
Sandia  National  Laboratories  is  a  multi­program 
laboratory  managed  and  operated  by  Sandia 
Corporation, a wholly owned subsidiary of Lockheed 
Martin  Corporation,  for  the  U.S.  Department  of 
Energy’s  National  Nuclear  Security  Administration 
under contract DE­AC04­94AL85000.

Funded by

 
Mauro Perego1

joint collaboration with

 J. D. Jakeman1,  S. Price2, A. Salinger1, G. Stadler3  and I. K. Tezaur1

EPFL, Lausanne, April 2, 2016

Computational Challenges in Ice Sheet Modeling

1Sandia National Laboratories, NM, USA
2Los Alamos National Laboratory, NM, USA

3Courant Institute, NY, USA

SAND2016-2850C



from http://www.climate.be

● Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for 
sea level rise in next decades to centuries.

● Ice behaves like a very viscous shear­thinning fluid (similar to lava flow) and can be modeled 
with nonlinear Stokes equation.

Brief introduction and motivation



● Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for 
sea level rise in next decades to centuries.

● Ice behaves like a very viscous shear­thinning fluid (similar to lava flow) and can be modeled 
with nonlinear Stokes equation.

● Greenland and Antarctica ice sheets have a shallow geometry (thickness up to 3km,  
horizontal extensions of thousands of km). 

● Several ice sheet models are derived relying on the fact that the domain is shallow and they 
handle differently horizontal coordinates (x­y) and vertical coordinate z. However, ice sheets 
lie on earth surface and are not planar. 

● Here we investigate the effect of assuming planar geometry in approximate models.

Brief motivation and introduction



(Numerical) Modeling Issues

● Computationally challenging, due to complexity of models, of geometries and large domains

­ design of linear/nonlinear solvers, preconditioners, etc.
­ mesh adaptivity especially close to the grounding line
­ modeling of ice advance/retreat

● Initialization / parameter estimation

● Uncertainty quantification

● Boundary conditions / coupling (e.g. with ocean)

­ Floating/calving
­ Basal friction at the bedrock,
­ Subglacial hydrology,
­ Heat exchange / phase change



Our Quantity of Interest (QoI) in ice sheet modeling:

total ice mass loss/gain by, e.g., 2100   → sea level rise prediction

Main sources of uncertainty:

­ climate forcings  (e.g. Surface Mass Balance ­SMB)

­ basal friction 

­ bedrock topography (thickness)

­ geothermal heat flux

­ model parameters (e.g. Glen's Flow Law exponent)

Problem definition



Problem definition

Work flow:
● Perform adjoint­based deterministic inversion to estimate initial ice sheet state

(i.e. characterize the present state of ice sheet to be used for performing prediction runs).
● Use deterministic inversion to characterize the parameter distribution (i.e, use the 

inverted field as mean field of the parameter distribution and approximate its covariance 
using sensitivities/Hessian).

● Perform Bayesian Calibration: construct the posterior distribution using Markov Chain 
Monte Carlo runs on an emulator of the forward model.

● Perform Forward Propagation: sample the obtained distribution and perform ensemble of 
forward propagation runs to compute the uncertainty on the QoI.

Ultimate goal:
quantify the QoI and related uncertainties
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Ice Sheet Modeling

­ Ice flow equations (momentum and mass balance)

Main components of an ice model:

nonlinear viscosity:

with:

viscosity is singular when ice is not deforming
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Ice Sheet Modeling

­ Ice flow equations (momentum and mass balance)

­ Model for the evolution of the boundaries 
  (thickness evolution equation)

­ Temperature equation

Main components of an ice model:

­ Coupling with other climate components (e.g. ocean, atmosphere)



Stokes Approximations

FO, Blatter­Pattyn first order model2 (3D PDE, in horizontal 
velocities)

Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

Higher order, depth integrated (2D) models: L1L23, (L1L1)...

“Reference” model: STOKES1

2Dukowicz, Price and  Lipscomb, 2010. J. Glaciol.

1Gagliardini and Zwinger, 2008. The Cryosphere.

