (middle column Fig. 3) (Supplementary
Information). Both experimental and simulation results show com-
parable features. Overall, we observe a pressure gradient across
the stacking fault, and a shear stress dipole centred at the defect
core. These general trends are consistent with predictions of linear
isotropic elastic theory (right column Fig. 3) indicating that dislo-
cation curvature does not qualitatively alter the stress distribution.
However, both SALSA (blue) and the simulation (orange) results
show a nonlinear strain softening in highly strained regions near
the defect core (Fig. 3c). This local modulus drop allows us to
visualize the precise location and size of the dislocation core. To
do so, we focus on the cross-section region denoted by the black
dotted line in Fig. 3b, and plot nonlinear shear modulus (d�xz/d�xz )
versus position (r/2a) in Fig. 3d (Supplementary Information).
The modulus decreases by ⇠50% on both sides of the dislocation
core, which is about four particles in width. Overall, our measured
modulus profile shows a softening consistent with the non-singular
continuum assumption widely employed in dislocation theories and
simulations7,25, in which the divergence in the stress at the disloca-
tion core is cut o�. Moreover, this modulus softening regularizes the
interactions between dislocations and dramatically influences the
dislocation creep behaviour in crystals.

Grain boundaries are 2D structures important for crystal
growth26, melting kinetics2,3 and transport properties27, and
can substantially harden materials through internal stress
variation15,16,28. While X-ray microbeam experiments have been
used to reveal strain fluctuations at the scale of 100 nm (ref. 16),

1174
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Fig. 7: Here we use experimental colloidal particle positions at a dislocation 
line (a) to extract the xy component of the stress tensor (SALSA), showing 
good agreement both with stress measured by a simulation of the same 
particle configuration and with traditional elastic theory. 

(a)
(b)

(c)

Fig. 8: Simulated focal conic structures in smectic liquid 
crystals. 
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In this invited review article, we give a bird’s-eye view of the plastic 
deformation of crystals aimed at the statistical physics community, 
and a broad introduction into the statistical theories of forced rigid 
systems aimed at the plasticity community. Memory effects in 
magnets, spin glasses, charge density waves, and dilute colloidal 
suspensions are discussed in relation to the onset of plastic yielding 
in crystals. Dislocation avalanches and complex dislocation tangles 
are discussed via a brief introduction to the renormalization group 
and scaling. Analogies to emergent scale invariance in fracture, 
jamming, coarsening, and a variety of depinning transitions are 
explored. Dislocation dynamics in crystals challenges 
nonequilibrium statistical physics. Statistical physics provides both 
cautionary tales of subtle memory effects in nonequilibrium systems, 
and systematic tools designed to address complex scale-invariant 
behavior on multiple length and time scales. 
 
Training yield-precursor avalanches over cyclic loading in small-scale crystals, Xiaoyue Ni, Julia 
Greer, Danilo Liarte, Karin Dahmen, Will McFaul, and James P. Sethna (manuscript in 
preparation). 
We have been working with Julia 
Greer’s group, exploring the 
irreversible microscale response 
ofcrystals to external stress -- 
dislocation avalanches and plastic 
deformation of metallic micropillars. 
We examine the connection between 
microscale and macroscale plasticity. 
We discover that the textbook 
description of yield stress and work 
hardening is clearly violated in the 
micropillars. Their experiments, 
averaged over many load and 
unloading cycles, clearly show 
substantial precursor avalanches 
upon reloading (avalanches below 
the previous stress maximum), at a level which for a macroscopic system would be a significant 
departure from the textbook scenario (Fig. 10) (No avalanches, however, are observed upon 
unloading, which appears to follow Hooke's law just as for macroscopic systems.) We study the 
pillar size dependence of the precursor avalanches, and do see a reduction with increasing pillar 
size. We then examine the behavior of these micropillar precursor avalanches upon repeated 
cycling of stress. We are inspired by studies of 'reversible-irreversible' transitions (RIT) in dilute 
colloids and other systems including simulated plastic deformation of metallic glasses. In these 
systems, 'reversible' denotes the ability of a system to stabilize to a steady periodic state under 
cyclic deformation. They find that their micropillars stay in the reversible state in this sense -- upon 
repeated cycling to the same maximum stress, they find that the precursor avalanches die away 
after some number of cycles. Just as in these other systems, the number of precursor avalanches and 

Fig. 9: Bending a spoon: review 
of stat mech related to plasticity 

(a) (b)

Fig. 10: Precursor avalanches in micropillar compression. Usually  in 
macroscopic samples there is little plastic deformation below a yield 
stress, which grows to match the previous stress maximum. We find 
substantial plastic deformation below the previous maximum in 
micropillar experiments. This deformation disappears under repeated 
cycling, with intriguing relation to other nonequilibrium systems. 
(Figure from Deformation of crystals: Connections with statistical 
physics above. ) 
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the number of cycles needed for them to disappear grows as we increase the maximum stress -- 
suggesting the approach to an irreversible state where precursor avalanches would continue 
indefinitely under cycling. We find that this transition point is either associated with, or lies above, 
the stress at which the pillar undergoes catastrophic failure.  
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