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Simulating exascale systems faces conflict o
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between accuracy/cost
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Need to understand details of
individual processors/memories

But then need to understand how
memories/processes interact on-node
in parallel program...

But then need to understand how
multiple nodes interact to produce
scaling behavior...

But then how do we explore
parameter/design space to assess best
overall machine configuration...

For our goals, structural simulation
provides good balance between
flexibility, accuracy, cost




Structural simulation of exascale system ) i

National _
Laboratories

requires numerous different components

Endpoint (application) model
= |nstruction-based

= Trace-based

= Skeleton apps

= State machine

Compute/memory model
= Detailed emulation
= Coarse-grained structural simulation
= Analytic models

NIC/network model
= Analytic models (messages only)
= Coarse-grained packet models
= Flit-level

Simulation scope/parallelism
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Scale simulations to match system scale: e
Couple models through common PDES core
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= |f supercomputers are going to scale up, simulation tools need to
scale with them

= Parallel discrete event simulation is a challenging problem

= Partially-ordered parallelism always balancing optimistic parallelism
against rollback costs



PDES core should
Researchers shou
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= Several steps in deploying PDES
= Optimal partitioning of elements
= Delivering events across distributed memory

= Synchronizing many, many components

" This work is universal to all parallel simulators

" Modularity and composability of simulation tools almost

oe solved problem:

impossible without unified PDES core
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SST defines interfaces for coupling models @iz,
= SimpleMem:

" [ssue arbitrary memory requests to memory model

= Register arbitrary callbacks for request notifications
= Designed as lightweight wrapper around any memory simulation tool

= SimpleNetwork:
= |ssue arbitrary network requests (at the packet level)
= Register arbitrary callbacks for packet send/recv notifications
= Designed as lightweight wrapper around any network simulation tool

= FOSSIL:
= On-line simulation, directly compile MPIl/pThread code into simulator
= “Interface” for writing endpoint models is just valid C/C++ code

= Under development:

= Message-layer interface (have tool called Hermes for packetization/de-
packetization of messages)




Diverse set of processor models covering e,
accuracy/cost spectrum
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= Ariel: PIN-based processor

= Uses Intel’s PIN tools and XED decoders to analyze binaries (x86, x86-64,
SSE/AVX, etc. compiled binaries)

= Passes information to virtual core in SST
= Virtual cores implement abstract memory interface
" Prospero: Traced-based processor
= Reads memory ops from file and passes to simulated memory system
= “Single core” but can emulate parallel applications with multiple traces
"= Miranda: Pattern-based processor

= Light-weight processor model for specific memory address patterns
= Currently implements random access, STREAM, GUPS, stencils, and more
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Diverse memory models covering cost/accuracy
spectrum with MemHierarchy components
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= SimpleMem interface for issuing memory requesting, register
callback notifications for completed requests

= Can have arbitrary ports/connections

= Supports many different backends
= SimpleMem - basic read/write with associated latencies
= DRAMSim2 — DRAM (external)
= NVDIMMSim — Non-volatile memory (e.g., Flash) (external)
= HybridSim — non-volatile memory with a DRAM cache (external)
= VaultSimC — stacked DRAM




Diverse memory models covering cost/accuracy
spectrum with MemHierarchy components
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CacheController CacheArray
Routes incoming events to handlers e Stores cache lines — data
Manages retry of buffered events in and coherence state
the MSHRs * Replacements via the
Manages cache allocations and replacement policy
evictions manager

CoherenceController
 Manages coherence state
* Receives events from CacheController
* Sends outgoing events
* Forwarded requests, responses, etc.
* Decides when events need to stall

MSHRs
e Buffers stalled and
blocked events



Multi-level memory advertisement
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Diverse set of network models covering ) i
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cost/accuracy spectrum

= P|SCES: Coarse-grained packet simulator (formerly in SST/macro)

Packet-Flow Interconnect Simulation for Congestion at Extreme-Scale
Performs routing and flow-control at level of packets
Uses flow approximations to account for flit-based/cut-through routing

Supports arbitrarily complex routing strategies (factory interface — more
details available)

Currently have minimal, minimal-adaptive, Valiant, and UGAL

= MACRELS: Approximate, analytic models (formerly in SST/macro)

MTL for AnalytiC REally Lightweight Simulation
Rapid prototyping of design space without detailed congestion

= Designed to support algorithm/software stack explorations

= Merlin: Cycle-based packet simulator




MACRELS: simple network supporting ) s,
application/runtime development

Memory Modeling with simple delay formula
Bandwidth/ similar to LogGOPSim

Latency
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PISCES: packet-level for prototyping

topologies/routing/congestion management
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Most common usage
simulates congestion
separately on crossbar and
network links (ser/des)
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Congestion statistics collected with PISCES (.