3Schoof and Hindmarsh, 2010. Q. J. Mech.  Appl. Math.

ratio between ice thickness and ice horizontal extension



Stokes approximations in different regimes

First Order* or
Blatter­Pattyn model

*Dukowicz, Price and  Lipscomb, 2010. J. Glaciol
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Stokes approximations in different regimes

First Order* or
Blatter­Pattyn model

*Dukowicz, Price and  Lipscomb, 2010. J. Glaciol

3rd momentum equation continuity equation

Drop terms using 
scaling argument 

based on the fact that 
ice sheets are shallow

Quasi­hydrostatic 
approximation



Steady state equations and basal sliding conditions

How to prescribe ice sheet mechanical equilibrium: 

flux divergence 

Surface Mass Balance

Boundary condition at ice­bedrock interface :

Estimation of ice sheet initial state

Courtesy of M. Hoffman



Deterministic Inversion
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GOAL

1. Find ice sheet initial state that 

● matches observations (e.g. surface velocity, temperature, etc.)

● matches present­day geometry  (elevation, thickness)  

● is in “equilibrium” with climate forcings (SMB)

by inverting for unknown/uncertain ice sheet model parameters.

2. Significantly reduce non physical transients without spin­up



Available data/measurements 
 ice extension and surface topography  
 surface velocity
 Surface Mass Balance (SMB)
 ice thickness H (sparse measurements) 

Fields to be estimated
 ice thickness H (allowed to vary but weighted by observational uncertainties)

 basal friction (spatially variable proxy for all basal processes) 

Modeling Assumptions
 ice flow described by nonlinear Stokes equation 
 ice close to mechanical equilibrium

Additional Assumption (for now) 
 given temperature field

ice-sheet

bedrock
ocean

H 

Perego, Price, Stadler, Journal of Geophysical Research, 2014

Problem details
Deterministic Inversion



 PDE­constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo­mechanical 
equilibrium, given the geometry and the SMB, and matches available observations. 

Optimization problem:

Deterministic Inversion



Inverse Problem 
 Estimation of ice­sheet initial state

 PDE­constraint optimization problem: gradient computation

How to compute total derivatives of the functional w.r.t. the parameters?

Solve Adjoint System

Total derivatives

Solve State System

Derivative w.r.t. 



Algorithm and Software tools used

Optimization algorithm:

Reduce Gradient optimization, using L­BFGS.
Storage: 200, Linesearch: backtrack 

Estimation of ice sheet initial state

ALGORITHM SOFTWARE TOOLS

  Linear Finite Elements on hexahedra   Albany

  Quasi­Newton optimization (L­BFGS)     ROL

  Nonlinear solver (Newton method)   NOX

  Krylov linear solvers/Prec   AztecOO/ML

Albany: C++ finite element library built on Trilinos to enable multiple capabilities:

­ Jacobian/adjoints assembled using automatic differentiation (SACADO).

­ nonlinear and parameter continuation solvers (NOX/LOCA)

­ large scale PDE constrained optimization (Piro/ROL)

­ Uncertainty Quantification (using Dakota)

­ linear solver and preconditioners (Belos/AztecOO, ML/MeuLu/Ifpack)



Grid and RMS of velocity and errors associated with velocity and thickness observations

Grid Velocity RMS (m/yr) Thickness RMS (km)

Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [2013])

Deterministic Inversion for Greenland ice sheet



common proposed target

Inversion results: surface velocities

computed surface velocity observed surface velocity

Deterministic Inversion for Greenland ice sheet



Inversion results: surface mass balance (SMB) 

common proposed target

SMB (m/yr) needed for equilibrium      SMB from climate model
(Ettema et al. 2009, RACMO2/GR)

Deterministic Inversion for Greenland ice sheet

Plot saturated.
In many places field 
is  ± hundreds m/yr.



Antarctica Inversion (only for basal friction)

INVERTED 700K PARAMETERS

recovered basal friction 
(kPa yr/m)

Geometry (Cornford et al., The 
Cryosphere, 2015)
Bedmap2 (Fretwell et al., 2013)
Temperature (Pattyn, 2010)



comparison surface velocities, computed vs. target

TARGETCOMPUTED

surface velocity magnitude (m/yr)

Antarctica Inversion (only for basal friction)



Estimated beta and change in topography

recovered basal friction difference between recovered and 
observed thickness

common proposed

Deterministic Inversion for Greenland ice sheet

?Geometry (Morlighem et al., Nature Geo., 2014)



Greenland Inversion using Albany­Piro­ROL

Computed TargetEstimated

surface velocity magnitude (m/yr)Basal friction coefficient (m/yr)

Inversion with 1.6M parameters

Geometry (Morlighem et al., Nature Geo., 2014)



Discussion on inversion

Optimization helps finding an initial state that is somewhat in compliance with  
observed velocities and with observed climate forcing and ice transients.

