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Abstract—Energy and power consumption are major limi-
tations to continued scaling of computing systems. Inexactness
where the quality of the solution can be traded for energy
savings has been proposed as a counterintuitive approach to
overcoming those limitation. However, in the past, inexactness has
been necessitated the need for highly customized or specialized
hardware. In order to move away from customization, in earlier
work [4], it was shown that by interpreting precision in the
computation to be the parameter to trade to achieve inexactness,
weather prediction and page rank could both benefit in terms
of yielding energy savings through reduced precision, while
preserving the quality of the application. However, this required
representations of numbers that were not readily available on
commercial off-the-shelf (COTS) processors. In this paper, we
provide opportunities for extending the the notion of trading
precision for energy savings into the world coTs. We provide a
model and analyze the opportunities and behavior of all three
IEEE compliant precision values available on COTS processors:
(7) double (i7) single, and (i7¢) half. Through measurements, we
show through a limit study energy savings in going from double
to half precision can potentially exceed a factor of four, largely
due to memory and cache effects.

I. INTRODUCTION

It is widely believed that energy and power consumption are
major limitations to continued scaling of computing systems.
Often referred to as the “power wall” (or “energy wall”), this
limitation now ranges from the obvious battery-constrained
context of embedded computing, to general-purpose computing
settings, namely supercomputers and data-centers.

Following the presidential executive order on creating a
national strategic computing initiative [1], US agencies are
engaged in a project aimed at leading to the deployment of
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an exascale computer by 2023. Power consumption is a major
obstacle to the timely deployment of an exascale platform.
The current top supercomputer, Sunway, consumes 15.3MW
and achieves 93 petaflop/s on Linpack. With no technology
improvements, an increase in performance would require a
proportional increase in power consumption: An exascale
system would consume more than 160MW. New technology
improvements will occur, but it seems unlikely that an exascale
system will achieve the target of 20MW.

There is a lot of interest in ameliorating these hurdles
through customization—notably through highly stylized and
dedicated architectures. These efforts at customization are
ubiquitous in the embedded computing space where energy,
speed, and size/weight have always played a critical role.
The solution in this traditional context is to consider system-
on-a-chip (SOC) architectures that meld varying amounts of
general-purpose embedded computing with custom processing
hardware and communication hardware. The problem with SOC
architectures is that customization comes with a significant
“one-time” nonrecurring engineering cost (NRE and time-to-
market delays [2]. On the other hand, with general-purpose
commercial, off-the-shelf (COTS) microprocessors, a single
highly optimized design is used to amortize the NRE and time-
to-market overheads through volume sales.

In addition, customized hardware requires customized
software: A specialized system is generally harder to program
than a general purpose microprocessor and does not take
as much advantage of the large software ecosystem that is
available for general purpose processors. For example, Sunway
uses a specialized sOC with no caches, but only a small 64K
scratchpad for each core. This requires significant changes in
software.

A general technique for reducing energy/power consumption
goes by the name of inexact design. The philosophy of inexact
design espouses the idea of actively trading application accuracy



for disproportionately large energy gains; see [3] for an
overview. Recently, this approach was considered in the context
of two ubiquitous applications drawn from the weather and
climate modeling domains through the IGCM model, and in
the context of “big data” through the PageRank algorithm [4].
This work established the following thesis:

For applications that occur quite naturally, e.g. IGCM,
PageRank), trading the precision at which the al-
gorithms are implemented garners energy savings
without compromising the quality of the application.

The thesis specializes the inexact design methodology by
interpreting inexactness as lowering the precision of the
computation. This application of inexact design opens the door
to an entirely new approach for coping with the power- or
energy-wall facing computing.

The work from [4], however, needed architectures where
the floating-point numbers did not conform to IEEE standards.
Therefore, while being a harbinger of how one could leverage
COTS platforms to overcome energy hurdles, the methods
could not be supported on currently-available microprocessors.
Nevertheless, the insight from [4] is potentially useful if we
apply the same methodology in the context of commercially
available precision variants. This goal paves the way to the
following questions addressed in this paper.

