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ABSTRACT

Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Con-
ventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly
spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a
mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a
measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruc-
tion and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more
bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mit-
igates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers
the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for
channeled spectropolarimetry.

Keywords: Channeled spectropolarimetry, iterative reconstruction, signal processing, Fourier transform, po-
larimetry, spectroscopy, VNIR, Stokes parameters, dispersive spectrometers, FTIR

1. INTRODUCTION

Channeled spectropolarimetry (CSP) combines the capabilities of polarimetry and spectroscopy. Imaging po-
larimetry helps to quantify aerosol size distributions, distinguish man-made targets from background clutter,
evaluate stress birefringence, and characterize biological tissues.! Imaging spectroscopy provides insights in
biomedical imaging and remote sensing.? Synthesizing these capabilities, CSP has been used to study the po-
larimetric and ellipsometric properties of dispersive materials.?*

Conventional CSP processing reconstructs Stokes parameters by filtering the Fourier transform of a mea-
sured spectrum,® 5 or by filtering the channeled interferogram if a Fourier transform infrared reflectance (FTIR)
instrument is used.® There are a few drawbacks to Fourier-based CSP reconstruction:

e It suffers from noise, caused by factors like environmental vibrations, thermal fluctuations, and imperfect
sampling.

e It assumes the channels are band-limited. Cross-talk between channels will degrade the reconstruction.

e The Fourier transform requires uniformly spaced samples in wavenumber. A CSP that uses a Fourier
transform spectrometer meets this requirement directly, but other spectrometers, such as dispersive based
designs, acquire non-uniformly spaced samples in wavenumber. Interpolating samples to a uniform grid
introduces errors: Interpolation has to fill in gaps between coarsely spaced samples, while it may discard
some finely spaced samples.

As an aside, despite their drawback of non-uniform sampling, dispersive spectrometers offer advantages
for some applications. Compared with a FTIR, they may provide better sampling in the visible and near
infrared (VNIR), they may be less sensitive to vibration and environmental noise, and they may be able
to better monitor a single IR wavelength to measure the kinetics of a fast chemical reaction.”

On the other hand, a FTIR based approach may offer advantages over dispersive systems. For example,
measuring a broad passband is easier, the signal and throughput may be greater, and the design may be
easier to modify. This work improves the capabilities of both approaches.
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Tterative reconstruction helps to solve these problems. It is a popular technique in x-ray computed tomography
(CT), where it helps to lower radiation doses.® To our knowledge, this work is the first application of iterative
reconstruction to channeled spectropolarimetry. This approach offers multiple advantages:

e It reduces noise from sources like environmental vibrations and thermal fluctuations.

e It doesn’t assume the channels are band-limited, which is a common source of error when filtering measure-
ments from modulated polarimeters.” Importantly, it can reconstruct signals that contain more bandwidth,
an advancement over Fourier reconstruction.

e It can process measurements that are non-uniformly spaced in wavenumber.

e It quantifies reconstruction improvement through minimization of a cost function.

Currently, Fourier reconstruction is the only algorithm for recovering the Stokes parameters from CSP data.
In this paper, we will describe how iterative reconstruction can improve Fourier reconstruction for channeled
spectropolarimetry.

2. CHANNELED SPECTROPOLARIMETRY SYSTEM

A CSP system typically combines two high-order uniaxial crystal retarders and an analyzer with a spectrome-
ter.419 We will consider the specific system consisting of an achromatic wave plate (QWP), a retarder oriented
at 45°, and an analyzer with a spectrometer. The input Stokes parameters are

Sin(0) = [ So(0) Si(0) Sa(o) Ss(0) |7, (2.1)
and the output Stokes parameters are
Sout(O') = Mpol M45o (O’) MQWP Sin(a), (2.2)
where
11 00
1100
Mpo = 000 0l (2.3)
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| 0 cos(¢) 0 —sin(¢)
M45o (O') = 0 0 1 0 s (24)
0 sin(¢) 0 cos(o)
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10 0 O
01 0 O
Mawer=1|43 g o 1 (2.5)
0 0 -1 0
are the Mueller matrices of the polarizer, 45° retarder, and QWP. The spectrometer measures the intensity
1 .
(o) = 5 {S0(0) + S1(0)cos[¢(a)] + Sz(o)sin[é(o)]} (2.6)
with phase shift
¢(o) = 2n0B(0)l, (2.7)

where 0 = 1/A, and B(0) = |no(0) — ne(o)].

