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Motivation
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Optimization of PDEs with Uncertain Inputs
Optimal Control: Given a > 0, D, C D, D. C D, and w € L*(D,).
min 10 = 37| [ (S@)@ 0 & + 5 [ 2 a
where S(z) = u : = — H*(D) solves the weak form of

=V (e(O)Vu(§)) + N(u(§), §) = xp.z, inD, a.s.
u(§) = g(&), on 8D, a.s.

Topology Optimization: Given0 < Vy <land D c R?, d =1,2,3.
min J(z) =R [/ F(x)-(S(z))(x)dx| st 0<z<1, /z(x) dx < Vy|D|
zEZ D D

where S(z) = u : £ — H'(D) solves the weak form of

=V - (E(z) : e(u(f)) ( )s inD, a.s.
e(u(§)) = ( Vu() + Vu(©) "), inD, a.s.
u(é) :8(5)7 on dD, a.s.
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+General PDE-Optimization under Uncertainty

(Q, F,P) is a complete probability space and ¢ : 2 — = is a random vector.
Consider

min [(z) = R(f((5(2))(£),2,€))

2€2Z,q

where (5(z))(§) = u € LF(Q, F,P; U) solves the weak form PDE
e(u,z,§) =0 and Z, CZ.

Assumptions:
» U is a reflexive Banach space and Z is a Hilbert spaces.
» Foreachz € Z,q, e(u,z,£) = 0 is well posed, i.e.,
» 31(S(2))(€) = u € LP(Q, F,P; U) such that e(U(z),z,&) = 0;
» Jc¢ > 0indpendent of z and ¢ such that ||(S(2))(&)|lu < ¢(|z||lz + 1).
> eis a.s. sequentially weakly continuous.
> fis a.s. sequentially weakly Isc and f((S(z))(),z, &) € L1(Q2, F,P).

» Z.q is convex, closed and bounded — or —
Z.a=Zandz— f((5(z))(),z,¢) is a.s. coercive, i.e.,
3r >0 and coercive ¢ : Z — RU {400}, both independent of ¢, s.t.

lelz>r = F(SE)©.20 > () as




+.Known v.s. Unknown Probability Distribution

Traditional Stochastic Programming: Minimize f((5(z))(€),z,€) on
average,

min Ep[f((5(2))(), 2, €)].

2€Zad

Known Probability Distribution:

> ¢:Q — E C RM has known Lebesgue density p : £ — [0, c0).

» Analysis performed in L},(Z).

» Enables UQ techniques including gPC, collocation, and sampling.
Unknown Probability Distribution:

» Po¢~!is unknown or is estim. from incomplete/contaminated data.

» Must determine minimizers that are robust to unknown distribution.

» Formulate optimization problem as the min-max problem

min sup Ep[f(5(z),2)].

2E€Z,4 Pe

» Numerical solution = Must discretize the probability measures P € 2.
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Knmown Probability Distribution — Risk Measures

Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . ..

Assumptions:
» R:L)(E) — RU{+oo} is convex and lower semicontinuous;
» R satisfies R(C) = C for all constants C;
» R is monotonic, i.e., if X’ > X a.s., then R(X') > R(X).

Result: There exists a minimizer of ] in Z.q.

Risk Neutral v.s. Risk Averse
» Risk Neutral: R = E.
» Optimal solution minimizes on average.
» Efficiently solved with adaptive sparse grid trust-region algorithm
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders.
» Risk Averse: R(X) > E[X] V¥ nonconstant X € L}(Z).

» More conservative than R = E.
» Can minimize measures of deviation and/or tail events.
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Choosing a Risk Measure

Controlling Uncertainty and the Risk Quadrangle

» Reduce variability of optimized system:

E[(X - E[X)?] or

E[(X - E[X])} ]V

» Control rare events, reduce failure regions, and certify reliability:

Pr[iX <]

VaRg[X] =inf {t e R : Pr[X <t] > B}

» Minimize over undesirable events:

CVaRg[X] =

1= B Jx>varg(x]

X(w) dP(w) = E[X| X > VaRg[X]]

Opt. Under Uncertainty
Risk R: Measures overall
“hazard”

R(X) = E[X] + D(X)

= mtin{t +V(X-t)}.

Regret V: Measures ones
“displeasure”

smia V(X) = E[X] + £(X).
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Statistical Estimation
Deviation D: Measures
“non-constantancy”

D(X) = R(X) — E[X]
= mtin{E(X -t}
Error £: Measures proxim-

ity to zero

£(X) = V(X) — E[X].




