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Abstract—Contemporary high-performance computing (HPC)
applications encompass a broad range of distinct I/O strategies
and are often executed on a number of different compute
platforms in their lifetime. These large-scale HPC platforms
employ increasingly complex I/O subsystems to provide a suitable
level of I/O performance to applications. Tuning I/O workloads
for such a system is nontrivial, and the results generally are
not portable to other HPC systems. I/O profiling tools can
help to address this challenge, but most existing tools only
instrument specific components within the I/O subsystem that
provide a limited perspective on I/O performance. The increasing
diversity of scientific applications and computing platforms calls
for greater flexibililty and scope in I/O characterization.

In this work, we consider how the I/O profiling tool Darshan
can be improved to allow for more flexible, comprehensive instru-
mentation of current and future HPC I/O workloads. We evaluate
the performance and scalability of our design to ensure that it
is lightweight enough for full-time deployment on production
HPC systems. We also present two case studies illustrating
how a more comprehensive instrumentation of application I/O
workloads can enable insights into I/O behavior that were not
previously possible. Our results indicate that Darshan’s modu-
lar instrumentation methods can provide valuable feedback to
both users and system administrators, while imposing negligible
overheads on user applications.

I. INTRODUCTION

The high-performance computing (HPC) community en-
compasses a diverse set of computational science applications,
ranging from large-scale simulations of biomolecular systems
to modeling of complex weather phenomena. These applica-
tions leverage a breadth of distinct I/O strategies and I/O inter-
faces, usually according to recognized best practices in their
respective problem domains [?], [?], [?]. Additionally, modern
HPC platforms represent numerous system architectures and
I/O subsystem implementations, each with various features and
performance capabilities [?], [?], [?]. As the need to extract
increasing I/O performance from these systems grows, so too
does the complexity of the I/O subsystem. Unfortunately, the
increasing complexity of these systems makes it difficult for
application users and system administrators to reason about
I/O workload performance.

Application users have typically used I/O profiling tools to
characterize the performance of their I/O workloads, using
resultant data to steer potential performance-tuning efforts.
I/O profiling tools have also proved valuable to system ad-
ministrators, characterizing the types of I/O workloads that
are common on their systems and enabling evaluation of
relevant systemwide I/O trends. These I/O profiling tools

should, ideally, capture sufficient information to characterize
I/O workloads across all layers of the stack, since I/O perfor-
mance is generally dictated by the efficiency of interactions
across layers rather than being isolated within specific layers.
However, existing I/O profiling tools tend to focus on instru-
menting specific components within the I/O subsystem and
are not easily extensible to instrumenting new components.
Supporting separate tools for each I/O interface or platform is
intractable; thus, profiling tools need to offer flexible designs
that can be easily extended to account for an ever-expanding
HPC I/O stack.

In this paper we investigate how Darshan [1], an I/O
profiling tool commonly enabled on some of the largest HPC
systems in the world, can be redesigned to provide flexible
and comprehensive instrumentation of the HPC I/O stack. The
contributions of this work include the following:

• Redesign of Darshan’s codebase to allow for more mod-
ularized instrumentation of application I/O workloads

• Definition of new Darshan instrumentation modules for
capturing relevant I/O data from different components in
the stack

• Case studies showing how modular Darshan data can
offer insight into the behavior of relevant I/O workloads

• Implementation of a novel logging mechanism allowing
Darshan to generate characterization data for applications
which terminate unexpectedly

The remainder of this paper is organized as follows. Sec-
tion II provides background information on Darshan and
motivates the need to refactor the codebase. In Section III
we provide a general overview of Darshan’s new modularized
design and outline some of its other new features. Section IV
evaluates the performance and scalability of Darshan’s new
design to ensure that it is still amenable to deployment on
production systems. In Section V we consider case studies
where Darshan enables new insights into the behavior of
representative HPC I/O workloads. In Section VI we present
research related to this work. Section VII provides our con-
clusions and outlines potential future work.