In the following two sections, we describe techniques for recovering the Stokes parameters from the measured
spectrum in Eq. (2.6). First we review Fourier reconstruction. Then we present iterative reconstruction as an
improvement over conventional Fourier processing.
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Figure 3.1. Stokes parameters used to simulate the sample spectrum.

3. FOURIER RECONSTRUCTION

The inverse Fourier transform of (o) separates into channels, from which the Stokes parameters can be recovered.
The phase shift ¢(o) affects the channel content, and a reference measurement with a known polarization state
characterizes the phase terms.

For simulation, we set values for the Stokes parameters So(c), S1(o), and Sz(o), shown in Figure 3.1. We
also set values for the reference parameters: So(o) =1, Si(0) =1, and S3(o) = 0 for all o.

Using these Stokes parameters, we can simulate measurements of the sample and reference spectra according
to Eq. (2.6), shown in Fig. 3.2. We add noise to the simulated spectra, described in detail later; Eqs. (4.18)—
(4.19) describe the Gaussian noise model, and Eqgs. (5.1)—(5.2) specify the mean and standard deviation. The
simulated Stokes parameters and spectra are non-uniformly spaced in wavenumber to emulate measurements from
a dispersive spectrometer. The goal is to reconstruct So(o), S1(0), and Sa(o) from these simulated measurements.
Fourier reconstruction proceeds according to the following steps:

1. Inverse Fourier transform the sample and reference spectra (Fig. 3.2), which are functions of wavenumber,
to obtain interferograms. We interpolate the spectra to be uniformly spaced along wavenumber before the
Fourier transform.

2. Separate the interferogram into channels: Cy(d) and C;(d) for the sample signal, and Cy(d) and C4(d)
for the reference signal, where d is the optical path delay (OPD). Figure 3.3 depicts interferograms with
Hamming filters overlaid. Multiplying each interferogram by the green and blue Hamming filters isolates
channels 0 and 1, respectively.

3. Compute the Stokes parameters by processing the Fourier transform of the channels:
So(e) = |F [Co(d)] (o)]. (3.1)

The Fourier transform of Cj(d) contains information on the dispersion and linear phase shifts in C(d).
For phase correction, we extract the phase of the reference signal for channel 1,

d(0) = arg { F[Cr(d)] ()} (3.2
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Figure 3.2. Simulated measurements of the sample (top) and reference (bottom) spectra.
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Figure 3.3. Interferograms of the sample (top) and reference (bottom) signals.



We compute S1(c) and S3(o) using this phase correction:
$1(0) = Re {F[C1(d)] (0) - 71"} (3.3)

and

Sy(0) = Im {]—' [C1(d)] (o) - e_i‘gl(")} . (3.4)

Figure 3.4 shows the recovered Stokes parameters for our simulation. We plot the absolute difference
between the ground truth and reconstruction, with the root mean squared error (RMSE) displayed to
quantify error. In the next section, we will develop a different reconstruction technique to improve these
results.

4. ITERATIVE RECONSTRUCTION
4.1 Continuous Model

Ideally, a CSP system measures a noiseless intensity, modeled as

Inodel(0) = % {So(c) + S1(o)cos[p(c)] + Sa2(o)sin[p(0)]} . (4.1)

We can approximate noise as Gaussian, which corrupts the model I,oge1(0). Let I(o) denote the measured,
noisy intensity:
I(0) = Imodel(0) + n. (4.2)

We assume that the noise follows an independent, identically distributed Gaussian distribution,
n~N(po2), (4.3)

with mean p and variance o2. We formulate the problem as the minimization of a cost function with the general
form
c(So, S1,52) = L(So, S1,82) + BoRo(So) + B1R1(S1) + B2R2(S2) (4.4)

where L(Sp, S1,.52) is the negative log-likelihood function corresponding to our model of the noisy measurements
as a Gaussian distribution, 8y, 81 and 35 are scalar regularization parameters, and Ro(Sg), R1(S1), and Ra(S2)
are roughness penalty functions for Sy, S7, and Sy, respectively. Note that we suppress functional dependence
on wavenumber o for ease of notation.

