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Abstract—We examine the implementation of block com-
pressed row storage (BCSR) sparse matrix-vector multipli-
cation (SpMV) for sparse matrices with dense block sub-
structure, optimized for blocks with sizes from 2x2 to 32x32,
on CPU, Intel many-integrated-core, and GPU architectures.
Previous research on SpMV for matrices with dense block
substructure has largely focused on the design of novel data
structures to optimize performance for specific architectures or
to store variable-sized, variably-aligned blocks, but depending
on alternate storage formats breaks compatibility with existing
preconditioners and solvers or imposes significant runtime
costs when converting between matrix formats. This paper
instead focuses on the optimization of SpMV using the standard
block compressed row storage (BCSR) format. We give a
set of algorithms that performs SpMV up to 4x faster than
the NVIDIA cuSPARSE cusparseDbsrmv routine, up to 147x
faster than the Intel Math Kernel Library (MKL) mkl dbsrmv
routine (a single-threaded BCSR SpMV kernel), and up to 3x
faster than the MKL mkl dcsrmv routine (a multi-threaded
CSR SpMV kernel).

I. INTRODUCTION

Sparse matrix-vector multiplication (SpMV) computes the
operation y ← αy+ βAx, where A is a sparse matrix and
x and y are dense vectors. It dominates the running time in
many scientific and engineering applications and is notorious
for sustaining low percentages of machine peak perfor-
mance due to its typically poor cache usage and memory-
bound nature. Improving performance of SpMV generally
requires selecting appropriate data structure transformations
and memory access patterns for the matrices being used
and the underlying hardware architecture. Sparse matrices
arising from finite-element analysis often exhibit a dense
block substructure, as do matrices from discretizations in
which each node in a graph has multiple degrees of freedom.
This block substructure can be exploited to represent a sparse
matrix with less space. Block Compressed Sparse Row
(BCSR) is the most popular format for representing gen-
eral sparse matrices with constant-sized blocks; it achieves
high performance in the general case without being overly
dependent on matrix structure.

This paper contributes algorithms for the efficient execu-
tion of SpMV using BCSR on shared-memory parallel archi-
tectures, including traditional CPU architectures (e.g., Sandy

Bridge), the Intel Knights Corner (KNC) many-integrated-
core architecture, and NVIDIA GPU architectures.

II. RELATED WORK

A great amount of literature exists regarding the opti-
mization of SpMV for various parallel architectures using
standard non-block formats. Williams et al. investigate the
tuning of CSR SpMV on AMD and Intel CPU architectures
(among others) [7], and Bell and Garland compare the per-
formance of SpMV using a variety of sparse matrix formats
on NVIDIA GPUs [1]. Some have developed new sparse
matrix representations to optimize performance on specific
architectures [3]. Other researchers have developed alternate
matrix formats to optimize SpMV when matrices exhibit
block substructure. Vuduc and Moon offer the Unaligned
Block Compressed Sparse Row (UBCSR) format [6] and
Shahnaz and Usman present the Sparse Block Compressed
Row Storage (SBCRS) format for matrices with variable-
sized and variably-aligned blocks [4].

However, algorithms depending on alternate matrix for-
mats are often impractical, as they require rewriting other
algorithms such as preconditioners and solvers to use the
new format or impose significant runtime overhead in con-
verting between formats. Algorithms optimized for spe-
cific architectures may also be impractical in heterogeneous
computing environments where data structures are passed
between different architecutres. Little research has been
published regarding the optimization of SpMV using the
standard Block Compressed Sparse Row (BCSR) format
on parallel architectures. In this paper, we explore general-
purpose algorithms compatible with existing solvers and pre-
conditioners for the BCSR format and compare them against
the proprietary algorithms in the NVIDIA cuSPARSE and
Intel MKL libraries.

III. BCSR SPMV ON SHARED-MEMORY PARALLEL
ARCHITECTURES

A. Storage Format – Block CSR

The algorithms presented in this paper use sparse matrices
stored in the Block Compressed Sparse Row (BCSR/BSR)
format with column-major blocks. BCSR is the most popular
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blocked sparse matrix storage format, as it performs well
on nearly any matrix, is not highly dependent on matrix
structure, and is a simple data structure to construct.