II. BACKGROUND

Darshan is an application-level I/O characterization tool
providing detailed statistics on the behavior of HPC I/O
workloads. Rather than logging every I/O operation submit-
ted by an application (as a tracing tool would), Darshan
captures a bounded amount of data for each file opened by
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the application, including I/O operation counts, common I/O
access sizes, cumulative timers, and other statistical data.
The total number of instrumented files is also bounded to
limit Darshan’s memory footprint. Prior Darshan versions1

have instrumented in-depth data from the POSIX and MPI-
IO layers of the I/O stack and basic data for the high-level
HDF5 and Parallel netCDF data interface layers. Darshan
also captures a fixed set of job-level parameters, such as
the number of application processes, the job’s start and end
time, and the job ID assigned by the scheduler. Darshan can
instrument I/O functions in both statically and dynamically
linked executables. Wrappers are interposed at compile time
using both the PMPI interface and the GNU linker’s --wrap
argument for static executables, while dynamic executables use
the LD_PRELOAD mechanism to interpose wrappers.

Darshan’s strategy for logging instrumented data to file is
to defer all required communication and I/O operations until
the job has finished executing. When the job finishes, Darshan
performs any necessary data aggregation steps (e.g., Darshan
reduces data records shared globally accross all processes
into a single shared record by default), then compresses each
process’s data before collectively writing it out to a single log
file. The decision to defer communication and I/O until job
shutdown, coupled with the decision to bound total memory
consumption, is fundamental to Darshan’s lightweight design
philosophy, making it amenable to full-time deployment on
production HPC systems. In fact, Darshan has been enabled
by default on a number of production systems for some
time, including systems at the Argonne Leadership Computing
Facility (ALCF), the National Energy Research Computing
Center (NERSC), and the National Center for Supercomputing
Applications (NCSA). Darshan integrates directly into the
build environment at these facilities to allow for transparent
instrumentation of application codes. Prior research has shown
how data captured by Darshan can help drive application
I/O performance tuning on production systems at these facili-
ties [1]–[3]. Darshan has also been used to enable systemwide
and cross-system characterization of HPC I/O workloads [2],
[3] and to generate realistic I/O workloads for evaluating the
performance of storage system designs [4].

The widespread use of Darshan has also revealed several
aspects of its original design that can result in incomplete
coverage.2 For example, the analysis by Luu et al. [3] found
that applications that perform extensive I/O using interfaces
not traditionally used in HPC (e.g., via fprintf() provided
by POSIX stdio) did not yield comprehensive Darshan logs.
In addition, routine analysis of application link-time data
collected by ALTD [5] at NERSC has shown that over 30%
of jobs (45% of core-hours) that use Darshan do not generate

1When referring to prior versions of Darshan, we mean versions prior to
the rewrite of the codebase described in this paper (i.e., in versions prior to
Darshan 3.0.0).

2Here, we define coverage as a broad metric representing the fraction of
relevant I/O characterization data captured by Darshan from the jobs running
on a specific system. Coverage is reduced when applications disable Darshan,
applications fail to log Darshan data successfully or when applications use
I/O interfaces not instrumented by Darshan.

a log file as a result of the application being killed because
of insufficient resources (e.g., wall time) or failing with an
unexpected error. The need to address these issues and extend
Darshan’s coverage in environments that use nontraditional
I/O interfaces or enforce resource constraints has motivated a
redesign of the Darshan codebase.

III. DARSHAN REDESIGN

To address the concerns introduced in the preceding section,
we identified a set of enhancements to Darshan to more
flexibly and comprehensively characterize HPC application
I/O workloads:

• Modularization of the Darshan runtime architecture and
log file format to allow integration of data from new I/O
components

• Implementation of new instrumentation modules gather-
ing I/O workload data at different layers of the I/O stack

• A new mmap-based logging mechanism to improve the
robustness of Darshan’s data capture methods

At a high level, the primary aim of these enhancements is
not only to improve Darshan’s flexibility in gathering I/O
characterization data but also to address existing gaps in
Darshan’s coverage.

A. Modularization

Darshan’s original design focused on gathering data from
a static set of components in the I/O subsystem, with most
extracted data coming from instrumenting POSIX and MPI-
IO functions of interest. However, this design did not pro-
vide mechanisms for easily instrumenting I/O data from new
components, either by capturing more extensive data from the
POSIX and MPI-IO interfaces or by instrumenting entirely
new sources of data. For this reason, we sought to modularize
Darshan’s codebase by specifying new Darshan components
called instrumentation modules that capture I/O data from a
particular source (e.g., an I/O interface or file system specific
API). The Darshan core library then exposes a well-defined
interface for these instrumentation modules to coordinate with
Darshan at runtime.

