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Brief introduction and motivation

* Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for
sea level rise in next decades to centuries.

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) and can be modeled
with nonlinear Stokes equation.
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Brief motivation and introduction

Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for
sea level rise in next decades to centuries.

Ice behaves like a very viscous shear-thinning fluid (similar to lava flow) and can be modeled
with nonlinear Stokes equation.

Greenland and Antarctica ice sheets have a shallow geometry (thickness up to 3km,
horizontal extensions of thousands of km).

Several ice sheet models are derived relying on the fact that the domain is shallow and they
handle differently horizontal coordinates (x-y) and vertical coordinate z. However, ice sheets

lie on earth surface and are not planar.

Here we investigate the effect of assuming planar geometry in approximate models.




(Numerical) Modeling Issues

« Computationally challenging, due to complexity of models, of geometries and large domains

- design of linear/nonlinear solvers, preconditioners, etc.
- mesh adaptivity especially close to the grounding line
- modeling of ice advance/retreat

\|

ice shelf

e Boundary conditions / coupling (e.g. with ocean)

- Floating/calving

- Basal friction at the bedrock,

- Subglacial hydrology,

- Heat exchange / phase change

* Initialization / parameter estimation

e Uncertainty quantification




Problem definition

Our Quantity of Interest (Qol) in ice sheet modeling:

total ice mass loss/gain by, e.g., 2100 = sea level rise prediction

Main sources of uncertainty:

- climate forcings (e.g. Surface Mass Balance -SMB)
- basal friction
- bedrock topography (thickness)
- geothermal heat flux

- model parameters (e.g. Glen's Flow Law exponent)




Problem definition

Ultimate goal:
quantify the Qol and related uncertainties

Work flow:

* Perform adjoint-based deterministic inversion to estimate initial ice sheet state
(i.e. characterize the present state of ice sheet to be used for performing prediction runs).

» Use deterministic inversion to characterize the parameter distribution (i.e, use the
inverted field as mean field of the parameter distribution and approximate its covariance
using sensitivities/Hessian).

» Perform Bayesian Calibration: construct the posterior distribution using Markov Chain
Monte Carlo runs on an emulator of the forward model.

» Perform Forward Propagation: sample the obtained distribution and perform ensemble of
forward propagation runs to compute the uncertainty on the Qol.




Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
p(%—‘j—l—u-Vu) —V .0 =pg
V-u=20
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Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
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Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

V-u=0

with:
' 1 /0u; Ou;
= 2uD — &1 > = — ’ J
d H ’ DZ] (u) 2 (833] i aICZ)

nonlinear viscosity:

1 4
p=—-a(T) [Du)|P? pec(1,2] (tipically p~ -)

2 / 3

viscosity is singular when ice is not deforming




Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
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Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

—V -0 =pg
V-u=0

- Model for the evolution of the boundaries
(thickness evolution equation)

- Temperature equation

OT 0 0T _
pca =3 k@ —pcu - VI + 2¢c0

- Coupling with other climate components (e.g. ocean, atmosmy ﬁ“ﬁ?ﬁ?ﬁm




Stokes Approximations

“Reference” model: STOKES'

0(5 2) FO, Blatter-Pattyn first order model® (3D PDE, in horizontal
velocities)

O (5 ) Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

~ 0(5 2) Higher order, depth integrated (2D) models: L1L2°, (L1L1)...

) :— ratio between ice thickness and ice horizontal extension

'Gagliardini and Zwinger, 2008. The Cryosphere.
*Dukowicg, Price and Lipscomb, 2010. J. Glaciol.
’Schoof and Hindmarsh, 2010. Q. J. Mech. Appl. Math.




Stokes approximations in different regimes

Stokes(u, p) { %Vu (ZQIJ(J)D(U) —pl) = pg

\J

FO(U, U) -V (2/1]5 — pg(s — z)I) =0

First Order™ or
Blatter-Pattyn model

‘Dukowicg, Price and Lipscomb, 2010. J. Glaciol /

Sandia
National
Laboratories



Stokes approximations in different regimes

_v. _ ) =
Stokes(u, p) { VV (2/1613(11) pI) = pg
. u p—
Drop terms using I Ug 5 (uy +vz) 5 (uz +we) | ”
scaling argument _ |1 1 _
based on the fact that D(u) 3 (uy +v0) o 7 (Vs +29) ) Z
ice sheets are shallow I 2 (uy +ws) 2 (vs+ wy) W, ]

