
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Building a Simulation Community for Solving Exascale Problems:
The Structural Simulation Toolkit (SST)

Jeremiah Wilke, Joseph Kenny, David Hollman
Scalable Modeling and Analysis

Sandia National Labs, Livermore CA

Simon Hammond, K. Scott Hemmert, Arun Rodrigues, Gwendolyn Voskuilen, et al.
Scalable Computer Architectures,

Sandia National Labs, Albuquerque, NM

SAND2016-2827PE



Simulating exascale systems faces conflict 
between accuracy/cost

 Need to understand details of 
individual processors/memories

 But then need to understand how 
memories/processes interact on-node 
in parallel program…

 But then need to understand how 
multiple nodes interact to produce 
scaling behavior…

 But then how do we explore 
parameter/design space to assess best 
overall machine configuration…

 For our goals, structural simulation 
provides good balance between 
flexibility, accuracy, cost



Structural simulation of exascale system 
requires numerous different components

 Endpoint (application) model
 Instruction-based

 Trace-based

 Skeleton apps

 State machine

 Compute/memory model
 Detailed emulation

 Coarse-grained structural simulation

 Analytic models

 NIC/network model
 Analytic models (messages only)

 Coarse-grained packet models

 Flit-level



Scale simulations to match system scale:
Couple models through common PDES core

 If supercomputers are going to scale up, simulation tools need to 
scale with them

 Parallel discrete event simulation is a challenging problem

 Partially-ordered parallelism always balancing optimistic parallelism 
against rollback costs



PDES core should be solved problem:
Researchers should focus on models

 Several steps in deploying PDES
 Optimal partitioning of elements

 Delivering events across distributed memory

 Synchronizing many, many components

 This work is universal to all parallel simulators

 Modularity and composability of simulation tools almost 
impossible without unified PDES core



SST defines interfaces for coupling models
 SimpleMem: 

 Issue arbitrary memory requests to memory model

 Register arbitrary callbacks for request notifications

 Designed as lightweight wrapper around any memory simulation tool

 SimpleNetwork:
 Issue arbitrary network requests (at the packet level)

 Register arbitrary callbacks for packet send/recv notifications

 Designed as lightweight wrapper around any network simulation tool

 FOSSIL:
 On-line simulation, directly compile MPI/pThread code into simulator

 “Interface” for writing endpoint models is just valid C/C++ code

 Under development:
 Message-layer interface (have tool called Hermes for packetization/de-

packetization of messages)



Diverse set of processor models covering 
accuracy/cost spectrum

 Ariel: PIN-based processor
 Uses Intel’s PIN tools and XED decoders to analyze binaries (x86, x86-64, 

SSE/AVX, etc. compiled binaries)

 Passes information to virtual core in SST

 Virtual cores implement abstract memory interface

 Prospero: Traced-based processor
 Reads memory ops from file and passes to simulated memory system

 “Single core” but can emulate parallel applications with multiple traces

 Miranda: Pattern-based processor
 Light-weight processor model for specific memory address patterns

 Currently implements random access, STREAM, GUPS, stencils, and more



Ariel advertisement

User Application
Binary

Ariel PIN Tool

…

(Instruction Stream
1 per thread)

…

Virtual “Ariel” Core

Virtual “Ariel” Processor

(memEvent Target)

SST Ariel Component

…

memHierarchy Cache
…

…

Unmodified user binary
(use your standard compiler etc)



 SimpleMem interface for issuing memory requesting, register 
callback notifications for completed requests

 Can have arbitrary ports/connections 

 Supports many different backends
 SimpleMem – basic read/write with associated latencies

 DRAMSim2 – DRAM (external)

 NVDIMMSim – Non-volatile memory (e.g., Flash) (external)

 HybridSim – non-volatile memory with a DRAM cache (external)

 VaultSimC – stacked DRAM

Diverse memory models covering cost/accuracy 
spectrum with MemHierarchy components



Diverse memory models covering cost/accuracy 
spectrum with MemHierarchy components