Instrumentation modules are responsible for the following:
• Capturing data from specific I/O components, usually by

instrumenting functions of interest
• Generating I/O data records characterizing I/O behavior

and registering these records with Darshan core
• Coordinating with Darshan core at shutdown to organize

module records before they are written to file
On the other hand, the Darshan core library is responsible for
the following:

• Initializing Darshan core data structures and allocating
memory for storing module records at application start

• Providing an interface to modules for reserving memory
to store records and for registering records that should be
persisted in the final output log

• Gathering final output data from modules, compressing
this data and writing it to log file at application shutdown
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Fig. 1. High-level overview of Darshan’s modularized runtime architecture
and self-describing log file format.

Figure 1 provides an overview of our design that illustrates
the interaction between instrumentation modules, the Darshan
core, and the output log file format produced. As the appli-
cation executes, the instrumentation modules generate data
records characterizing the application’s I/O workload within
different components of the I/O stack. The modules register
each of these data records with the Darshan core to ensure that
the records are persisted in the final output log. At application
shutdown time, the Darshan core library provides each module
an opportunity to reorganize its data records (e.g., modules can
reduce data from records that are common to all processes)
before compressing and collectively writing them to the log
file. A self-describing file format is employed, wherein a
header indexes each module’s extent in the log file. This allows
log file readers to easily find and extract the various record
types using module-specific parsing code.

Instrumentation modules must first register themselves with
the Darshan core library to request memory for buffering I/O
data records, and this registration process usually occurs the
first time the module intercepts a function of interest. Modules
typically create one data record for each file accessed by
the application, and each record stores module-specific data
characterizing the I/O workload to that file. Modules must also
register each of these records with Darshan core to obtain a
pointer for storing its contents in the module buffer and to
allow for other necessary bookkeeping. As part of the record
registration process, modules can associate arbitrary-length
names with each record, providing a convenient way to store
the complete path of the corresponding file. After registering
a record with Darshan core, modules may cache the record’s
buffer address (e.g., in a hash table keyed by file path) so the
record can be readily modified by subsequent instrumentation.
Data records do not have to map to files, however, and modules
are free to populate them at other granularities.

When the Darshan core library initializes itself (by inter-
cepting MPI_Init()), it allocates a set of buffers to store
various global components of the Darshan log file including
the header (which contains an index of all other log file compo-
nents); the job-level record; and the name record table, which
stores the names assigned to data records during registration. A
common buffer is used to store all of the modules’ records, and

this buffer space is allocated to modules in a firt-come, first-
served manner. The size of this shared buffer is configurable
(to cap Darshan’s memory usage); but once the buffer space is
exhausted, Darshan prevents new modules from reserving any
memory. Darshan core uses internal bookkeeping to keep track
of the amount of remaining space in each module’s buffer so
that if a module runs out of buffer space, Darshan core will
prevent it from registering new records.

At application shutdown time, Darshan core intercepts
MPI_Finalize() and collects all the instrumented data
to be written to the log file. Rank 0 constructs and writes
the header and job-level record, and then all application
processes collectively write records on a module-by-module
basis. Each module is first given an opportunity to perform
any required reorganization of records and internal cleanup
through a finalization function provided by the module when
registering with Darshan core. After this module-specific final-
ization completes, Darshan core compresses and collectively
appends the module’s record buffer to the output log file. The
header’s index then is updated to indicate where the module’s
compressed data is located in the log file, and the process
continues for the next module.

B. New instrumentation modules

Leveraging the new Darshan concepts outlined in the pre-
vious section, we implemented a new set of instrumentation
modules characterizing components of the I/O stack that have
not been well covered by Darshan in the past. In particular,
we describe here the design of a Lustre file system module,
a stdio I/O interface module, and a module for grabbing IBM
Blue Gene/Q–specific parameters.

Lustre module: Parallel file systems implement standard
APIs such as POSIX and MPI-IO as a means to abstract
the parallelism of the underlying hardware away from user
applications. At extreme scales, however, understanding the
details of the file system’s underlying parallelism is key to
achieving high performance. No standard APIs present these
details (such as stripe size and width) to applications, resulting
in a variety of implementation-specific methods for retrieving
this information from various parallel file systems.

The modularity of Darshan provides a convenient way
to abstract the implementation-specific interfaces of different
file systems and gather performance-critical parallelization
parameters such as stripe width and size. To demonstrate this,
we implemented such a module for the Lustre file system
that uses a Lustre-specific ioctl interface to retrieve striping
information and file system geometry for files that are stored
on Lustre. For each such file, the Lustre module stores the
stripe size, the stripe width, the total number of object storage
targets (OSTs) and metadata targets (MDTs) in the file system,
and an enumeration of the OSTs over which the file is striped.