\/
FO(u,v)

First Order™ or
Blatter-Pattyn model
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Stokes approximations in different regimes

Stokes(u, p) { ~V - (2uD(u) - pI) = pg

V-u=0
Drop terms using I Ug 5 (uy +vg) 5 (uz +wr) ”
scaling argument D _ 1 1 0= | v
based on the fact that (1) 2 (ty +vs) v ’ (v +29) w
ice sheets are shallow I % (uy + ws) % (vz + wy) W, ]
>

. . rd ; .. .
Quasi-hydrostatic 3" momentum equation ‘continuity equation

approximation _M_M_ 0:(2uw, —p) = —pyg, w, = —(ugy + 'Uy)

— p=pg(s —2) = 2p(uz + vy)

\/
FO(u,v)

First Order™ or
Blatter-Pattyn model

‘Dukowicz, Price and Lipscomb, 2010. J. Glaciol



Stokes(u, p)

Drop terms using
scaling argument
based on the fact that
ice sheets are shallow

Quasi-hydrostatic
approximation

\J

FO(u,v)

First Order™ or
Blatter-Pattyn model

Stokes approximations in different regimes

{ ~V - (2uD(u) - pI) = pg

V-u=90
i Uy % (uy + vg)
D(u,v) = | 3 (uy+vy) vy
i % (uz +wg) % (v, +%)

p= p(|D(u,v)])

3"Y momentum equation
_M_M_ 0:(2uw, —p) =

— p=pg(s —z) = 2u(uz + vy)

-V (Q,uf) — pg(s — z)I) =0

2u, + vy % (uy + vz)

1 (uy +vz) Uy + 20,

with D(u,v) = [
2

‘Dukowicz, Price and Lipscomb, 2010. J. Glaciol

% (us +w7) U
% (v2 +wy) u:= | v
—(ug +vy) | v

continuity equation
—pPY, W, = _(u:c + 'Uy)
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Estimation of ice sheet initial state

Steady state equations and basal sliding conditions

How to prescribe ice sheet mechanical equilibrium:

flux divergence

OH . i 1 OH \*”
E:—le(UH)"F'%smba U:E/udz le(UH>_Tsmb+{E} =0

Surface Mass Balance

Boundary condition at ice-bedrock interface :

(an—l—ﬁu)H:O on Fg
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Deterministic Inversion

GOAL

1. Find ice sheet initial state that

» matches observations (e.g. surface velocity, temperature, etc.)
* matches present-day geometry (elevation, thickness)

e is in “equilibrium” with climate forcings (SMB)

by inverting for unknown/uncertain ice sheet model parameters.

2. Significantly reduce non physical transients without spin-up

Bibliography
- Arthern, Gudmundsson, J. Glaciology, 2010
- Price, Payne, Howat and Smith, PNAS, 2011
- Petra, Zhu, Stadler, Hughes, Ghattas, J. Glaciology, 2012
- Pollard DeConto, TCD, 2012
- W. J. J.Van Pelt et al., The Cryosphere, 2013
- Morlighem et al. Geophysical Research Letters, 2013
- Goldberg and Heimbach, The Cryosphere, 2013
- Michel et al., Computers & Geosciences, 2014

- Perego, Price, Stadler, Journal of Geophysical Research, 2014




Deterministic Inversion
Problem details

Available data/measurements

+ ice extension and surface topography

ice-sheet

+ surface velocity
+ Surface Mass Balance (SMB)

+ ice thickness H (sparse measurements)

Fields to be estimated
. ice thickness H (allowed to vary but weighted by observational uncertainties)

+ basal friction B (spatially variable proxy for all basal processes)

Modeling Assumptions
+ ice flow described by nonlinear Stokes equation

+ ice close to mechanical equilibrium

Additional Assumption (for now)

+ given temperature field

Perego, Price, Stadler, Journal of Geophysical Research, 2014



Deterministic Inversion
PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo-mechanical
equilibrium, given the geometry and the SMB, and matches available observations.

Optimization problem:

find 8 and H that minimize the functional [J

uobs‘Z ds

1
@.11) = | lu-

1
+/ —|div(UH) — 75|* ds
R

T

1
+/ —Q‘H—HObS‘QdS
> 0g

+R(B, H)

subject to ice sheet model equations
(FO or Stokes)

surface velocity
mismatch

SMB
mismatch

thickness
mismatch

regularization terms.