In the continuous formulation, the likelihood function has the form
2

L(S), 51, 52) = / [; {S0(0) + 81 (0)cos((0)] + Sa(0)sinlé(0)]} — (o) | do, (4.5)

which measures the difference between our model I04e1(0) and the data I(o). To reduce noise, or penalize
roughness, and impose constraints like edge-preserving smoothness on our signals, we minimize the total variation
of the Stokes parameters with the regularizer terms

R()(So) = /R vV |VSO(O')|2 +e€ dO’, (46)
R1(Sl) = ‘/]R \ |VSl(O')|2 +e dO’7 (47)

and

:/ V55 (0)? + € do, (4.8)
R
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where € is a small constant to ensure differentiability. Now the cost function becomes

(S0, 81, 82) = L(So, S1,52) + BoRo(So) + B1R1(S1) + B2 R2(S2)
1

=3 /R [; {So(0) + S1(o)cos[p(o)] + Sa(o)sin[d(c)]} — I(U)] do (4.9)

+50/R\/|VSO(U)\2+Ed0+51/R\/|VS1(J)|2+6d0+52/R\/|V52(U)|2+6 do.

We aim to solve for the Stokes parameters by minimizing this cost function:

(So, Sl, Sz) = grgsmgn C(So, 51, SQ) (410)

4.2 Discrete Model

Our goal is to recover the spectrally dependent Stokes parameters. The spectrometer discretizes measurements
according to its pixel pitch. If a dispersive spectrometer is used, the wavenumbers o;, ¢ = 1,..., N, will be
non-uniformly spaced, according to the relationship o = 1/A. We can represent the sampled wavenumbers as a
vector,

o=[o1 ... o ... on] . (4.11)

We write the Stokes parameters as vectors:

SQ(O’) = [ SO,l SO,i SO,N ]T, (412)
Sl(d) = [ 51,1 Sl,i SI,N ]T, (413)
and
T
Se(0)=[ S21 ... S2i ... San |, (4.14)

where N is the number of wavelengths or wavenumbers measured. Similarly, we write the measured intensity as
a vector

o)=[hL ... L ... In]" (4.15)
and the phase as a vector
T
With this notation, we model the ideal, noiseless measurements as
1
Jmodel — 3 [So.i + S1,i cos(¢;) + Sa; sin(g;)]. (4.17)

We can approximate noise in the measured intensity I; as Gaussian, which causes deviations from the noiseless
model 7"°4¢! in Eq. (4.17):
I = [mdel 4, (4.18)

We assume that the noise follows an independent, identically distributed Gaussian distribution,

with mean g and variance o2. We specify the sampled likelihood function as

N 1 2
L(S0,S1,8) — [ {S0(0) + 51 (0)cos[é(0)] + Sa(o)sinf(o)]} — I(aﬂ

7=0s (4.20)



Analogous to Egs. (4.6)—(4.8), we regularize the unknowns by minimizing their total variation, with

N
Ro(So) = > _1/(DSp)? + ¢, (4.21)
i=1

N

Ri(S)) =) 1/(DS1)? +e, (4.22)
i=1
N

RQ(SQ) = Z \/ (DSQ),LQ + €. (423)

Here D is a finite difference matrix implementing the discretized first derivatives using nearest neighbors. The
cost function becomes

c(80,81,82) = L(So,S1,S2) + BoRo(So) + B1R1(S1) + B2R2(S2)

and

1M (1 2
~ 9 Z {2 [So,i + S1,i cos(¢i) + Sa,i sin(¢i)] — IZ}
i=1

(4.24)
N N N
+50 D> \/(DSo)?+e+B1 > (/(DS)?+e+52 > \/(DS2)? +e
i=1 i=1 i=1
Our goal is to recover Sg, S1, and Sy by minimizing this cost function:
(SO, Si, Sg) = argmin ¢(Sp,S1,S2). (4.25)

S0,S1,82€RN

We estimate the Stokes parameters by alternating updates in each iteration, a useful technique to solve for
multiple unknowns:'!