CacheController
• Routes incoming events to handlers
• Manages retry of buffered events in 

the MSHRs
• Manages cache allocations and 

evictions

CoherenceController
• Manages coherence state
• Receives events from CacheController
• Sends outgoing events 

• Forwarded requests, responses, etc. 
• Decides when events need to stall

MSHRs
• Buffers stalled and 

blocked events

CacheArray
• Stores cache lines – data 

and coherence state
• Replacements via the 

replacement policy 
manager



Multi-level memory advertisement

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

Merlin 
Router

Directory 
Controller

"Quad"

Core

L1

Core

L1

L2

Core

L1

Core

L1

DDR

Ariel Trace Capture

PIN

Directory 
Controller

DDR

Directory 
Controller

Logic
Layer

Stacked
Vault

back
trace

histo
gram

hot mallocs

simulation post-process

app

SST

malloc mem
sieve

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

1.4"

1.6"

1.8"

DDR+Only" 18%"HMC"82%"DDR" 18%"HMC"36%"
DDR(cache)"64%"NV"

18%"HMC"18%"DDR"
(cache)"%"64NV"

MiniFE&Simula, ons&

Performance"

Perf/Cost"

Siam Conference on Parallel Processing
Friday, April 15 2:40 PM



Diverse set of network models covering 
cost/accuracy spectrum

 PISCES: Coarse-grained packet simulator (formerly in SST/macro)
 Packet-Flow Interconnect Simulation for Congestion at Extreme-Scale

 Performs routing and flow-control at level of packets

 Uses flow approximations to account for flit-based/cut-through routing

 Supports arbitrarily complex routing strategies (factory interface – more 
details available)

 Currently have minimal, minimal-adaptive, Valiant, and UGAL

 MACRELS: Approximate, analytic models (formerly in SST/macro)
 MTL for AnalytiC REally Lightweight Simulation

 Rapid prototyping of design space without detailed congestion

 Designed to support algorithm/software stack explorations

 Merlin: Cycle-based packet simulator



MACRELS: simple network supporting 
application/runtime development

Modeling with simple delay formula 
similar to LogGOPSim

α = Latency
β = Inverse bandwidth

N =Message size
Router/
Switch

Router/
Switch

Node

NIC

Node

NIC

Memory 
Bandwidth/

Latency

Injection
Bandwidth/

Latency

Network 
Bandwidth/

Latency

ΔT=α + β N



PISCES: packet-level for prototyping 
topologies/routing/congestion management

Router/
Switch

Router/
Switch

Node

NIC

Node

NIC

Router/Switch

Router/SwitchCrossbar

Ser/Des Ser/Des

Network
Bandwidth

Switch Bandwidth

Congestion models 
based on 

arbitration/credits for 
buffers in 

memory/NIC/switches

Most common usage 
simulates congestion 

separately on crossbar and 
network links (ser/des) 



Congestion statistics collected with PISCES

Minimal routing UGAL routing

 Adversarial traffic pattern (tornado on 2D torus)

 UGAL takes minimal path until hitting congestion – then Valiant

 Major reduction in packet latencies

Bin counts for packet latency



Diverse set of network endpoints covering 
cost/accuracy spectrum

 MPI trace replay
 DUMPI tool previously in SST/macro

 Collect MPI calls with timestamps/performance counters

 Works well with time-scaling. Needs better support for performance 
counter convolution.

 FOSSIL: Skeleton applications (previously in SST/macro)
 Framework for Online Software-stack Simulation with Imitated Libraries

 Compile and link C/C++ code directly into simulator (intercept MPI and 
compute calls; OSSIfy, operating system symbol interception tool)

 Can run in emulate mode (execute all instructions/deliver message 
payloads) or simulate mode (estimate compute/communicate times only)

 Ember
 State machine model of application

 Based on common communication/computation motifs or patterns



Ember: state machine application models

 Simulated application, middleware, routing and transport

 Completely modular, don’t like it – go swap some out

 Mixed fidelity – pay for the timing complexity you need

Ember

Hades/Hermes

Fire Fly

Merlin

Ember

Hades/Hermes

Fire Fly

Merlin

Application

MPI Semantics
Runtime/Middleware

Packetization

Routing/Transport

Event

State Machine

State Machine

Cycle

Rank 0 Rank N…



Ember advertisement

 DOE can not make detailed hardware models (vendors best able)