U: computed depth averaged velocity
H: ice thickness
5 basal sliding friction coefficient

. SMB
R( B) regulamzaﬁoW
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Inverse Problem
Estimation of ice-sheet initial state

PDE-constraint optimization problem: gradient computation

Find (8, H) that minimize 7 (8, H,u)
subject to  F(u,58,H) =0 < flow model

How to compute total derivatives of the functional w.r.t. the parameters?

Solve State System F(u,B,H)=0

Solve Adjoint System (FEN), 0w) = Ju(0), Vi

Total derivatives 9(55, op) = *7(B,H) (55, Op) — <>\,Jr(5,H) (557 Orr))

Derivative w.r.t. B G1(0g) = 045/ VB -Vog ds — / dgu-Ads
b >
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Estimation of ice sheet initial state
Algorithm and Software tools used

ALGORITHM SOFTWARE TOOLS
Linear Finite Elements on hexahedra Albany
Quasi-Newton optimization (L-BFGS) ROL
Nonlinear solver (Newton method) NOX
Krylov linear solvers/Prec AztecOO/ML

Albany: C+ + finite element library built on Trilinos to enable multiple capabilities:
- Jacobian/adjoints assembled using automatic differentiation (SACADO).

- nonlinear and parameter continuation solvers (NOX/LOCA)
- large scale PDE constrained optimization (Piro/ROL)

- Uncertainty Quantification (using Dakota)

- linear solver and preconditioners (Belos/AztecOO, ML/MeulLu/Ifpack)

Optimization algorithm:

Reduce Gradient optimization, using L-BFGS.
Storage: 200, Linesearch: backtrack




Deterministic Inversion for Greenland ice sheet

Grid and RMS of velocity and errors associated with velocity and thickness observations

Velocity RMS (m/yr) Thickness RMS (km)

sigma u
225

~100

1.414
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Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [20



Deterministic Inversion for Greenland ice sheet

Inversion results: surface velocities

computed surface velocity observed surface velocity

lul (m/yr)
00
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Deterministic Inversion for Greenland ice sheet
Inversion results: surface mass balance (SMB)

SMB (m/yr) needed for equilibrium SMB from climate model
(Ettema et al. 2009, RACMO2/GR)

.

Plot saturated.
In many places field
is = hundreds m/yr.
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Antarctica Inversion (only for basal friction)

Objective functional: J(u(8), B) :/ %|u—u‘)b3\2d8—|— oz/ IVB|? ds
X Yu >

ROL algorithm:
e Limited—Memory BFGS
e Backtrack line—search

beta
150
-100
10
Geometry (Cornford et al., The 1
Cryosphere, 2015)
Bedmap2 (Fretwell et al., 2013) O ]

Temperature (Pattyn, 2010)

recovered basal friction
(kPa yr/m)
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Antarctica Inversion (only for basal friction)
comparison surface velocities, computed vs. target

lul
3e+03

0.01

surface velocity magnitude (m/yr)
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Deterministic Inversion for Greenland ice sheet
Estimated beta and change in topography

recovered basal friction ~ difference between recovered and
‘ observed thickness

betalkPa yr/m)
100

=)

i

0.1

| ; I'I'IIIII|IIIIIIT|

3
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Geometry (Morlighem et al., Nature Geo., 2014)



Greenland Inversion using Albany-Piro-ROL

Inversion with 1.6M parameters

beta (KPa yr/m)
500

100

10
1
0.1

0.01

Basal friction coefficient (m/yr) surface velocity magnitude (m/yr)
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Geometry (Morlighem et al., Nature Geo., 2014)



Discussion on inversion

Optimization helps finding an initial state that is somewhat in compliance with
observed velocities and with observed climate forcing and ice transients.

The mismatch found is larger then ideal (computed quantities on average 3-4 sigmas
away from observations). Possible causes are:

 Temperature is assumed as given, with no uncertainty associated with it.
» Observations of velocity, surface mass balance, bedrock topography do not come from
the same dataset and hence effective uncertainty might be bigger than the one

provided with the measurement.

» Consider other source of uncertainty, e.g. model parameters (e.g. Glen’s law
exponent) or the model itself.

Another limit of the current inversion is that the basal friction law does not account for
variation in time of the basal friction due to subglacial hydrology.