These file system-specific data provide additional context
for the measurements made by other instrumentation modules.
For example, the combination of a file’s stripe size (from the
Lustre module) and its most frequent transaction size (from
the POSIX module) can quickly indicate mismatches that
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would result in significant lock contention. Additionally, the
enumeration of OSTs can be combined with external system
information to identify I/O that may have been impacted by
faulty or underperforming object storage servers (OSSes).

stdio module: In previous work [3] we observed that many
production applications rely on text-based I/O in leadership-
class computing facilities. We therefore implemented a “stdio”
module to more fully characterize the stdio.h family of
functions, such as fopen(), fprintf(), and fscanf().
These I/O functions are often used in fields such as genomics
and biology that store sequencing information in text format.
A subset of the stdio interface was previously instrumented in
Darshan as part of POSIX characterization, but we elected to
split it into a separate module in order to add more detail and
coverage without activating the functionality for applications
that don’t need it. The data recorded in the stdio module is
similar to that recorded in the POSIX module and includes
data such as operation counts, number of bytes transferred,
and amount of time spent in I/O functions.

BG/Q module: While Darshan’s primary focus is on in-
strumenting specific components in the I/O stack, it can also
provide users and administrators with data describing how a
job interacts with underlying platform. We have developed a
module for gathering platform-specific data for IBM BG/Q
systems that includes the number of allocated compute nodes,
the number of processes per compute node, the number of
assigned I/O nodes, and details on the dimensions of the torus
network for the job’s compute partition. This data is gathered
mainly by querying hardware “personality” data using the
BG/Q system programming interface.

We note that the BG/Q module is a slight departure from
those previously described in that it does not instrument any
particular functions and instead just captures a static set of
data. Darshan provides special hooks that allow modules like
this to capture the data they need during the initialization of
the Darshan runtime environment.

C. Robust logging

Previous observations have shown that Darshan’s coverage
can be reduced by applications that link Darshan in but do
not successfully generate logs at application shutdown time.
This situation is typically due to applications not calling
MPI_Finalize(), perhaps because the application crashed
or exceeded its wall time limit. We decided to implement a
new, robust logging technique in Darshan to combat this issue,
ensuring that I/O characterization data is persisted regardless
of whether the application terminates properly.

To accomplish this, we leverage the mmap system call
to memory map Darshan’s data structures to log file as the
application executes, rather than simply malloc’ing memory
to store them. The mapped region is configured with the
MAP_SHARED flag set to ensure that updates to any addresses
in the map are (eventually) carried through to the file backing

the mapping,3 protecting against data loss in the event of
abnormal termination. To simplify the recovery of Darshan
data from these temporary log files, we organize the memory
mapping in Darshan’s typical log file format, with the caveat
that the data is left in uncompressed form. In the expected case
that the application terminates normally, Darshan generates its
traditional log file and removes the temporary log files. If the
application does terminate unexpectedly and the temporary log
files are stored locally on compute nodes, the job scheduler
may have to move the log files to a globally visible file system.

This robust logging technique results in a single, uncom-
pressed log file per-process. This data format is neither space-
efficient nor compatible with existing analysis tools. To ad-
dress this, we developed the darshan-merge utility for
postprocessing these temporary log files and merging them
into a single, compressed log file per job. This tool reads
in each process’s temporary log file and aggregates the data
into a single output log, much like the traditional shutdown
procedure does. This process of converting the temporary
per-process log files into per-job log files could be tightly
integrated with the job scheduler on some systems, or it could
be handled with a periodic cron job.

IV. PERFORMANCE VALIDATION

Since Darshan is intended for deployment in production
on large-scale HPC systems, performance and scalability are
critical requirements of its design. To validate that our design
satisfies these requirements, we investigated both the overhead
of Darshan’s method for instrumenting I/O functions and the
time taken by Darshan to complete its shutdown process and
generate an output log file.

Each of these experiments was performed on the Edison sys-
tem at NERSC, a 2.5 petaflop Cray XC30 system composed of
5,576 compute nodes and 133,824 compute cores (24 compute
cores per node). We directed all I/O to the cscratch Lustre
file system, a global scratch volume shared between Edison
and the new Cori system at NERSC, offering over 30 PiB of
capacity and a peak performance of over 700 GiB/s. For each
experiment, we compared relevant performance metrics across
the following Darshan configurations to determine whether
any exhibit increased overheads: Darshan 2.3.0, Darshan 3.1.0,
and Darshan 3.1.0 configured to use the mmap-based logging
mechanism (with the backing files stored on the RAM disks
on Edison compute nodes).