BCSR stores nonzero blocks contiguously, row by row, in
an array val of length nnzb ·bs2; for each nonzero block, an
entry is added to an array col idx of length nnzb with its
column index. An array row ptr stores m+1 values, where
each value stores the index of a row’s first block in val and
col idx. For a more in-depth description of the Block CSR
format, please refer to Richard Vuduc’s Ph.D. thesis [5].

We have elected to use column-major blocks in order
to improve temporal cache locality for x. By streaming
through columns of val, we access x consecutively; a row-
major layout would access segments of val multiple times,
causing L1 evictions for larger blocks. Additionally, using
column-major blocks simplifies the reductions for the GPU
algorithms presented in Sections III-D1 and III-D2.

B. Primary Algorithm

In our algorithm, we assign a parallel worker (a thread
or core for CPU and CPU-like architectures, or a warp of
threads for GPU architectures) to one or more block rows. In
each of its block rows, a parallel worker iterates down each
column, across the block row, in order to achieve streaming
access to the val array (which has column-major blocks
stored row-wise). The manner in which a parallel worker
does this is tuned for different hardware architectures (e.g.,
for GPU architectures, each warp has threads enabling it to
iterate through multiple columns at a time) and is described
in Sections III-C and III-D.

C. CPU and Many-Integrated-Core Architectures

For these architectures, we delegate the block rows of
the sparse matrix across n threads, such that each thread is
responsible for approximately mb/n block rows.

Each thread iterates over its block rows serially; for each
block row, a thread retrieves pointers to the start and end
of the row in the val and col idx arrays by retrieving
row ptr[thread idx] and row ptr[thread idx+1]. It then
iterates from this first block pointer to the last block pointer.
In each block iteration, the algorithm finds the column
index of the block in col idx[block ptr] and iterates over
the columns within the block. In each column iteration,
the algorithm retrieves x[block][col], then iterates through
each element in the column, multiplying by x[block][col]
and updating a temporary output array in registers. After
processing the block row, the thread updates the output array
y. No interactions between threads are present.

A pseudocode implementation of this algorithm is shown
in Algorithm 1 and a diagram of the memory access pattern
is shown in Figure 1.

Memory access patterns are highly optimal for this al-
gorithm. Each thread achieves streaming access to val; the
access pattern is also predictable by a hardware prefetcher,

1: target block row ← thread idx
2: first block ← row ptr[target blockrow]
3: last block ← row ptr[target blockrow + 1]
4: local out[bs]← zero-initialized array of bs elements
5: for block ← first block; block < last block; block++ do
6: target block col← col idx[block]
7: for c← 0; c < bs; c++ do
8: vec this col← x[target block col][c]
9: for r ← 0; r < bs; r++ do

10: local out[r] += A[block][c][r] · vec this col
11: end for
12: end for
13: end for
14: for r ← 0; r < bs; r++ do
15: y[target block row][r] += local out[r]
16: end for
Algorithm 1. BCSR SpMV kernel for CPU architectures. r and c denote a
thread’s position (row, column) within a block.

so access latencies are reduced. If the architecture offers
a large cache and bs is small, the algorithm also achieves
streaming access to x and col idx. row ptr is accessed
only twice per thread, so its memory access cost is generally
insignificant.

This algorithm is also friendly to SIMD vectorization.
If bs is known at compile time, the innermost loop over
the elements in a column has compile-time bounds and can
be vectorized by the compiler. In our tests, vectorization
provided up to 4.7x the performance of non-vectorized code
on KNC.

Reuse of x is limited; though better than naive non-block
CSR, x is reused a maximum of bs times. Performance could
be improved by tiling blocks to improve temporal locality;
this possibility is discussed in Section V, Conclusions and
Future Work.