1)  What are the most frequently occurring precision
modes in COTS microprocessors?

2)  What are the costs of various (e.g., integer, floating-
point, load, store) instruction types as we vary preci-
sion?

3)  What are realistic limits to measured energy gains we
can hope to achieve across these classes?

4)  What is a good model through which these measured
gains can be explained and the architectural contribu-
tions from elements such as data movement from main
memory, various levels of cache, and the data-path
inferred?

A. Overview of the rest of the paper

The IEEE standards have provided single- and double-
precision floating-point for some time and, more recently, a
half-precision mode supporting 5 exponent bits, 10 mantissa
bits, and a sign bit. We consider all three of these modes here.
To start with, in Sec. II, we outline a methodology through
which we can reliably measure energy consumption based on
novel hardware counters. Section III describes the three modes
of arithmetic under consideration. In Sec. IV, we construct (by
hand) a family of three microbenchmarks to exercise each of the
three modes in turn and measure the energy consumed. We show
that by lowering precision, we obtain gains that are achievable
with current commercially available microprocessors. We based
this study on an Intel core i7 4770 (3.40 GHz) processor. We
are also interested, however, in being able to project the benefits
of reduced precision in the context of other architectures as
well. To do this, in Sec. V, we consider energy to be relative or
normalized by the cheapest operation and use the dimensionless
quantity virtual joules. We use this model to reason about the
gains reported in Sec. IV and to provide a tool for being able
to estimate energy savings if measurement frameworks for
physical are not readily available.

B. Related work

Early work on trading the quality or accuracy of a computa-
tion for energy savings based on physical mechanisms including
CMOS devices can be found in [S]-[7]. A historical perspective
on this approach to energy savings with a partial survey of
the field can be found in [8]. In building the model used in
this paper, we use the results from [9] both to validate our
work as well as in determining costs of individual instruction
classes. The concept of trading precision for performance is
well known in the supercomputing community [10, 11]. The
novelty of our approach is to apply this concept in the context
of energy efficiency, both in terms of physical measurements,
as well as validated models. The reference list associated with
each of the papers we cite provides a more complete citation
record.

II. OUR EXPERIMENTAL METHODOLOGY

Being interested in energy effects means that we must have
some way of measuring the energy consumption of programs.
For the COTS used in this work, we employed a DELL precision
T1700 workstation operated by CentOS 7 and equipped with an
Intel core i7 4770 (3.40 GHz) and 16 GB of DDR3 RAM. The
operating system was Linux, kernel 4.3. All CPU cores were
set to the minimal P-State except for one. The distinguished
core was set to Turbo Boost.

This Intel architecture supports Running Average Power
Limit (RAPL) hardware counters, which work much like any
other hardware performance counter: start counter, do work,
stop counter. The difference between start and stop values
measures the energy. The pseudocode for a RAPL measurement
is shown in Algorithm 1. We employed RAPL to measure the
energy per instruction (EPI) of several instruction classes. Our
measurements for these instruction classes appear in Sec. V.
In most of the cases, RAPL measurements are consistent
with physical measurements, but this methodology tends to
underestimate the cost of main memory access [12].

Algorithm 1 Generic RAPL energy measurement

1: Allocate and fill memory with random values

2: Initialize RAPL

32 fori=1, i< N, i++ do

4: Possibly increment memory pointer by
more than a cache line size (if need to
nullify cache)

5: General Work > Could be inline assembly

6: end for

7: Read RAPL

III. PRECISION MODES AVAILABLE ON COTS SYSTEMS

Almost all floating-point units (FPUs) in commercially
available processors support both IEEE 754 single-precision
and double-precision arithmetic natively. To increase the peak
performance, modern FPUs support single instruction, multiple
data (SIMD) and fused multiply-add (FMA).

While single- and double-precision arithmetic are standard,
there are many different half-precision formats available. There
is, surprisingly, a standard half-precision format supported by
IEEE-754-2008. This standard is named “binaryl16”. It has



TABLE I: Energy for Fused Multiply-Add

Double-precision 199J
Single-precision 67J
Half-precision 49J

5 bits of exponent, 10 bits of mantissa (11 if you count the
leading 1-bit), and a sign bit. The IEEE standard, however, treats
binary16 as a storage format only. General-purpose processors
have, until recently, not supported binary16.