Bin counts for packet latency
Minimal routing UGAL routing
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= Adversarial traffic pattern (tornado on 2D torus)
= UGAL takes minimal path until hitting congestion — then Valiant

= Major reduction in packet latencies




Diverse set of network endpoints covering & s,
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= MPI trace replay
= DUMPI tool previously in SST/macro
= Collect MPI calls with timestamps/performance counters
= Works well with time-scaling. Needs better support for performance
counter convolution.

= FOSSIL: Skeleton applications (previously in SST/macro)
= Framework for Online Software-stack Simulation with Imitated Libraries

= Compile and link C/C++ code directly into simulator (intercept MPI and
compute calls; OSSIfy, operating system symbol interception tool)

= Can run in emulate mode (execute all instructions/deliver message
payloads) or simulate mode (estimate compute/communicate times only)

" Ember
= State machine model of application
= Based on common communication/computation motifs or patterns



Ember: state machine application models @i

Rank 0 Rank N
Application Event
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= Simulated application, middleware, routing and transport
= Completely modular, don’t like it — go swap some out
= Mixed fidelity — pay for the timing complexity you need
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= DOE can not make detailed hardware models (vendors best able)
= DOE needs to provide workloads for simulation components
= DOE can develop basic models, co-design abstract interfaces




FOSSIL: simulation with real software stacks

int main(int argc, charxkx argv){

MPI_Init(&argc, &argv);

/* ... Initialization code x/

MPI_Request reqs[NUM_REQUESTS];

for (int iter=0; iter < niter; ++iter){ ®
MPI_Isend(...)
MPI_Isend(...)
MPI_Irecv(...)
MPI_Irecv(...);
dgemm(...); .

}

/* ... finalize code x/

MPI_Finalize();

return 0;

}
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Compiler wrapper
modifies symbols and
intercepts calls

Time delay of MPI calls
simulated on virtual
network

-Isstmac_blas intercepts
BLAS call, sends to
compute model instead of
executing natively

:samples jjwilke$ sst++ main.cc -0 run -1sstmac_blas]




Each process runs simulated as independent ()&=,

t =0us

t =1us

t =2us

t =3us

t =4us

user-space threads

Sim Thread Process 0 Process 1

3)Post recv to NIC; block

8)Send ack for recv (1us); block

11)Continue execution...
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Uncertainty quantification ) e,
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Application Runtime « Cheap approximations are great for rapidly
exploring design space, but...
How much can we actually learn from them?
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Collective simulations with error bars
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Validation

Bayesian
Inference

| Adaptive Markov
Chain Monte Carlo

Error bars determined
by scatter in validation
data and intrinsic
accuracy of coarse-
grained models




Collective simulation with sensitivity analysis Uiz,

Sensitivity
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Future directions: multiscale simulation

Offline Database Online Database

Collect all microscale results a Compute fine-scale results,
priori with brute force
parameter scan

[

[
M
M

Oversample, infeasible for
many dimensions

Must select grid/fitting
and samples a priori
Workflow integration of
micro/macro scales
Embarrassingly parallel,
local database

retrieve pre-computed results

if you can

[] Mixed micro/macro scales
in simulation

[] Results distributed, parallel
indexing

M Compute many fewer
microscale results

M No a priori assumptions
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Future directions: multiscale simulation ) e,

S = Speedup over full microscale
o1 N = Micro kernels w/out reuse
/,,\ n = Micro kernels with reuse

! P W = Cost of full kernel
o w = Cost of indexing/reuse

P2

% o o NW
P OJ0 nW + Nw

« How much faster can | make my simulation than a “full
microscale” simulation by memoizing results?

 How does it affect parallel performance (relative to offline
model building with parameter sweep)

« Can my sampling/parallel efficiency be great enough to
make multiscale the most cost-efficient option?




SST is about us benefiting from other people’s g s
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work, not the other way around

= Ultimately simulation work is about building/procuring machines
for Department of Energy workloads

= We want to use other people’s models!
= Years of work goes into debugging/calibrating tools

Not enough staff or hours to build all the modeling infrastructure we want
Don’t have access to proprietary details in many cases

= We want to provide a specific path for integrating models

Unified PDES core
SST integration is lightweight and (mostly) non-intrusive
gem5 and SST/macro can as stand-alone or part of integrated core

Co-designing flexible abstract interfaces for tying independent
components together
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Scheduling future events
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