Classification of Risk Measures
Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasey, . . .
R : L}(Z) — RU {co} is coherent if
» Convexity: R(tX+ (1 —H)X') <tR(X)+ (1 -t)R(X'), Vtel0,1]
» Monotonicity: X > X' ae. = R(X)>R(X)
» Translation Equivariance: R(X+1t) =R(X)+t, VteR
> Positive Homogeneity: R(tX) =tR(X), Vt>0
R is law invariant if
PX<H=PX'<t) teR = RX)=RX)
Examples of law-invariant coherent risk measures with X € L},(Z):
> Risk Neutral: R(X) = E[X]
» Mean Plus Semideviation: R(X) = E[X] + cE[(X — E[X])".]"/7, c € (0,1)
» Conditional Value-at-Risk: R(X) =inf {t+cE[(X—f)+] : teR}, ¢>1
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Coherent Risk As Distributionally Robust

» If R is convex and Isc, then
R(X) = sup{E[¢X] — R"(¥) : ¢ € dom(R")}.
» If R is translation equivariant and monotonic, then
dom(R™) C {¥ € (LL(E))" : EW] =1, ¥ >0p-ae.}
» If R is positive homogeneous, then

R(X)= sup E[9¥X].
Yedom(R*)

Coherent risk = disitributionally robust with 2l = dom(R").
Example (Conditional Value-at-Risk):

R(X) = CVaRs[X] = inf { t+(1—8)'E[(X - t)+]} = sup E[X]
t Yedom(R*)

dom(R*) = {19 €(LL(E)" :EW =1,0<9< ﬁ p-a.e.}.
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Unknown Probability Distribution
Recall: (Z, B) is a measurable space and prob. measure is unknown

» M is the Banach space of regular Borel measures on F, i.e.,
C(E)" 2 M.

» M™T C M is the pointed cone of positive measures on F, i.e.,
peEMt = wV)>0 VVeF

» Ambiguity Set: 2 ¢ M™ defined by data. For example:
» Moment Matching: Given generalized moment data m, . .., my,

A = {Pe/vﬁ : P(B) =1, /wi(f)dP(E):mi, i:l,...,N}.
» ®-Divergence (e.g., Kullback-Leibler): Given an estimated prob.

measure Py and € > 0,
A={PeM" : P(E)=1,Ds(P||Po) <e€}.

» Distributionally-robust (a.k.a. data-driven) optimization problem:

min sup [ f((U(2))(£), 2 £) dP(E).

2€2a4 pea J=
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el : ¢
Measure Approximation

General Approach:
1. Let {yi}i_; be a partition of unity on Z and n € M be any measure.
2. Define the “localized” measures

(V) = / i(6) du(é).

3. Note u(B) = () + ... + ().
4. Define the projection operators I/ : C(Z) — span{¢1,...,pn} as

My =3 (=)™ / Y& dui(€) i Wy € C(E)
i=1 =
and A : M — span{u1,..., .} as

A”V_Zu157L O dv(&) pi YveN,
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Approximation Properties

» Lemma: If u € M™ is o-finite, then Al/v is absolutely continuous
with respect to p with density

Zu, =) / (&) dv(&)yi forany v e M.

» Lemma: A} is invariant on the space of probability measures.

» Lemma: II/ is the adjoint of AJ.

» Theorem: Let V; = supp(y;) and || - ||.,v, denote the uniform
norm on V;. Then, there exists ¢; > 0 such that

v = Niv ) amce| < e { / \/wi(E)dIVI(f)} inf V@i = 59l
i=1 = !
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’ Measure Approximation

Piecewise Constants:
1. Let {Vi}._, be a tesselation of E and define ¢; = xv,.
2. The “localized” measures are

pi(V) = p(V N Vi).
3. The projection operator IT} : C(Z) — span{1,...,pn} IS
iy =Y uv) " [ w©)du©) x, vyecE)
i=1 i
and A : M — span{u1,..., ta}is

Aﬁy = Zu(vi)_ll/(vi)ui Vv e N,
i=1

» Theorem: Suppose V; are convex, bounded, and Lipschitz, and . € M.
Then 3 ¢ > 0 only depending on M such that

n V) .
v—Av||pee iz < (1—|—|M(1>1/V,» diam(V;).
l llwi.o (=) ; (V)] lvI(Vi) (Vi)
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Example — Voronoi Tesselation

Suppose = = [0,1] and P has pdf

- _ B e
pdf(¢) = T gt for B >0.

