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Enabling Parallel Simulation of Large-Scale HPC
Network Systems

Misbah Mubarak, Christopher D. Carothers, Robert B. Ross, and Philip Carns

Abstract—With the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an
indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions,
simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely
manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks,
however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important
classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer
Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the
Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the
requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated
and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial
time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic
event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster
systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC
application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations.

Index Terms—Massively parallel discrete-event simulation, interconnect networks, trace-based simulation.
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1 INTRODUCTION

Interconnect performance largely determines the over-
all effectiveness of modern high-performance computing
(HPC) systems. Network topology—which includes the lay-
out of network nodes, routers, and channels—plays a key
role in determining network performance. To analyze the
performance of network topologies and their different con-
figurations prior to building them, network designers turn
to analytical modeling and simulation. Although analytical
modeling provides a flexible and fast estimate for making
design decisions about networks, this advantage comes at
the cost of accuracy because these models tend to make
unrealistic simplifications about network design [1]. Serial
time-stepped simulators can provide a high-fidelity and
accurate picture of network performance by simulating the
network cycles [2], but their scalability is limited by the
simulation performance. In order to make informed design
choices about large-scale networks, a network simulator
must be fast, accurate, and scalable and have high fidelity
at the same time. In this context, parallel discrete-event
simulation (PDES) provides an opportunity to model large-
scale networks with a sufficient fidelity [3]. However, many
packet-level discrete-event simulations are limited in perfor-
mance because of excessive global synchronization. When
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coupled with optimistic event scheduling [4], performance
and scalability requirements can also be met.

When modeling HPC interconnection networks, using
workloads of a stochastic nature is the most common ap-
proach for performance evaluation. These synthetic work-
loads have a specific interarrival time, message size, and
destination distribution [3]. Although such traffic patterns
are helpful in assessing a given network configuration un-
der a variety of controlled scenarios, however, they are not
representative of the communication phases in large-scale
scientific applications [3]. Postmortem traces that reflect the
communication behavior of scientific applications can be
used to drive the simulation and achieve realistic estimates
of network performance. However, handling these traces
in simulation is a nontrivial task. The first challenge is
that running large network traces (e.g., in the range of
several gigabytes representing 100,000 MPI processes) on
top of a detailed network simulation can become a bot-
tleneck. For this reason, many simulation frameworks use
simplified analytical models or ignore network contention
details altogether when using real communication traces [5],
[6]. The second challenge is that the simulation must also
preserve the causal dependencies between the operations in
the traces. For example, if an application performs frequent
synchronization through the MPI wait operation, then the
simulation must also wait for the MPI wait operation to
complete before the next operation can progress.

In this paper, we address these constraints of simulation
accuracy, detail, efficiency, and realistic workload represen-
tation that limit the use of simulation in the codesign of
large-scale networks. We present two high-fidelity models of
large-scale networks developed as part of the Co-Design of
Multi-layer Exascale Storage Architecture (CODES) simula-
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tion toolkit. CODES enables the exploration of HPC network
and storage system design by providing a higher-level mod-
eling API and high-fidelity and scalable models for HPC
network and storage systems [7]. CODES uses the Rens-
selaer Optimistic Simulation System (ROSS) discrete-event
simulator as its underlying discrete-event simulation frame-
work, which has been shown to process billions of events
per second on leadership-class supercomputers [8]. Using
the optimistic event scheduling capability of ROSS, we
model and explore the design space of two popular classes
of networks in CODES at a flit-level fidelity at the size of
next-generation HPC systems [9], [10]. The first design is the
low-diameter, low-latency dragonfly network, which uses a
high-radix router to provide high network bandwidth [11],
[12]. The second class of networks is the torus [2], which
uses multiple network links to exploit locality between the
network nodes. Our network models provide the ability to
explore various network configurations using both synthetic
and trace-based workloads. To accurately simulate trace-
based communication, we preserve the causal dependencies
among the MPI operations through a simulated MPI layer,
as discussed in Section 4.2.

The contributions of this paper are as follows.

1) We present a methodology for modeling MPI point-
to-point messaging on extreme-scale torus and
dragonfly networks at a detailed fidelity on modern
HPC systems using optimistic event scheduling,
which enables faster simulations by having a higher
simulation event rate and reducing extensive global
synchronization [13].

2) Our work enables network designers to gain insight
into network design decisions through both syn-
thetic workloads and traces from real applications
that are considered representative of future large-
scale compute systems [14].

3) We present examples of architecture design space
exploration in which we investigate the network
performance at a large scale to provide useful in-
formation about how a given torus or dragonfly
network behaves with representative application
traces.

4) We demonstrate that our large-scale trace-based
network simulations with up to 110,000 simulated
network nodes can execute on a modest number of
cores (up to 64 cores) on a high-performance cluster
in a reasonable amount of time.