 DOE needs to provide workloads for simulation components

 DOE can develop basic models, co-design abstract interfaces



FOSSIL: simulation with real software stacks

 Compiler wrapper 
modifies symbols and 
intercepts calls

 Time delay of MPI calls 
simulated on virtual 
network

 -lsstmac_blas intercepts 
BLAS call, sends to 
compute model instead of 
executing natively



Each process runs simulated as independent 
user-space threads



Call graphs collected with SoftServe

List of all 
functions and 
time spent

Zoom in to see 
functions and what 
percentage of time was 
spent there



Activity timelines collected with FOSSIL

0 500
1000

1500

2000

2500

3000

3500

4000

4500

%
o
f
t
o
t
a
l

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Here MPI stops 
computing during 
synchronous 
exchange at regular 
intervals



Uncertainty quantification

• Cheap approximations are great for rapidly 
exploring design space, but…

• How much can we actually learn from them?

• App 1 simulation suggests 2.0 s/GB
• App 2 simulations suggests 1.5 s/GB 
• No single bandwidth is exact, knowledge of 

“correct” parameter is probability distribution 
• “Most likely” parameter is ~1.6



Collective simulations with error bars

Results with error bars for all-
gather collective collected on 
Hopper Cray XE6

Error bars determined 
by scatter in validation 
data and intrinsic 
accuracy of coarse-
grained models

Bayesian 
Inference

Adaptive Markov
Chain Monte Carlo

Validation
Data



Collective simulation with sensitivity analysis

Bayesian 
Inference

Adaptive Markov
Chain Monte Carlo

Validation
Data

Black = Congestion parameter
Red = Injection latency
Green = Network hop latency
Blue = Single message bandwidth 

All-gather analysis matches 
intuition! As message size 
increases, bandwidth/congestion 
becomes more important



Future directions: multiscale simulation

Offline Database Online Database

Collect all microscale results a 
priori with brute force 
parameter scan
 Oversample, infeasible for 

many dimensions
 Must select grid/fitting 

and samples a priori
 Workflow integration of 

micro/macro scales
 Embarrassingly parallel, 

local database

Compute fine-scale results, 
retrieve pre-computed results 
if you can
 Mixed micro/macro scales 

in simulation
 Results distributed, parallel 

indexing
 Compute many fewer 

microscale results
 No a priori assumptions



Future directions: multiscale simulation

S 
NW

nW  Nw

S = Speedup over full microscale
N = Micro kernels w/out reuse
n = Micro kernels with reuse
W = Cost of full kernel
w = Cost of indexing/reuse

• How much faster can I make my simulation than a “full 
microscale” simulation by memoizing results?

• How does it affect parallel performance (relative to offline 
model building with parameter sweep)

• Can my sampling/parallel efficiency be great enough to 
make multiscale the most cost-efficient option?



SST is about us benefiting from other people’s 
work, not the other way around

 Ultimately simulation work is about building/procuring machines 
for Department of Energy workloads

 We want to use other people’s models!
 Years of work goes into debugging/calibrating tools

 Not enough staff or hours to build all the modeling infrastructure we want

 Don’t have access to proprietary details in many cases

 We want to provide a specific path for integrating models
 Unified PDES core

 SST integration is lightweight and (mostly) non-intrusive

 gem5 and SST/macro can as stand-alone or part of integrated core

 Co-designing flexible abstract interfaces for tying independent 
components together



Acknowledgments
This work was supported by the U.S. Department of Energy (DOE) National Nuclear 
Security Administration (NNSA) Advanced Simulation and Computing program and the 
DOE Office of Advanced Scientific Computing Research. SNL is a multi-program 
laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of 
Lockheed Martin Corporation, for the DOE NNSA under contract DE-AC04-

94AL85000.



http://sst-simulator.org



Virtual me

Time window

LP 0

LP 1

Scheduling future events

Wall me = 2s