A. Darshan instrumentation overhead

In order to limit any possible perturbations of application
I/O performance, Darshan’s instrumentation methods must
impose negligible overhead. Previous analysis [1] has demon-
strated that instrumentation overheads in prior Darshan ver-
sions are essentially negligible, even for latency-bound I/O
operations. In the experiments presented here, we are primarily
trying to determine whether new Darshan design features have

3To keep Darshan’s overheads low, we generally recommend that the
backing file be at least node-local, preferably backed by a RAM disk or
other low-latency storage.
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introduced any obvious increases in this overhead. Possible
causes for increased overheads in the new Darshan versions
include the required coordination between modules and the
Darshan core library to register data records and the new
mmap-based memory allocation mechanism. To ensure these
features do not adversely affect application I/O performance,
we simply compared the observed I/O time of an application
linked with the Darshan configurations presented previously.

We used the popular IOR benchmark [6] to generate our
target I/O workload, with the benchmark configured to use
a single file per-process and to use independent MPI-IO
operations. Specifically, each of a total of 6,000 application
processes (on 250 Edison compute nodes) writes a total of 512
MiB to its own file using 512 KiB accesses. This workload
results in an aggregate write size of 3,000 GiB and requires
over 12 million total MPI-IO and POSIX I/O operations (over
2,000 operations per process). We built four different IOR
executables for these experiments: one with no instrumen-
tation and three linked with each Darshan configuration we
outlined previously. To differentiate normal system variance
from deviations caused by Darshan, we submitted 15 distinct
jobs for each IOR version. We measured the I/O time of each
benchmark using the total I/O time reported by IOR, which is a
measure of the duration between the time of the first open of an
output file on any process to the time of the last close of a file
on any process. We focus on one job size for these experiments
since the overhead is unlikely to change with scale (because
Darshan avoids performing I/O or communication within its
wrappers).

In Figure 2, we provide box plots of the results of these
tests for each IOR version. These plots give the minimum,
median, and maximum results, as well as the first and third
quartiles, to indicate the distribution of I/O times in each
case. We observe that Darshan appears to have little impact
on the I/O performance of the benchmark, regardless of the
configuration that was used. The I/O time distributions are
comparable in each case, and each of the IOR versions linked
with Darshan experiences less than 2% increase in I/O time.
The mmap-based approach appears to experience slightly more
variability in I/O time than other versions do, but the overhead
is still nearly negligible when considering typical variability
of the file system. We conclude that Darshan’s instrumentation
methods introduce minimal (if any) measurable overhead in
I/O performance.

B. Darshan shutdown overhead

The Darshan shutdown process involves aggregating output
data records across all processes, compressing these records,
and collectively writing the records out to the Darshan log file.
This process is invoked by Darshan after the application has
finished processing by intercepting MPI_Finalize. While
this overhead is essentially transparent to applications, it is
still important that the process complete efficiently in order to
allow job resources to be reclaimed quickly by the scheduler.
While this shutdown process involves the same general steps
(reduce, compress, write) for each Darshan version, we note
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Fig. 2. I/O time reported by an IOR file per-process experiment with and
without Darshan instrumentation.

that the Darshan 3.1.0 versions perform these steps on a per-
module basis rather than once globally. The primary aim of
these experiments is to discern whether Darshan’s new modu-
larized architecture causes an excessive increase in shutdown
overhead.

We measure the performance of the shutdown process for
each Darshan configuration using a low-level benchmark that
injects synthetic data records corresponding to different I/O
workloads into the Darshan runtime environment. We then in-
voke the Darshan shutdown procedure and instrument the total
time taken to complete. For each workload and each Darshan
version, we collect 10 independent benchmark samples to
obtain a distribution of shutdown times. We also execute
the benchmark at numerous job sizes, ranging from 2,400
application processes up to 12,000 processes, to evaluate how
the shutdown process scales in each version. The synthesized
workloads consist of either globally shared or independent
per-process file records using both the MPI-IO and POSIX
interfaces, each of which is representative of typical HPC
checkpointing approaches.