D. GPU Architectures

In this section, we seek to adapt the previous algorithm
for highly multi-threaded GPU architectures. The CUDA
programming model operates with a large number of threads
operating in SIMT (single instruction, multiple thread) style,
where a group of 32 threads (known as a warp) concurrently
execute the same instruction. The threads in a warp must
work cooperatively; if threads diverge and issue different
sets of instructions, the warp scheduler will mask off parts
of the warp, executing different branch paths separately and
reducing the rate at which instructions can be issued.

For optimal performance, the threads in a warp must also
access contiguous segments of memory. NVIDIA devices
have a global memory bus width of 128 bytes, which
can hold 16 8-byte double-precision values. If 16 threads
access a sequential range of doubles that lie in a 128-byte
row of DRAM in the same SIMD instruction issue, the
memory accesses is “coalesced” into a single memory access
instruction.

In the following three sections, we propose algorithms
that each assign a warp to a single block row, but assign
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Figure 1. Matrix access pattern for CPU architectures. Ta, Ib indicates thread a, iteration b. Each thread is responsible for one block row.

the threads within a warp to the elements in a block row in
different ways based on the block size of the matrix.

1) Block row per warp, operating by block: In this
algorithm, a warp is assigned to a single block row, and
threads in the warp are assigned to elements in the block
row column-wise (see Figure 2 for an illustration of thread
assignment). To cover the entire block row, a warp iterates
over the row’s blocks, handling 32/bs2 blocks at a time,
where bs is the block size. This is the number of blocks
that a warp can cover completely if each thread is assigned
to a single element. For example, with a block size of 3,
the warp can cover 3 complete blocks (27 elements) at a
time. The warp will only cover complete blocks; in the case
of 3x3 blocks, five threads will be inactive in each iteration
(32− (3 · 3) · 3).

Because a warp only covers complete blocks, a thread’s
assigned position within a block will never change between
iterations. On initialization, a thread calculates the index of
the block row it is targeting, finds pointers to the start and
end of its row from row ptr, and finds a pointer to the block
it should begin its work on using the row start pointer and its
lane number. It also calculates its assigned position within
a block (r and c). It then iterates through the block row,
beginning at its assigned block and advancing by 32/bs2

blocks at a time (the number of complete blocks that the
warp can cover), multiplying its target element in A by the
corresponding value from x and adding the product to a
register that it uses to maintain a running total. Once the
threads in a warp have iterated through a block row, threads
that covered the same vertical (r) position in a block reduce
the values stored in their local registers and write the reduced
output to global memory (Figure 3).

This algorithm is described in pseudocode in Algorithm 2,
and its memory access pattern is illustrated in Figure 2. The
reduction step could be implemented using a warp shuffle
but is shown using shared memory in Algorithm 2.

This algorithm exhibits high-performing memory access
patterns for val and x. Accesses to val will be fully
coalesced. Accesses to x are fully coalesced when the
block size is 2 and partially coalesced for larger block
sizes. Accesses to row ptr and writes to global out are
generally not coalesced, but these transactions represent an

1: bs← block size
2: target block row ← (t block idx·t block dim+t idx) /

32
3: lane← t idx % 32
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: target block ← first block + lane / (bs · bs)
7: c← (lane / bs) % bs
8: r ← lane % bs

. Shared memory for reduction step:
9: s out← t block size · sizeof(double) bytes shared mem

10: s out[t idx]← 0
. Only process whole blocks (disable threads that can only

cover partial blocks):
11: if lane < (32 / bs2) · bs2 then

. Iterate through block row:
12: local out← 0
13: for ; target block < last block; target block += 32 /

bs2 do
14: x elem← x[col ind[target block]][c]
15: A elem← A[target block][c][r]
16: local out += x elem ·A elem
17: end for

. Reduction:
18: s out← local out
19: stride← round up to power of two((32 / bs) / 2)
20: for ; stride ≥ 1; stride /= 2 do
21: if lane < stride ·bs and lane+stride ·bs < 32 then
22: s out[t idx] += s out[t idx+ stride · bs]
23: end if
24: end for