Bayesian Calibration and Uncertainty Propagation
(feasibility study)

Difficulty in UQ approach: “Curse of dimensionality”.
At relevant model resolutions, the basal friction parameter space can have O(10°) parameters.
However, the effective dimension of the problem is smaller.

2
rL—r
1. Assume analytic covariance kernel I'pyior = exp (— 1 72 2 )
First attempt, we intend to use Hessian based covariance in the future.

2. Perform eigenvalue decomposition of I'prior.

3. Take the mean 8 to be the deterministic solution and expand 8 in basis
of eigenvector {¢;} of I'prior, with random variables {&x}

Bw) =B +exps > vV Ar&r(w)
k=1

*Expansion done on log(3) to avoid negative values for .




Building the Gaussian distribution using Hessian
from deterministic inversion

Compute the Covariance of the Gaussian posterior using Hessian of merit functional.

L= (CoHouwtI) T,

We want to limit to only the most important directions of the covariance matrix.

misfit rior

Courtesy of
O. Ghattas

group

o
J‘I’"

ey

Eigenvectors of the prior-preconditioned data misfit Hessian corresponding to the 1%, 2",

100™ 200", 500", and 4000™ eigenvalues. Isaac et al. 2004.




Building the Gaussian posterior approximation using
Hessian from deterministic inversion
The Hessian provides a way to compute the Covariance of the Gaussian posterior.
host = (Dprior Hmisat + 1 )~ I'prior

We want to limit to only the most important directions of the covariance matrix.

Issue: significant eigenvalues are still too many (~ 1000).

8

10 ' '
===409,545 parameters Courtesy of
w1 190,403 parameters Y
o | O. Ghattas'
group
3 10°
(48]
=
)
()] 2
S 10 n )\prior
Errpost — O Z i -
1 _|_ )\prlor
10° o %
1072 ' ' ' '
0 1000 2000 3000 4000

number

Log-linear plot of spectrum of prior-preconditioned data misfit Hessian for two successivel
finer parameter/state meshes of the inverse ice sheet problem. Isaac et al. 9




Bayesian Calibration and Uncertainty Propagation
(feasibility study)

e First 10 KLE modes .
- ) Eigenvalues Decay
(parallel C+ +/Trilinos code Anasazi). (100 eigenvalues capture 95% energy)
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Only spatial correlation has been considered.
1
* Mismatch (ALBANY): J () = / —[u(3) — ] +a| V|
> Oy

* Build Emulator. Polynomial chaos expansion (PCE) was formed for the mismatch
over random variables with uniform prior distributions using almost 300 steady-
state simulations. (DAKOTA)

Emulator (Polynomial Chaos Expansion):

Bw) = B+ exp { oIS, VA& (w) | g @




probability

probability

Bayesian Calibration and Uncertainty Propagation
(feasibility study)

« Inversion/Calibration. Markov Chain Monte Carlo (MCMCQC), delayed rejection
adaptive metropolis (DRAM), was performed on the PCE (QUESO).

* Uncertainty propagation. Used Gaussian process to build surrogate using 66
transient simulations.

Posterior distributions Uncertainty propagation:
| | | Sea level rise prediction in 50 years

B Prior informed
i 1 0.14 | Hl Posterior informed |

probability
(=]
o
@

6 ‘ ' ‘ 0.06

0.04 -

0.02}

2l 1 0'0940 =20 0 20 40 60 80 100 120

sea level rise (mm)

0.5

70140 —0.5

0.0
Kl E coefficient 2



Bayesian Calibration and Uncertainty Propagation
(feasibility study)

 Prior chosen is somewhat arbitrary, however it is possible to build an informed
Gaussian distribution using the Hessian of the deterministic inversion.

» The prior distribution size is big (in real applications, million of parameters with
thousands significant parameters) and so the KLE expansion needs several modes to
retain most of the prior energy — in the results shown we only retained 27% of the
prior energy!

* A lot of samples are needed to build the emulator. Cross correlation tests showed
that the simulations we run for the uncertainty propagation was not sufficient for
building the emulator.

 We might use techniques such as the compressed sensing technique* to adaptively
select significant modes and the basis for the parameter space. The hope is that only
few modes affect the low dimensional Qol (e.g. sea level rise).

 We might use cheap physical models (e.g. SIA) or low resolution solves to reduce
the cost of building the emulator.

*Jakeman, Eldred, Sargsyan, JCP, 2015



Thank you for your attention

graphical coupling with ocean by-W. Jr. Phillip (LANL)
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