Intel recently introduced a half-precision floating-point
storage format into the AVX2 instruction subset in the 3rd
generation Intel Core processor family [13]. Specifically, Intel
introduced instructions to convert half-precision data into single-
precision data and convert single-precision data back into half-
precision data. There is, unfortunately, no native support for half-
precision arithmetic in AVX2. Any arithmetic to be done with
binary16 data must be converted to standard single-precision
to perform any calculations. At the end of the calculations,
the (single-precision) results may be converted back to half
precision.

Although actual floating-point arithmetic for half-precision
data is carried out by single-precision logic, reducing data
traffic size between processors and main memory simply ben-
efits memory-bound applications since memory-wall-induced
underutilization is still one of the major problems in scientific
computing [14]. Even worse, Moore’s law has raised the
memory wall. In the exascale computing era, data movement is
expected to be one of the most dominant factors for performance
and energy efficiency [15].

IV. LiMIT STUDY

This section gives a sample of how precision can be traded
for a significant amount of energy saving on COTS (AVX2)
hardware. To see the effects, we constructed a small benchmark
consisting of 3 vector loads, 1 vector fused multiply-add, and
1 vector store. The entire sequence was looped over for a
sufficient amount of time to be able to accurately measure the
energy consumed. The benchmark has been run in 3 modes:
double precision, single precision, and half precision.

Figure 1 shows the energy per operation, as it varies with
array size. The asymptotic energy numbers appear in Table I.

V. MODELING AND EXPLAINING THE GAINS

In order to understand the energy effects of various program

designs, we must understand the source of the gain (or loss).

The classic way to do that is to employ an energy model. The
inputs to the model are counts of the various instructions. To
compute the energy from this count data: multiply the count
by the EPI for the instruction. Instructions naturally fall into
certain categories based on their EPI. Memory-referencing
instructions, however, behave differently according to whether
the reference was in cache or not. So, a more refined energy
model would count the number of cache hits/misses. An even
further refinement divides the cache hits/misses into each cache
level in the memory hierarchy. A reasonably refined energy
modeling tool, then, consists of 2 elements:
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Fig. 1: Energy per operation and cycles per operation of the vector fused
multiply-add benchmark.

1) A method to count the various instruction categories,
including all memory-reference refinements.
2) Data on the EPI of the various instruction categories.

The instruction-counting element of the energy-modeling
tool uses Cachegrind, a Valgrind tool [16] as a basis for count-
ing the cache effects of the program under study. Unfortunately,
Cachegrind is restricted to 2 levels of cache hierarchy. So L2
and L3 cache hits/misses are lumped into the Lm category
of cachegrind. Also, Cachegrind does not distinguish vector
instructions from scalar instructions. So, for the moment, our
instruction counting mechanism uses Cachegrind to count only
the cache behavior of the memory-referencing instructions.
The microbenchmarks we used were sufficiently small that
we could simply look at the loop body to count non-memory
instruction classes by hand. When larger programs are under
consideration, we are planning to augment Cachegrind to



distinguish instruction class in the counts.

For the 2nd element of our energy modeling tool, we
obtained the EPI of almost all the instruction classes by using
the RAPL microbenchmark techniques from section IV. Those
results are shown in Table II. The only non-measured results
in the table are the L2 and L3 cache costs.

A. Abstracting Energy Costs through Virtual Joules

In order compare energy savings techniques across several
processors, Intel core i7 used in the previous measurements,
A virtual Joule (vJ) model is developed in to order to
estimate the relative energy savings. This model simplifies the
energy estimation task by regrouping several instruction having
equivalent energy costs, normalized to the least expensive
operations. Table II also shows the Virtual Joules, though in
this particular case vJ= nJ/ 2. Further details on this method
can be found in [4].