. Write reduced value to global memory:
25: if lane < bs then
26: y[target block row][lane] += s out[t idx]
27: end if
28: end if
Algorithm 2. Block-by-block BCSR SpMV kernel for GPU architec-
tures. r and c denote a thread’s position (row, column) within a
block. thread index, thread block index, thread block dim, and
shared out have been shortened to t idx, t block idx, t block dim,
and s out, respectively.

insignificant portion of all memory operations.
Unfortunately, accesses to col idx are generally not coa-

lesced, and since the values in col idx are required to access
x, this adds latency to those memory transactions. However,
as the algorithm uses few registers, many warps may fit into
the streaming multiprocessors, so the GPU can generally
hide the latency and keep the memory bus saturated by
switching between warps.
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Figure 2. Matrix access pattern of the by-block algorithm for a matrix with 2x2 blocks. The warp size has been reduced to 8 for the purposes of visualization
(though in practice, the warp size will always be 8). Warp 0 (threads 0-7) handles block row 0, warp 1 (threads 8-15) handles block row 1, and warp 2
(threads 16-23) handles block row 2.
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Figure 4. Matrix access pattern of the by-block algorithm for a matrix with 3x3 blocks. Note that five threads per warp (e.g., warp 0, threads 27-31) are
left inactive, as they do not cover a complete block.
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Figure 3. Warp reduction for the matrix-vector multiplication example
shown in Figure 2. Each thread in a warp reduces with other threads that
also covered the same row within a block; the output is then written to
global memory.

Each thread accumulates a result in a register and there is
no interaction between threads until the final reduction, so
latency is low. The reduction always occurs within a warp,
so no synchronization primitives are required.

While this algorithm theoretically achieves 100% theo-
retical thread utilization for block sizes that are powers of
two (because warps can cover blocks evenly, with no threads
leftover), it potentially produces a large number of inactive
threads for other block sizes. Consider the case of 3x3
blocks; a warp can cover only 3 full blocks (27 elements),
leaving 5 threads in each warp (15.6%) inactive. (See Figure

4.) The algorithm uses few registers and achieves high oc-
cupancy, so it is generally able to issue enough instructions
from a large number of warps to keep the memory bus
saturated despite this decrease in active threads. However,
this is an important consideration, and performance does
decrease relative to the algorithm described in the next
section (which is able to handle these cases more efficiently)
for 3x3 and 5x5 blocks (see Figure 9).

A more significant problem is the block size limitation
that the whole-block constraint imposes. Because a warp of
only 32 threads must cover an entire block, this algorithm
cannot multiply matrices that have block sizes larger than 5.
This motivates the design of a similar algorithm that better
handles large block sizes.

2) Block row per warp, operating by column: This al-
gorithm is similar to the previous one, but relaxes the
requirement that warps cover whole blocks. Instead, warps
cover whole columns, enabling larger block sizes (up to
32x32, where a warp would cover a single column) and a
more efficient handling of matrices with block sizes that
are not powers of two. Unlike the previous algorithm, a
warp iterates through its block row’s columns, covering
32/bs columns at a time. With the whole-block requirement
replaced with a whole-column requirement, the assigned



vertical position of a thread within a block will never change,
but a thread must compute its target block and target column
in every iteration. The algorithm is shown in pseudocode in
Algorithm 3 and its memory access pattern for 3x3 blocks
– improved over that of the previous algorithm – is shown
in Figure 5.

1: bs← block size
2: target block row ← (t block idx·t block size+t idx) /

32
3: lane← t idx % 32
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: target col← first block · bs+ lane / bs
7: r ← lane % bs

. Shared memory for reduction step:
8: s out← t block size · sizeof(double) bytes shared mem
9: s out[t idx]← 0

. Only process whole columns:
10: if lane < (32 / bs) · bs then

. Iterate through columns:
11: local out← 0
12: for ; target col < last block · bs; target col += 32 /

bs do
13: block ← target col / bs
14: c← target col % bs
15: A elem← A[block][c][r]
16: x elem← x[col ind[block]][c]
17: local out += x elem ·A elem
18: end for

. Reduction:
19: s out← local out
20: stride← round up to power of two((32 / bs) / 2)
21: for ; stride ≥ 1; stride /= 2 do
22: if lane < stride ·bs and lane+stride ·bs < 32 then
23: s out[t idx] += s out[t idx+ stride · bs]
24: end if
25: end for

. Write reduced value to global memory:
26: if lane < bs then
27: y[target block row][lane] += s out[t idx]
28: end if
29: end if
Algorithm 3. Column-by-column BCSR SpMV kernel for GPU architec-
tures.

