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Introduction i) st

As an increasing number of energy storage systems are deployed, the risk of safety
incidents increases.

Damage to Facilities Impact to First Responders

2012 Battery Room Fire at Kahuku Wind- 2013 Storage Battery Fire, The
Energy Storage Farm Landing Mall, Port Angeles WA
= There were two fires in a year at the
Kahuku Wind Farm = First responders were not
= There was significant damage to the aware of the best way to
facility extinguish the fire,

= |t reignited a week after it was

= (Capacitors in the power electronics S
thought to be extinguished.

are reported to be associated with
the failure.



Systems Thinking (Safety) ) e,

“Safety is an emergent property that arises when system
components interact with each other within a larger

environment.”
(Leveson 2012) [1]
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How do battery properties influence system safety?




Advanced Methodology

= Systems Theoretic
Process Analysis

= Accidents occur when
interactions violate safety
constraints,

= The system enforces
these constraints using
feedback control.

More information on using
STPA for Lithium-lon Battery
System Safety is in [2]
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Instability of Thermal Runaway ) o

= Accelerating Rate Calorimetry (ARC)
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Heating Rate Analysis ) feaen,

= Below the critical
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Feedback Control to Enforce
Safety Constraints
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Heating Rate Analysis (w/ Fire Suppression) .

= Direct cooling raises
the thermal runaway
critical temperature

= Early action could
(potentially) dissipate
potential thermal
energy before a fire

= Runaway reactions
can temporarily
exceed the ability of
water to cool them
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Initial Conclusions i) eora

" How do battery properties influence
system safety?

" Chemistry and design can determine emergency
cooling, fire suppression, and emergency
response requirements

= Analysis to determine these requirements can be
could be co-optimized if considered together

" Further research will improve and expand analysis
methodology
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Thank You to the DOE OE and especially Dr. Gyuk for
his dedication and support of work to ensure the safe
integration of energy storage to the electric grid

Questions?

David Rosewater

dmrose@sandia.gov
(505) 844-3722
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Established Methodology ) S,

It is challenging for engineers to incorporate thermal runaway energetics into a
holistic design for system safety

Quantitative Risk Assessment Example Fault Tree: If...
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knowledge on all possible failure modes
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— Where the interface boundaries are static
and clearly defined (finished products)

Problems with QRA
— Hard to apply on serial number 001 in the

design phase (lack of data) Hurman

— Blame for accidents is often assigned to Operators Fall
convenient scapegoats: Hardware failures,
Human error, Software “failures”

— Based on the assumption that Safety =
Reliability

System Fire