S(()nJrl) — argminc (So, Sg'ﬂ)7 Sgn)) , (426)
S()ERN
SYLH) = argminc (S(()"H), Si, Sé")) ) (4.27)
S1ERN
and
S = argmin ¢ (S(()n+1)a ST Sz) : (4.28)
S, RN

4.3 Iterative Reconstruction Algorithm

To solve the reconstruction problem in Eq. (4.25), we employ the alternating update strategy in Eqgs. (4.26)—
(4.28), where we use gradient descent for each update. Other optimization algorithms are possible.'? Gradient
descent minimizes a cost function based on computing its gradient, then updating parameters of interest by
moving in the opposite direction. For example, to solve for Sg in Eq. (4.26), at the ith iteration of gradient
descent, we move in the direction

d= —VSOC (So, Sl, SQ)|S

0=5"
(4.29)
= _VSOL (807 Sl7 SQ)'SQ:Séi) - ﬁOVSORO (SO)‘SOZSS)
and update Sy according to ‘ .
St =8 + a*d, (4.30)
where the step size
o = argmin ¢ (S((f) + ad, Sy, Sg) (4.31)

a€R



Algorithm 4.1 Update Sy using gradient descent
1: function UPDATE_S, ( S, Sy, S2 )

/* This function computes S§"* = argming cp~ ¢(So,S1,82) */

2. 8V gin
3: 140 )
4 while (sf;), S5, sz) > ¢ do
5: d«+ _VSOC(SO,SI7SQ)|S0:S(()1)
= ~Vs,L(S0,81,82)lg, g ~ Vi Ro (So)|
6: o — argmin, g ¢ (Sgi) +ad, Sy, Sg)
7. Si™ « 8{V + a*d
8: 1 1+1
9: end while
10:  Sg" « sy
11:  return S§"

12: end function

Algorithm 4.2 Update S; using gradient descent
1: function UPDATE_S; ( Sp, SI*, Sz )

/* This function computes S{"* = argming cgw~ ¢(So,S1,S2) */

22 S s
3: 140 )
4 while ¢ (SO, st sz) > ¢ do
5: d«+ _VSIC(SO’SI’SQNSl:SY)
= 7VS1L (SOa Sh Sz>|s1:S§i) - 61VS1R1 (Sl) Slzsil)
6: o < argmin, g ¢ (So, Sgi) + ad, SQ)
7: st 8 4 o+d
8: 1 1+1
9: end while

10:  S9" s
11:  return S9"t
12: end function

can be found using standard line search algorithms.!? We repeatedly update Sy according to Eqs. (4.29)—(4.31)
until the cost ¢(Sg, S1,S2) reduces below a specified threshold. Algorithm 4.1 describes the update in detail.
Once Sy is updated, we follow an analogous procedure for S; and Sy, elaborated in Algorithms 4.2 and 4.3.

These algorithms require the computation of various derivatives. For reference, we list the gradients of the
likelihood functions,

[Vs,L(So,S1,82,9)]i = So,i + S1,i cos(¢i) + Sz sin(¢;) — I, (4.32)
[Vs, L(So,S1,S2,9)]i = [So,i + S1,i cos(¢;) + S2,; sin(¢;) — I;] - cos(¢s), (4.33)

and
[Vs,L(S0,81,82,8)]; = [So,i + S1,i cos(¢;) + Sa; sin(¢;) — I;] - sin(g;), (4.34)



Algorithm 4.3 Update S using gradient descent

1: function UPDATE_S> ( S, S, SI*)

/* This function computes S§"* = argming, cgn ¢(So,S1,S2) */

2. s gin
3: 140 _
4 while c (sm S, sg“) > e do
5: d«+ 7VS?C(SO’81782)|SQ:SS’>
= —Vs,L(S0,81,80)lg, g = P2V, Rz (S2) S
6: a* < argmin ¢ ¢ (SO, S, SS) + ad)
7. Si) 8 4 a*d
8: 14—1+1
9: end while

10:  Sg" ¢« Sy
11: return S$Ut
12: end function

Algorithm 4.4 Iterative Reconstruction for Channeled Spectropolarimetry

Input: Measured spectrum I(o)
Outputs: Stokes parameters Sg, S1, So

1: Initialize Séo), S(10)7 Séo) by Fourier reconstruction.
2: n<0

3: while ¢ (Sén), Sgn), Sén)) > edo

4 SUY  uppaTe_S, (S, 8™ s

5 S{"™  uppare_s; (ST, 8™ sl
6:  SUY « uppate.S, (STY, st gy
7 n<n+1

8: end while

9: Sg + S

10: Sy «+ S'™
11: S « S{
12: return Sy, S¢, Sy
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Figure 5.1. Wavenumber vs. sample number

and the Laplacians of the likelihood functions, diagonal matrices with entries

[V%QL(SOv S1,82,0)]i =1, (4.35)
[V&,L(So,S1,S2,9)]ii = cos®(¢;), (4.36)

and
[V&,L(S0,S1,S2, ¢)]ii = sin®(:). (4.37)