Like the previous block-by-block algorithm, this algo-
rithm has minimal interaction between threads and achieves
coalesced or partially coalesced accesses to val and x, but
it is now able to handle large block sizes more efficiently.
For the case of a matrix with 3x3 blocks, this algorithm
has only 2 inactive threads (an improvement from the 5
inactive threads of the previous algorithm for this scenario).
However, this comes at the cost of increased latency from
integer operations. The algorithm must compute a block
index and a horizontal position within that block, and the
memory requests stall on these operations. By maximizing
occupancy, we are usually able to minimize this additional
latency, but the previous algorithm tends to outperform this
one for block sizes up to 5x5.

3) Row-per-thread: When block sizes are sufficiently
large, a simpler, more efficient algorithm may be introduced.
For these cases, a CUDA thread block is assigned to a block
row, and each thread within a thread block is responsible for
a single row within the block row. A thread iterates through
its assigned (non-block) row, multiplying each element by
the appropriate value from x and accumulating the results
in a register. A simple version of this algorithm is shown in
Algorithm 4.

1: bs← block size
2: target block row ← thread block idx
3: r ← lane← thread idx
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: if r < bs then
7: local out← 0
8: for block ← first block; block < last block; block++

do
9: for c← 0; c < bs; c++ do

10: A elem← A.val[block][c][r]
11: x elem← x[col ind[block]][c]
12: local out += x elem ·A elem
13: end for
14: end for
15: global out[target block row][r]← local out
16: end if

Algorithm 4. Simple row-per-thread BCSR SpMV kernel.

This algorithm achieves fully-coalesced accesses to val
when the block size is a multiple of 16 and partially-
coalesced accesses when this is not the case. As threads
use few registers, depend on little arithmetic for memory
requests, and do not interact with other threads, occupancy
is high and latency is low. Additionally, the inner loop can
be unrolled for decreased instruction traffic and increased
instruction-level parallelism.

In the basic implementation shown in Algorithm 4, access
to x is not coalesced. This problem can be remedied by
loading a portion of x into shared memory in a fully-
coalesced fashion, where it can be reused by all threads
in a thread block. An implementation of this is shown in
Algorithm 5. Using shared memory in this way requires
two barrier synchronizations for every block iteration, but
we found this cost not to be significant.

We find that this algorithm performs best for block sizes
≥ 16, as access to val and x have the opportunity to be
fully-coalesced. See Figure 9 in Section IV-B.

The performance of this algorithm would seem to depend
heavily on how well the matrix block size is matched to
the thread block size; since the thread block size must be
a multiple of 32, it would seem that the algorithm would
perform poorly for a block size of 33, where 31 of 64 threads
would be inactive. While performance certainly drops in
this case, we did not notice as great of a performance
impact as expected. The algorithm appears to have sufficient
occupancy and instruction-level parallelism to hide latency
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Figure 5. Matrix access pattern of the by-column algorithm for a matrix with 3x3 blocks. Note that for this case, only two two threads per warp (e.g.,
warp 0, threads 30-31) are left inactive, an improvement over the by-block algorithm.

1: bs← block size
2: target block row ← t block idx
3: r ← lane← t idx
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: shared x ← t block size · sizeof(double) bytes shared

mem
7: if r < bs then
8: local out← 0
9: for block ← first block; block < last block; block++

do
10: Barrier synchronization
11: shared x[t idx]← x[col ind[block]][t idx]
12: Barrier synchronization
13: for c← 0; c < bs; c++ do
14: local out += shared x[c] ·A.val[block][c][r]
15: end for
16: end for
17: global out[target block row][r]← local out
18: end if
Algorithm 5. Improved row-per-thread BCSR SpMV kernel with shared
memory for x.

despite the drop in active threads.