B. Analyzing the Fused Multiply-Add Microbenchmark

We used cachegrind to count the number of cache
hits/misses for 2 levels of cache (L1 is separate from L2 and
L3).

Non-data instructions, i.e. vector arithmetic operations,
and vector conversions (half precision to single precision and
reverse) could easily be counted directly in the source code of
each microbenchmark.

The instruction distribution of each microbenchmark is
plotted fig. 2. For all the three microbenchmarks cache hits are
mostly L1 hits. The numerical counts of the instruction classes
appear in Table III.

The estimated total energy consumed by each benchmark
is presented Fig. 3. The modeled energy matches the measured
energy very well. That means we can use our model to further
analyze the energy effects. Note that the table shows that single
precision executes half the instructions that double precision
executes. That is a direct effect of vectorization: single-precision
vectors are twice as long as double-precision vectors. Therefore,
the energy gains are about a factor of 2. There is, however,
an additional effect. Notice that the fraction of cache misses
is smaller by about a factor of 3. The combination of these 2
effects leads to a factor of 3 in savings.

When comparing single to half, note that the number of
memory references is the same. Half precision, however, must
execute the conversion instructions. Notice, however, that the
cache misses for half-precision are reduced by a little more
than a factor of 2. This favorable cache behavior is enough to
overcome the conversion instructions plus produce a savings
of about 0.20.

We are still investigating if the vectorization effect of half
precision can be exploited.

VI. LESSONS LEARNED AND REMARKS

The important lesson from this study is that the energy
gains derived from reduced-precision computation have three
sources:

TABLE II: Measured EPI

Instruction EPI (nJ) Virtual Joules(vJ)

Integer ADD (scalar) 2 1
Single ADD (scalar) 49 2.45
Double ADD (scalar) 5 2.5
128 Vector ADD (singles) 7.5 3.75
256 Vector ADD (singles) 9 4.5
NOP 1.4 0.7

Half to Single vector conversion (8 values) 12 6
Memory Integer load (scalar) 183 91.5
Memory Single load (scalar) 195 97.5
128 vector load 199 98
256 vector load 204 102

TABLE III: Instruction count for the three microbenchmark running as single
processes with an array of 67 million elements and 44 consecutive runs

Double Single Half
Cache hits 1,845,496,308 1,107,298,372 1,291,849,672
Main Memory 1,107,296,473 369,098,968 184,549,898
Vector FMA 738,197,504 369,098,752 369,098,752
Vector convert 0 0 1,476,395,008

1) Vectorization of arithmetic: Twice as many operations
are performed per cycle for single, as compared to
double.

2)  Vectorization of memory accesses: Smaller precision
means more elements per load/store. This is the
biggest source of gains.

3) Improved cache utilization: Smaller precision means
more values can fit in the cache. This increases the
number of cache hits.

The main gain comes from the reduction in memory traffic.
As communication is expected to consume an increasing
fraction of the total compute energy, the savings will be
even more significant in the future. An added advantage
of lower precision is the need for less memory, which is
an important consideration, since future high-performance
computing systems are likely to have a worse flop to DRAM
ratio than do current ones.

While the potential for savings as shown in this paper
are interesting, the opportunity that we see here is an ability
to use precision to virtually reduce the effects of technology
scaling. Thus, we believe that it will be very interesting to
consider algorithms being redesigned so that the saved energy
can be reinvested and used to actually improve the application’s
quality. Classical supercomputing workloads that have the flavor
of iterative solutions [17] as well as weather and climate
models [18] are prime candidates for using inexactness to
save in the first instance through lowered precision in the first
instance, but then reinvest the saved energy in a different part of
the algorithm to improve the overall quality. Consequently, the
total energy budget will be the same but however the application
could be re-engineered to achieve a higher quality solution
through this approach. If successful, this approach can be used
to mitigate the many hurdles and concomitant costs associated
with deploying the next generation of supercomputers by
effectively achieving the quality goals that such scaling would
imply from an application standpoint!
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Fig. 2: Pie chart of the instruction distribution for the three vector Fused
Multiply and Add (FMA) microbenchmarks
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