Algorithm 4.4 delineates the iterative reconstruction procedure for channeled spectropolarimetry. We mini-
mize the overall cost, Eq. (4.24), by sequential updates of the Stokes parameters, until ¢ (Sp, S1,S2) decreases
to a certain value. Each update employs the gradient descent strategy in Algorithms 4.1-4.3. More generally,
this alternating update procedure may aid reconstruction in nonlinear physical systems and nonlinear inverse
problems, such as digital holography!'! or phase retrieval.'?:

5. COMPARISON OF RECONSTRUCTION RESULTS

In this section, we compare Fourier and iterative reconstruction, using the simulation from Section 3. The sample
spectrum in Fig. 3.2, generated from the ground truth in Fig. 3.1, serves as our measurement I(c). According
to Eq. (4.19), the noise follows a Gaussian distribution; here we set

=0 (5.1)

and
o, = 0.03. (5.2)

For initialization, we input the Fourier reconstruction results from Fig. 3.4 and interpolate these results onto
a non-uniformly spaced grid of wavenumbers to simulate a dispersive spectrometer. Iterative reconstruction
can process these non-uniformly spaced samples without requiring interpolation. For reference, we plot the
wavenumber for each sample in Fig. 5.1, which illustrates the non-linear spacing.

In this work, we assume the birefringence B(o) is known or can be measured, so that the phase ¢(o) in Eq.
(2.7) is known with reasonable accuracy. In future work, we will incorporate the phase as a parameter to be
updated in the iterative reconstruction procedure.
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Cost vs. Iterations
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Figure 5.3. Cost vs. iterations.

Algorithm 4.4 iteratively updates the Stokes parameters, terminating when cost reduces to some threshold e.
We plot the end results in Fig. 5.2, with a comparison of ground truth and Fourier reconstruction. To quantify
error, we compute the absolute difference between the ground truth and reconstructions and display the RSME
for each technique. Looking at each parameter, we make the following observations:

e S) recovers its ideally flat signature more closely with iterative reconstruction.

e 57 exhibits high frequency details, lost with Fourier reconstruction. Iterative reconstruction recovers these
details.

e S5 contains a step feature. Both the Fourier and iterative approaches produce similar reconstructions.

The iterative approach seems best at recovering low to intermediate frequency details, which might be typical
in many applications. Noise degrades Fourier reconstruction by washing out details, as the recovery of the S;
parameter in Fig. 5.2 demonstrates, but our iterative algorithm mitigates noise effects through regularization.
On the other hand, very high frequency features, such as steps, seem to pose a challenge for both the Fourier
and iterative methods, though these features may not be too common in practical test objects. Hence, we can
reconstruct signals that contain more bandwidth, an improvement over Fourier reconstruction.

We can quantitatively measure reconstruction convergence by tracking the cost function, Eq. (4.24), for each
iteration of Algorithm 4.4. Recall from Section 4 that this cost function includes a likelihood term that measures
data fidelity and regularizer terms that penalize signal noise. The scalar regularizer terms, Sy, 51, and (2, are
experimental parameters that can be tuned; we use values of 8y = 500, 81 = 10, and 82 = 50. We compute the
initial cost by evaluating ¢(Sp, S1,S2) using the Stokes parameters recovered from Fourier reconstruction. With
each update in iterative reconstruction, indexed by n in Algorithm 4.4, we re-evaluate ¢(Sp, S1,S2) and plot the
results in Fig. 5.3. The cost drops drastically, indicating convergence and agreeing with our observations of
improved reconstruction.

6. CONCLUSION

We have proposed an iterative reconstruction algorithm to recover the Stokes parameters from channeled spec-
tropolarimetric measurements. Our approach provides a framework for restoring CSP signals based on developing



a mathematical model of the physical system and minimizing a cost function. This general framework improves
on standard Fourier transform processing: it recovers the Stokes parameters with better fidelity and more detail,
processes samples that are non-uniformly spaced in wavenumber, reduces noise from environmental vibration and
thermal fluctuations, does not assume the channels are band-limited, and quantifies reconstruction improvement
through minimization of a cost function. Importantly, it can reconstruct signals that contain more bandwidth,
an advancement over Fourier reconstruction. More generally, our alternating update strategy to solve for the
Stokes parameters can be applied to other inverse problems or nonlinear physical systems. This work offers a
significant improvement to Fourier reconstruction for channeled spectropolarimetry.
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