IV. EXPERIMENTAL RESULTS

In this section, we examine the performance of our algo-
rithms and compare them against vendor implementations
(Intel Math Kernel Library and NVIDIA cuSPARSE) on
Intel Sandy Bridge, Intel Knights Corner, and NVIDIA
Kepler architectures.

Experiments with Intel hardware were run on the Sandia
National Laboratories Compton test bed with two 8-core
Sandy Bridge Xeon E5-2670 processors running at 2.6GHz
(see Table I) and a KNC Xeon Phi 3120A card (see Table
II). Intel ICC 15.0.2 and MKL 11.2.2.164 were used. We
compared our algorithm against MKL’s mkl dcsrmv and
mkl dbsrmv functions (CSR and BCSR, respectively). The

mkl dbsrmv routine is not multithreaded,1 so we have also
compared our algorithm against mkl dcsrmv as a multi-
threaded reference.

Experiments with NVIDIA hardware were run on the
Shannon test bed with an NVIDIA K80S dual-GPU card
(see Table III). Only one GPU on the card was used to
run the tests. ECC was on and Boost Clock was off,
which reduced the theoretical maximum bandwidth. GCC
4.9.0 and CUDA 7.0.18 were used. Implementations of our
GPU algorithms used a texture cache to optimize accesses
to x. We compared our algorithms against cuSPARSE’s
cusparseDbsrmv function.

Test matrices were obtained from the University of Florida
Sparse Matrix Collection [2] and are shown in Table IV.
Matrices were selected from a variety of real-world appli-
cations.

To measure the performance of algorithms, we measured
the time it took to execute them 3000 times and then divided
that time by 3000 to obtain an average execution time.
We divided the execution time by the amount of unique
data read (i.e. the total size of x, A.val, A.col idx, and
A.row ptr) to determine the achieved throughput. This
throughput represents the performance of the algorithm only
and does not include the population of the input matrices or
the zero-filling of the output matrices.

All computations were performed using double-precision
values.

A. Algorithm Performance

We partitioned our test matrices into their dominant block
sizes (see Table IV) and compared our algorithms to vendor
implementations. On Sandy Bridge, all 16 cores were used
and hyperthreading was enabled; on KNC, all 57 cores were

1The recent MKL 11.3 introduced a multithreaded BCSR algorithm
for iterative solvers in the inspector-executor API, involving a separate
setup/inspection phase in which MKL analyzes the sparsity pattern and
applies matrix transformations. We did not compare against this algorithm.
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Figure 6. Performance comparison on the Sandy Bridge CPU architecture
for various test matrices using each matrix’s dominant block size (see Table
IV).
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Figure 7. Performance comparison on the Knights Corner (KNC) Xeon Phi
architecture for various test matrices using each matrix’s dominant block
size (see Table IV).

Clock speed 2.60 GHz
Cores 8
Threads 16 (2 hyperthreads/core)
L2 cache per core 256 KB
L3 cache 20 MB
Max memory bandwidth 51.2 GB/s

Table I. Overview of the Intel Xeon E5-2670 processor

Clock speed 1.10 GHz
Cores 57
Threads 228 (4 hardware threads/core)
L2 cache 28.5 MB
Max memory bandwidth 240 GB/s

Table II. Overview of the Intel Xeon Phi 3120A accelerator
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Figure 8. Performance comparison on the Kepler GPU architecture for
various test matrices using each matrix’s dominant block size (see Table
IV). The blocks of bmw7st 1, pwtk, and RM07R are larger than 5x5, so
they cannot be handled by the by-block algorithm. No matrices in our
test set had blocks large enough to justify the use of the row-per-thread
algorithm, so we have omitted it from this comparison.

used with all 4 hardware threads active on each core. Results
are shown in Figures 6, 7, and 8.