Figure 3 provides the shutdown benchmark performance
results for each Darshan version. For shared file workloads,
Darshan uses MPI collective communication to determine
which records are shared globally and to reduce each of these
shared records into a single aggregate record. Rank 0 ends
up with the reduced aggregate records and is responsible for
writing them to the log file. In Figure 3(a), we provide the
shutdown overhead results for a single shared file workload.
The figure shows little difference in the observed shutdown
times for each configuration, with most samples taking around
100 milliseconds to shut down. This overhead remains mostly
constant across all scales, save for a couple of outlier results.
These results indicate that both Darshan 3.1.0 versions attain
comparable performance to Darshan 2.3.0 for a shared file
workload, despite the added complexity in the shutdown
process.

The shutdown overhead results for a file per-process work-
load are given in Figure 3(b). Unlike the shared file examples,
Darshan does not perform reductions of shared file records
in this case; instead it uses collective I/O to write out each
process’s unique file record. As expected, the shutdown times
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Fig. 3. Observed shutdown time for each Darshan version when instrument-
ing common HPC I/O workloads.

for these workloads scale linearly with the job size. Each of
the Darshan 3.0.0 versions exhibits slightly longer shutdown
time than Darshan 2.3.0 at smaller scales, with the disparity in
shutdown time increasing with the job size. This is an artifact
of the modularized log format in this version: the decision to
compress and write each module’s data independently leads
to reduced compression efficiency and more write operations,
causing a clear increase in shutdown cost. More details on
the reasons behind reduced shutdown performance in the
modularized version of Darshan are provided in an earlier
performance evaluation study [7]. Nevertheless, each Darshan
version still aggregates, compresses, and writes its recorded
data in less than 7 seconds for all configurations evaluated
here.

V. CASE STUDIES

Next, we consider case studies where Darshan instrumenta-
tion can provide application users and system administrators
alike valuable insight into the performance of I/O workloads
of interest. In particular, we utilize Darshan’s newly developed
instrumentation modules to determine whether they enable
increased intuition into the behavior of representative HPC
application I/O workloads.

A. HACC-IO

HACC (Hardware/Hybrid Accelerated Cosmology Code)
is an extreme-scale cosmology framework that uses particle-
mesh techniques to simulate the evolution of the universe [8].

The I/O kernel of HACC has been released as a stand-alone
benchmark, called HACC-IO, that is a part of the CORAL
benchmark suite.4 Since this benchmark suite was designed to
be representative of U.S. Department of Energy applications,
we chose to use HACC-IO as an exemplar I/O workload to
demonstrate the utility of the Lustre module when analyzing
the performance characteristics of HPC storage systems.

We modified the HACC-IO benchmark to perform only
the checkpoint (write) phase of the workload and to skip
the restart/validate (read) phase. We configured HACC-IO to
utilize the MPI-IO interface and generate a single output file
per MPI process, with each process writing over 2 million
particles, or 100 MiB of data. We also modified the benchmark
to use the O_DIRECT and O_SYNC flags when opening
checkpoint files to ensure the I/O operations would not be
served by cache. This experiment was run on Edison using
6,144 application processes on 256 compute nodes, resulting
in an aggregate workload write size of 600 GiB. Checkpoint
files were written to Edison’s Lustre-based scratch1 file
system, which is composed of 24 Lustre OSSes, each with 4
OSTs (96 OSTs total), and is capable of 48 GiB/s peak write
performance. We configured our HACC-IO output directory
to have a stripe width of 1, resulting in each process’s output
file mapping to a single OST.

Figure 4 presents the performance of the HACC I/O work-
load using data from Darshan’s Lustre module to frame the
results from the perspective of the underlying file system.
Figure 4(a) illustrates the total number of ranks whose output
maps to each OST (which we term the occupancy) and the
distribution of I/O times for each process utilizing that OST.
The data demonstrates uniform occupancy, indicating that the
file system effectively balances the distribution of application
processes’ output files across all available OSTs for this run.
Although this should lead to similarly well-balanced I/O time
distributions across all OSTs, this is not the case; rather,
Figure 4(a) reveals distinct blocks of contiguous OSTs (e.g.,
OSTs 48–55 and 88–95) that exhibit consistently longer I/O
times.

To determine the root cause of these blocks of slower OSTs,
we mapped each OST to the IP address of the OSS serving it.
The aggregate file I/O times at this per-OSS level, shown in
Figure 4(b), more clearly highlight the relationship between
the anomalously slow OSTs. Contrary to our expectation that
each contiguous group of 4 OSTs would map to a distinct
OSS address (e.g., OSTs 0–3 to OSS 0, OSTs 4–7 to OSS 1),
the two blocks of eight slow OSTs each map to a single OSS
with twice as many OSTs as their higher-performing peers.