Approx. P using piecewise constant projection and y set to the uniform prob. measure:

n —Baj_1 _ ,—pBa;
approx-pdf(§) = Z (1(6_ e*ﬁ)(a-e— 11‘7)1) X

i=1

a;_1,a;] (5)

B n Error Sum W. Diam. Max. Diam. Max. W. Diam.
10 | 3592 x 1072  1.438x 10~T 2518 x 10! 5.899 x 102
1 100 | 3.740 x 1073 1.496 x 1072 4.269 x 1072 1.471 x 1073
1000 | 3.751 x 107* 1501 x 107%  6.089 x 107> 2.733 x 10~°
10000 | 3.750 x 107> 1.500 x 10~*  7.955 x 10~*  4.404 x 1077

10 | 2282 x 1077 1.304 x 10°T 7572 x 10! 1.010 x 1071
10 100 | 3.053 x 1072 1451 x 1072 5328 x 107! 8.191 x 1073
1000 | 3.551 x 1072 1.502 x 1073 3.133 x 107! 5.424 x 1074
10000 | 3.763 x 10~% 1517 x 10~*  1.300 x 107! 2.710 x 107°

10 | 3.076 x 1077 1.226 x 10°7  9.758 x 10! 1.194 x 1077
100 100 | 4128 x 1072 1.327 x 1072 9.531 x 10~! 1.261 x 1072
1000 | 5.022 x 107°  1.348 x 10~%  9.301 x 10" 1.247 x 1072
10000 | 5.899 x 10™*  1.360 x 10™*  9.072 x 10" 1.224 x 10~*
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.. Approximation and Optimization Algorithms

Given an arbitrary u € M™ with u(Z) = 1, we approximate
J(z) = sup f((U(Z))( ),2,&) dP(€)
PeA
using our measure discretlzatlon i.e.,

Jn(z) —supz pl /f(u )52, €) dpi(§), mn:{pGRn3Zu‘pi ﬂiem}~
i=1

PEUn j—1 1 Z(E)

» Theorem (Piecewise Constants): If ¢ — f(U(z)(€),z,&) € W2 (E)
and z, minimizes J, defined on a family of tesselations {V,;}/_, satisfying

lim su P(Vy)diam(Vy;) = 0.
Jim sup > P(
Then, z, has a w-converging subsequence and the w-limit minimizes J.
» ] and J, may not be differentiable!
» Jand ], are Fréchet subdifferentiable.
» Compute value and subgradient using linear/convex optimization.
» Cannot use derivative-based optimization algorithms.
» Subgradient descent and bundle methods converge sublinearly.
@ sn Expensive PDEs —- Need rapid optimization algorithms.
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Example — Moment Matching

Let ¢; : © — R be F-measurable functions and m; € Rfori=1,...,N
Joi(©)dP(€) =m;, i=1,...,Ne }
Jei(€)dP(E) <my i=Ne+1,...N |

Theorem (Rogosinsky): If 2 # ), then for each z € Z there exists &; and p; > 0 with
p1+ -+ pn+1 = 1 such that

Ql{PGM"’ : P(B) =1,

N+1

sup | f((U(2))(£),2,€) dP(§) = pr( U(2))(£1), 2 &1)

Ped JE

Approximation: Localized measures y;

n Z]nlu()f”wt(f d#]()—mi:i:lv-u:Ne
=9 peR" = > p=1,
= Z,"W()fﬂﬂz(i dpj(€) <mj,i=Ne+1,...,N

Theorem (Kouri): If 21, # 0, then for each z € Z there exists p; > 0 with at most
min{n, N + 1} nonzero such thatp; +---+p, =1 and

sup 35 L AUENE©.2. 0 = 3 LT [ AUE)E2 i)

q€An j=1 H =1
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Example — Moment Matching

Optimal Control of 1D Elliptic Equation
Leta=10"%Q, = Q. = Q= (-1,1), and w = 1 and consider

1
+Q/ z(x)? dx
2/,

where U(z) = u € L3(Z; Hj(0,1)) solves the weak form of

1
minimize z)==R
z€L2(—1,1) /@) 2

/_ 11<u<z><-,x> 1) dx

—0x (e(&,x)0cu(&,x)) = f(&,x) + z(x) (&,x) €2 xQ,
u(Ev 71) = 0’ u(Ev 1) =0 E €=
= =[-0.1,0.1] x [-0.5,0.5], the true distribution is a tensor product of

truncated exponentials, and the random field coefficients are

€(&,x) = 0.1x(—1,6,) + 10x(c, 1y, and (£, x) = exp(—(x — &)?).
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Example — Moment Matching

P / €1dP(€) ~ —0.537, and / £ dP(¢) ~ —0.313

1 1 1
0.75
G0 105 & 0
0.25
-1 0 -1
-1 0 1
¢
™1

0
-1 0 1

& &

» Left: Voronoi (n = 64) with 1000 MC samples per cell.
» Center: Uniform (n = 64) with level 4 sparse grids.