Performance on Sandy Bridge is the most consistent of all
three architectures. Our CPU algorithm exhibits L3 cache ef-
fects for the smallest two matrices (GT01R and raefsky4) but
achieves a consistent throughput of approximately 80GB/s
for the rest of the matrices (78% of the maximum bandwidth
of two Xeon E5-2670 processors).

Our algorithm did not perform well on the Xeon Phi KNC
architecture, sustaining approximately 40GB/s throughput
(16% of the theoretical maximum bandwidth). We suspect
this is due to the poor performance of gather/scatter instruc-
tions on the KNC architecture – this is discussed further
in Section IV-C. MKL’s BSRMV algorithm also performs



Core clock speed 562 MHz
Memory clock speed 2505 MHz
Max memory bandwidth (with ECC off) 240 GB/s

Table III. Overview of the NVIDIA Tesla K80S GPU

Plot Name bs
Dimen-
sions (in
blocks)

nnzb
(nnzb/row) Description

GT01R 5 1.60K x
1.60K 20.37K (13) 2D inviscid

fluid

raefsky4 3 6.59K x
6.59K 111.4K (17)

Container
buckling
problem

bmw7st 1 6 23.6K x
23.6K 229.1K (10) Car body

analysis

pwtk 6 36.3K x
36.3K 289.3K (8)

Pressurized
wind
tunnel

RM07R 7 545K x
545K

1.504M
(28)

3D viscous
turbulence

audikw 1 3 314K x
314K

4.471M
(14)

AUDI
crankshaft
model

Table IV. Overview of test block matrices used in experimental evaluation.

poorly on KNC due to its single-threaded design.
On the Kepler architecture, we found that our algorithms

performed best with larger block sizes as they were able
to achieve better reuse of x. Also, larger block sizes enable
better use of cache. For a block size of 2x2, a warp will cover
8 blocks; in each loop iteration (see line 13 of Algorithm
2 and line 12 of Algorithm 3), a warp must fetch 8 block
vectors (i.e. 16 elements or 128 bytes, which is one cache
line). For a block size of 4x4, a warp will cover only 2
blocks; in each loop iteration, it will then only need to fetch
2 block vectors (i.e. 8 elements or 64 bytes, which is only
half a cache line). The next block vector will be brought into
cache as part of the memory request, and the next iteration
of the loop will then not need to request it.

B. Impact of Block Sizes

To understand how the algorithms perform on manycore
architectures with matrices of different block sizes, we
partitioned the GT01R test matrix (a discretization from a
2D inviscid fluid simulation – see Table IV) into blocks
with sizes from 2 to 32, placing nonzero elements in the
appropriate aligned blocks and filling in zeros. The results
are shown in Figure 9.

On the Sandy Bridge architecture, the performance of
our algorithm generally increases with block size. This is
expected, as larger block sizes offer improved temporal
cache reuse for x.

Performance of our algorithm on KNC is poor for small
block sizes, sustaining under 50% of peak bandwidth. This
is likely due to the performance of gather/scatter instructions
on the KNC architecture. We found that for block sizes
< 16, not including 8, the Intel compiler emits gather
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Figure 9. Performance of SpMV algorithms running on the Kepler GPU,
Xeon Phi KNC, and Sandy Bridge architectures for the GT01R test matrix
divided into variable block sizes.



instructions for fetching elements from A.val, despite these
accesses being consecutive and unit-strided. For a block
size of 8, the innermost loop of the algorithm is perfectly
vectorized and no gather instructions are emitted, yielding
higher performance as expected. For block sizes ≥ 16,
the compiler fuses the middle loops and emits no gather
instructions, again yielding higher performance. Further
investigation is required to determine why the compiler
produces gather/scatter instructions for smaller block sizes
and whether pragmas can be used to prevent the compiler
from emitting unnecessary gather/scatters. Performance will
also likely improve with the introduction of gather/scatter-
related AVX-512 instructions in the Knight’s Landing (KNL)
architecture.