After identifying these two oversubscribed OSSes, we were
able to confirm with NERSC systems engineers that these two
OSSes were indeed serving twice as many OSTs as a result
of an earlier system failure. The underlying Lustre storage
appliances on Edison implement an active-active failover strat-
egy, allowing each OSS to take over the OSTs of its partner
OSS in case of a failure. This failover process maintains data

4https://asc.llnl.gov/CORAL-benchmarks/
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Fig. 4. Performance of HACC-IO writing a checkpoint of 12.9 billion
particles.

availability in the case of OSS failure, but it clearly results
in reduced I/O performance of affected OSSs because of the
increased load associated with servicing the I/O requests of
twice as many OSTs.

These results indicate that although Lustre does effectively
balance load across OSTs, it does not ensure load balancing
across OSSes. As a result, an application can exhibit poor
overall I/O performance that results from the failover of just
a single OSS. In the case of the HACC checkpoint workload
presented here, the overloaded OSSes identified by Darshan
resulted in 13% longer I/O time. In addition, this case study
demonstrates how aggregated Darshan log data can be used
to identify systemwide I/O problems that would be otherwise
opaque to users.

B. HMMER

We selected the HMMER [9] application as a case study
for stdio characterization. HMMER is a biology application
that searches genome sequence databases using hidden Markov
models (HMMs). HMMER uses stdio functions exclusively
for reading and writing text data. Our example configura-
tion used HMMER version 3.1b2 compiled with MPI sup-
port using the Intel C compiler. We executed hmmsearch
with 4 processes on a single node of Edison using
the following command line arguments: --mpi --noali
--notextw <HMM file> <FASTA file>. We used the
Pfam-A.hmm HMM file (provided by the Pfam Consortium)
and uniprot_sprot.fasta FASTA file (provided by

TABLE I
PER-FILE I/O CHARACTERISTICS FOR THREE HMMER CONFIGURATIONS

config A config B config C
HMM (input)

file size 1.3 GiB 1.3 GiB 1.3 GiB
I/O volume 5.0 GiB 5.0 GiB 5.0 GiB
I/O time 12.5 s 12.4 s 12.1 s
I/O count 36.2 M 36.2 M 36.2 M
seek count 0 0 0

Sequence DB (input)
file size 253.4 MiB 253.4 MiB 253.4 MiB
I/O volume 4.0 TiB 4.0 TiB 4.0 TiB
I/O time 710.8 s 708.4 s 390.8 s
I/O count 1.1 B 1.1 B 1.1 B
seek count 8.3 M 8.3 M 8.3 M

output
file size 1.3 GiB 1.3 GiB 1.3 GiB
I/O volume 1.3 GiB 1.3 GiB 1.3 GiB
I/O time 155.8 s 16.6 s 17.9 s
I/O count 16.1 M 16.1 M 16.1 M
seek count 0 0 0

totals
file size 2.8 GiB 2.8 GiB 2.8 GiB
I/O time 879.1 s 737.4 s 420.8 s
I/O volume 4.0 TiB 4.0 TiB 4.0 TiB
I/O count 1.1 B 1.1 B 1.1 B
seek count 8.3 M 8.3 M 8.3 M

the UniProt Consortium) as example input files. Input and
output files for these experiments were again stored on the
cscratch Lustre file system available to Edison users.

Table I summarizes Darshan characterization data for each
file opened by the hmmsearch application. A total summa-
tion is shown in the bottom portion of the table. We examined
the following distinct I/O configurations. “A” corresponds to a
conventional configuration using the command line arguments
shown above. “B” adds a -o <output file> argument to
explicitly write output to a file rather than stdout. “C” is
the same as B, except that the FASTA file was placed in a
ramdisk on the compute node before execution.

In all three cases we see that I/O time is dominated by
access to the sequence database file. Although this file is only
253 MiB, the application issues over 8 million seek operations
and 1 billion read operations to transfer a total of 4 TiB of
data from the file. The application benefits from significant
client-side data caching in this case because all four processes
are located on the same physical compute node, but this is
still a challenging workload for most parallel file systems.
Configuration C takes advantage of the relatively small total
size of the file to enact a simple optimization: the file is copied
to a local RAMdisk on the compute node (an operation that
takes less than a second) prior to execution. This eliminates
over 300 seconds of I/O time during application execution.
We also investigated the impact of two different data output
strategies in this case study. Configuration A uses the default
hmmsearch output method in which all results are written
to stdout. The batch environment on Edison redirects this
output to a text file in the user’s home directory. Configuration
B explicitly writes results to a text file on the parallel file
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system. In both cases all data is written by rank 0 in the
application using the same number of system calls, but the
latter configuration is nearly 10 times faster.