» Right: C? parition of unity (1 = 64) with level 4 sparse grids,
i.e., shifted/scaled tensor products of

4x*(3 — 4x) ifo<x<l
O(x) = 4(x—1)*(4x—1)if § <x <1
0 otherwise.
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Example — Moment Matching

n | Obj. Val. Center Prob. Center Prob. Center Prob.
S 16 | 0.13457 || (—0.864,—0.893) | 0.435 | (—0.634,0.841) | 0.328 || (0.195,—0.848) | 0.237
e 64 || 0.13777 || (—0.882,-0.933) | 0.540 || (—0.331,0.849) | 0.346 | (0.467,—0.909) | 0.114
S| 256 || 0.14056 (—0.981,—-0.983) | 0.605 (0.116,0.922) | 0.351 (0.330, —0.960) 0.044
§ 1024 || 0.14133 (—0.126,—-0.987) | 0.484 | (—0.916,0.988) | 0.342 | (—0.939,—0.994) | 0.174
S| 4096 | 0.14207 (—0.978,—-0.997) | 0.368 | (—0.813,0.988) | 0.343 (0.350, —0.991) 0.289
~* 16 || 0.13221 (—0.750, —0.750) | 0.709 | (—0.750,0.750) | 0.150 (0.750,0.750) 0.142
Il 64| 013779 | (~0.857,-0.875) | 0.49 || (—0.875,0.875) | 0.321 || (0.875,—0.875) | 0.193
©| 256 || 0.14058 || (—0.063,—0.938) | 0.457 || (—0.938,0.938) | 0.333 | (—0.938,—0.938) | 0.210
S| 1024 | 0.14194 || (—0.969, —0.969) | 0.438 | (—0.969,0.969) | 0.338 || (0.906,—0.969) | 0.223
g 4096 || 0.14286 (—1.000,—1.000) | 0.433 | (—0.968,1.000) | 0.342 (1.000, —1.000) 0.225
16 | 0.13444 || (—1.000,—1.000) | 0.696 | (1.000,1.000) | 0.164 || (—1.000,1.000) | 0.140
T‘I‘ 64 || 0.13953 (—1.000,—1.000) | 0.501 | (—0.714,1.000) | 0.329 (1.000, —1.000) 0.170
~| 256 || 0.14154 (—1.000, —1.000) | 0.663 (0.867,1.000) | 0.231 (—1.000, 1.000) 0.106
Y| 1024 | 0.14244 (—1.000, —1.000) | 0.441 | (—0.935,1.000) | 0.340 (1.000, —1.000) 0.218
4096 || 0.14286 || (—1.000,—1.000) | 0.433 || (—0.968,1.000) | 0.342 || (1.000,—1.000) | 0.225

[ [ *] 0.15640 ] (—0.995,-0.996) [ 0.657 ]| (0.432,1.000) | 0.323 [ (—0.993,0.999) [ 0.019 |

* Computed using Gaivoronski’s stochastic descent algorithm for moment matching.
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Example — CVaR

Optimal Control of 1D Elliptic Equation
Leta=10,Q,=Q,=Q = (-1,1),and w = 1 and consider

1
+E/ z(x)? dx
2J

where U(z) = u € L}(Z; Hj(0,1)) solves the weak form of

/ L (UE)(x) 17 dx

1
minimize [(z) = ER
-1

z€l2(—1,1)

=0y (e(&,x)0xu (&, x)) = f(&,x) +z(x) (&x) €ExQ,
u(€,-1)=0, u(&,1)=0 ==

E =[-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density p = 5
and the random field coefficients are

€(&,x) = 0.1x(—1,¢,) +10x(¢,,1), and f(&,x) = exp(—(x — 52)2).
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- Example — CVaR

Discretization: Uniform (n = 900) with level 4 sparse grids.

B =0.05 B=05 B =095
05 05 05
S0 S0 S0
-0.5 -0.5 -0.5
-0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

v
Il
li
=
——

Ql,,_{pG]R{":Zp,—l O<p1_1_ i
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e
Conclusions:
» Known Distribution:

» Lebesgue density of P o ¢! is known;
» Risk Neutral v.s. Risk Averse;
» Duality for coherent risk is related to distributionally-robust opt.

» Unknown Distribution:

Incorporate data into distributionally-robust opt. formulation;
Measure approximation with rigorous error bounds;
Objective function not differentiable;

Need rapidly converging nonsmooth optimization algorithms.

vvyYVvVvy

Future Work:

» Risk measures: Develop error indicators and use locally adaptive
sparse grids with trust-region algorithm.

» Unknown distribution: Develop opt. algorithm with adaptive
tessellation and sampling that exploits PDE constraint.

» Incorporate (buffered) probabilistic objectives and constraints to
control tail-probabilities and rare events
@ = (Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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