On Kepler, our by-block and by-column algorithms per-
form comparably for block sizes ≤ 5 (the maximum block
size the by-block algorithm can handle). The by-block
algorithm appears to perform marginally faster, likely due
to reduced integer opterations (both r and c are constant, as
discussed in III-D1). For block sizes from 6 to 16, the by-
column algorithm performs optimally, and for block sizes
greater than 16, the row-per-thread algorithm performs best.
Note that for block sizes greater than 16, the by-column
and row-per-thread algorithms operate similarly in that a
warp covers a single column at a time, with each thread
assigned to a row within a block. However, the row-per-
thread algorithm exhibits better cache performance for x, as
it loads an entire block vector (16+ elements at a time) into
shared memory in a coalesced manner, while the by-column
algorithm accesses only a single element from x at a time.

The cuSPARSE algorithm appears to have been optimized
for block sizes that are powers of two. While our algorithms
also exhibit performance drops for the block size after
each power of two, they are less significant, and by using
a combination of our three algorithms we achieve fairly
consistent performance across block sizes.

C. Scalability

We also examined how our CPU-oreinted algorithm scales
over a varying number of cores within a single node. For
Sandy Bridge, we tested the algorithm with up to 8 cores on
a single socket, and used two sockets to test with up to 16
cores. We also tested how hyperthreading and the usage of
multiple hardware threads would affect performance. Results
are shown in Figure 10.

Performance appears to scale nearly linearly with ad-
ditional cores within a node, even across sockets. While
we performed no tests with multiple nodes, we expect this
algorithm will continue to scale well due to a lack of inter-
thread communication.

Using multiple threads enhanced performance on both
Sandy Bridge and KNC architectures. Hyperthreading on
Sandy Bridge yielded slight performance gains, while using
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Figure 10. Scaling of our algorithm on a Sandy Bridge Xeon E5-2670
processor and a KNC Xeon Phi using the GT01R test matrix. We tested
the impact of hyperthreading (HT) on the CPU and the impact of hardware
(HW) thread usage on the Xeon Phi.



multiple hardware threads on KNC yielded more significant
improvements.

V. CONCLUSIONS AND FUTURE WORK

By optimizing memory access patterns and minimizing
visible latencies, the algorithms presented in this paper
are able to achieve high bandwidth utilization and out-
perform the vendor-optimized block sparse matrix-vector
implementations on the Intel Sandy Bridge and NVIDIA
Kepler architectures. However, the implementation of our
algorithm on the Intel Xeon Phi KNC many-integrated-
core architecture is lacking. Additional optimizations may be
made to further improve the throughput of our algorithms.

Our algorithm typically utilizes only 15-20% of the Xeon
Phi’s theoretical bandwidth. As discussed in Section IV-B,
this appears to be caused by the compiler emitting gather/s-
catter instructions when they should not be used, and may be
addressable by using pragmas or refactoring the algorithm
to avoid this. Additionally, a cooperative threading strategy
may be developed so that KNC hardware threads may work
on consecutive block rows and achieve increased temporal
cache locality with x. In the current algorithm, hardware
threads on a core operate independently on separate block
rows. As KNC is an in-order architecture and this severely
limits instruction throughput, a better thread cooperation
strategy will benefit performance.

The performance of the GPU algorithms may be opti-
mized as well, as they used only 25-50% of the K80’s
theoretical 240GB/s bandwidth in our tests. However, full
utilization will not be possible without enabling NVIDIA
GPU Boost on the GPU and disabling ECC, which we were
not able to do in our test setting.

To improve performance for iterative solvers when
nonzero blocks are unevenly distributed between rows, a
preliminary analysis stage may be introduced in which the
algorithm groups rows by nnzb/row. The multiplication
can then be executed in a multi-pass style, where each pass
includes rows of a certain length, in order to better distribute
load between cores.

Data structure transformations may be required to further
improve performance by a significant margin. Specifically,
blocks may be grouped into and processed as tiles in order
to potentially (a) further reduce the sizes of the row ptr
and col idx arrays and (b) improve cache performance for
x. Such an optimization may be possible without changing
the basic BCRS format by adding metadata pointing to tiles
in the matrix.
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