Overall, the Darshan stdio module allows us to observe key
I/O behavior for this application and understand the impact
of various tuning strategies. In particular, a surprising amount
of redundant read activity is noted in one of the input files
(which is more suited to low-latency local storage access than
high-latency remote storage access), and output performance
varies significantly depending on the storage target. These
phenomena are likely to play a more prominent role in larger-
scale application executions.

VI. RELATED WORK

The HPC community has done a great deal of research
regarding I/O tracing tools, including IPM [10], mpiP [11],
//TRACE [12], ScalaIOTrace [13], and Recorder [14]. Of these
tools, only ScalaIOTrace and Recorder explicitly trace data at
multiple layers of the I/O stack (i.e., the POSIX and MPI-IO
layers, with Recorder collecting additional HDF5 trace data
as well). These tools are not generally deployed in production
because of the high computational and storage overheads
associated with gathering detailed information on each I/O
operation issued by an application. Further, they typically rely
on some type of postprocessing to distill actionable tuning
decisions out of the traces.

The Charisma [15] project was started in 1993 to char-
acterize the I/O workloads of multiprocessor scientific codes
running on two different production systems using I/O tracing.
The primary aim of this research was to compare the types
of workloads present on each system in order to determine
common I/O trends and, ideally, to guide future file system
designs. This research was highly influential to Darshan and
other subsequent I/O characterization tools proposed by the
HPC community. The work in this paper clearly extends the
scope of I/O workload characterization beyond the level of
file system reads and writes, instead encompassing numerous
layers and components in the I/O stack.

SIOX [16] and IOPin [17] are examples of related research
that characterize HPC I/O workloads across multiple layers
of the I/O stack. In fact, each of these works extend the
application-level I/O instrumentation approach that Darshan
uses to also account for other remote (i.e., not compute
node local) components in the I/O stack. For instance, SIOX
instrumentation encompasses network interfaces, file system
servers, and file system storage devices, as well as application-
level instrumentation. Thus, the SIOX framework can provide
fine-grained details on individual I/O operations and determine
causal relationships of operations across components of the I/O
stack. IOPin uses dynamic instrumentation methods to trace
I/O workloads from the application layer all the way to storage
servers to determine end-to-end performance characteristics.
The IOPin methods appear to be specifically tied to the PVFS
file system, however. Also, while SIOX and IOPin can provide
valuable insights into the performance of the I/O critical

path for workloads of interest, they likely exhibit too much
overhead to run full-time in production.

Petesch and Swan [18] present work correlating application-
level I/O instrumentation with file system specific information
to pinpoint I/O issues within Lustre. Specifically, the authors
manually instrument the IOR benchmark and manually gather
Lustre OST mapping data to analyze system I/O performance
and isolate performance issues to specific Lustre components,
such as spinning disks or LNET routers. The resulting analysis
is therefore relevant only to the Lustre file system and to I/O
workloads that can be reconstructed by using IOR, although
the applied principles are generalizable to other contexts.

VII. CONCLUSIONS

As the complexity of large-scale HPC I/O subsystems
continues to grow, application users and system administrators
are finding increasing difficulty reasoning about the I/O perfor-
mance of their workloads. While users have traditionally used
I/O profiling tools to help analyze and tune I/O workloads,
these tools exhibit inflexible designs that are ill-suited for
these increasingly complex environments. In this work, we
have proposed a new, modularized design for the Darshan
I/O characterization tool to allow it to be easily extended
to account for new components in the HPC I/O stack. We
have evaluated the overheads of the new design and have
found that it is highly scalable and thus amenable to full-time
deployment in production. We have also shown how Darshan
can provide both application users and system administrators
valuable insights into application I/O workload behavior.

We will continue to investigate and develop new Darshan
instrumentation modules that can provide intuition into I/O
workload performance on HPC systems. These modules may
allow for the instrumentation of experimental I/O interfaces
or emerging storage hardware components, for instance. We
are also interested in correlating Darshan’s application view of
I/O behavior with I/O data instrumented from other relevant
sources throughout the system (e.g., network interconnects,
burst buffers, storage servers) to enable a more comprehensive
understanding of I/O performance across HPC systems.
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