The mismatch found is larger then ideal (computed quantities  on  average 3­4 sigmas 
away from observations). Possible causes are:

● Temperature is assumed as given, with no uncertainty associated with it. 

● Observations of velocity, surface mass balance, bedrock topography do not come from 
the same dataset and hence effective uncertainty might be bigger than the one 
provided with the measurement.

● Consider other source of uncertainty, e.g. model parameters (e.g. Glen’s law 
exponent) or the model itself.

Another limit of the current inversion is that the basal friction law does not account for 
variation in time of the  basal friction due to subglacial hydrology.

  



Difficulty in UQ approach: “Curse of dimensionality”. 
At relevant model resolutions, the basal friction parameter space can have O(106) parameters.
However, the effective dimension of the problem is smaller.

Bayesian Calibration and Uncertainty Propagation
(feasibility study)



Building the Gaussian distribution using Hessian 
from deterministic inversion

Eigenvectors of the prior­preconditioned data misfit Hessian corresponding to the 1st, 2nd, 
100th, 200th, 500th, and 4000th eigenvalues. Isaac et al. 2004.

Compute the Covariance of the Gaussian posterior using Hessian of merit functional.

We want to limit to only the most important directions of the covariance matrix.

Courtesy of
O. Ghattas 

group



Building the Gaussian posterior approximation using 

Hessian from deterministic inversion

Log­linear plot of spectrum of prior­preconditioned data misfit Hessian for two successively 
finer parameter/state meshes of the inverse ice sheet problem. Isaac et al. 2004.

The Hessian provides a way to compute the Covariance of the Gaussian posterior.

We want to limit to only the most important directions of the covariance matrix.

Issue: significant eigenvalues are still too many (~ 1000).

Courtesy of

O. Ghattas' 
group



• First 10 KLE modes 
(parallel C++/Trilinos code Anasazi).

Only spatial correlation has been considered.

• Mismatch (ALBANY):
 

• Build Emulator. Polynomial chaos expansion (PCE) was formed for the mismatch 
over random variables with uniform prior distributions using almost 300 steady­
state simulations.  (DAKOTA) 

Eigenvalues Decay
(100 eigenvalues capture 95% energy)

Emulator (Polynomial Chaos Expansion):

Bayesian Calibration and Uncertainty Propagation
(feasibility study)



• Inversion/Calibration. Markov Chain Monte Carlo (MCMC), delayed rejection 
adaptive metropolis (DRAM), was performed on the PCE (QUESO). 

• Uncertainty propagation. Used Gaussian process to build surrogate using 66 
transient simulations. 

Uncertainty propagation:
Sea level rise prediction in 50 years

Posterior distributions 

Bayesian Calibration and Uncertainty Propagation
(feasibility study)



● Prior chosen is somewhat arbitrary, however it is possible to build an informed 
Gaussian  distribution using the Hessian of the deterministic inversion.

● The prior distribution size is big (in real applications, million of parameters with 
thousands significant parameters) and so the KLE expansion needs several modes to 
retain most of the prior energy – in the results shown we only retained 27% of the 
prior energy!

● A lot of samples are needed to build the emulator. Cross correlation tests showed 
that the simulations we run for the uncertainty propagation was not sufficient for 
building the emulator.

● We might use techniques such as the compressed sensing technique* to adaptively 
select significant modes and the basis for the parameter space. The hope is that only 
few modes affect the low dimensional QoI (e.g. sea level rise).

● We might use cheap physical models (e.g. SIA) or low resolution solves to reduce 
the cost of building the emulator. 

*Jakeman, Eldred, Sargsyan, JCP, 2015

Bayesian Calibration and Uncertainty Propagation
(feasibility study)



Thank you for your attention

graphical coupling with ocean by W. Jr. Phillip (LANL)
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