5) To demonstrate the performance benefits of using
discrete-event simulation for network modeling, we
compare the simulation runtime of the CODES
discrete-event dragonfly network model with that
of the time-stepped series simulator booksim and ob-
serve a 5x-12x speedup over the booksim simulation
on a single node with sequential execution.

2 BACKGROUND

We first briefly describe the ROSS simulator. We then discuss
the two network designs of interest here: the dragonfly and
the torus.

2.1 ROSS event-driven simulation

Parallel discrete-event simulations are made up of logical
processes (LPs), where each LP models a component of
the system and has a distinct state. These LPs interact
with one another via events in the form of timestamped
messages. Since each LP maintains its own local simulation
time and since not all LPs progress at the same rate, events
can arrive at an LP that have a timestamp earlier than its
local simulation time. Many parallel discrete-event simula-
tors handle this issue by taking a conservative approach of
delaying to process an event with timestamp t until it is is
guaranteed that no other event having timestamp less than
t will arrive. This conservative approach involves excessive
global synchronization, however, which limits its scalability.

Optimistic event scheduling prevents this extensive
global synchronization by allowing events to be processed
until an out-of-order event is detected. The events are then
rolled back and re-executed in the correct order [4]. ROSS
supports both conservative and optimistic event scheduling.
The latter is enabled through a technique called reverse
computation, in which model designers write rollback func-
tions. Optimistic scheduling in ROSS has been shown to
dramatically improve the runtime of parallel simulations
and reduce the amount of state-saving overhead [15]. The
reverse computation feature enables us to run our large-
scale network simulations at a much higher event rate than
with the conservative event scheduling approach.
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Fig. 1. Dragonfly intergroup and intragroup settings with a=8, p=4, h=4
(some groups are not shown).

2.2 Dragonfly networks

The dragonfly network (an example is shown in Figure 1) is
a hierarchical topology composed of several virtual groups
connected by all-to-all links. It has been deployed suc-
cessfully in the Cray XC series of supercomputers [16].
Many next-generation HPC architectures such as the Aurora
system at Argonne [9] and Cori at NERSC [10] have a
dragonfly network topology. Each router in the dragonfly
has p compute nodes connected to it, with a routers in
each group. Routers within a group are connected by all-
to-all links called local channels. Each router has h global
channels, which are intergroup connections through which
routers in a group connect to routers in other groups. Thus,
the radix of a router in the dragonfly is k = a + p + h − 1.
For balancing the global and local network bandwidth, the
recommended dragonfly configuration is a = 2p = 2h.



IEEE TRANSACTIONS ON PARALLEL & DISTRIBUTED COMPUTING, VOL. X, NO. X, 2015 3

If this recommendation is followed, the total number of
groups g in the network is g = a ∗ h + 1. Since each
group has p nodes and a routers, the total number of nodes
N in the network is determined by N = p ∗ a ∗ g [12].
In our dragonfly simulation, we follow the recommended
dragonfly configuration.

Research efforts have been carried out to evaluate several
routing algorithms on a dragonfly topology. These routing
algorithms include minimal routing (MIN), nonminimal
routing, adaptive routing [11], [12], [17] and progressive
adaptive routing [18]. Minimal routing always takes the
shortest path; and since the dragonfly topology has a single
global channel connecting each pair of groups, the minimal
routing algorithm traverses the same global channel when
communicating with nodes of another group. To avoid
congesting the single global channel between two groups,
one can use randomized nonminimal routing (e.g., Valiant’s
algorithm), which first diverts the traffic to a randomly se-
lected group and from there to its destination group. How-
ever, this approach traverses twice the global channels when
compared with minimal routing [11]. For each packet being
sent, an adaptive routing algorithm dynamically selects a
minimal or nonminimal path based on the network queue
length, which approximates the congestion on the local
and global channels. With progressive adaptive routing, the
decision to route a packet minimally gets re-evaluated at
each hop of the source dragonfly group [18].

2.3 Torus networks

A torus is a k-ary n-cube network with N = kn nodes
arranged in an n- dimensional grid having k nodes in each
dimension [19]. Each node of a torus network is connected
to 2 ∗n other nodes. A torus network node can be identified
with a unique n-digit radix k address. Torus networks have
been used extensively in the Blue Gene [2], [20], Cray XT,
and Cray XE [21], [22] series of supercomputers. Since each
torus node is connected to its neighbors via dedicated links,
torus networks typically have high throughput for traffic
patterns that involve nearest-neighbor communication.

Network designers determine the properties of a torus
network primarily by torus dimensionality (i.e., number of
dimensions, number of nodes in each dimension) and link
bandwidth. With a high number of torus dimensions per
node and a limited link bandwidth, the serialization delay
of the packet becomes a significant overhead. Likewise,
with a limited number of torus dimensions and a higher
link bandwidth, the network diameter increases, in turn
increasing the end-to-end packet latency [19]. Therefore,
when designing a torus network, one must find the right
balance of dimensions and channel bandwidth in order to
achieve high performance for the target workloads.

3 WORKLOADS FOR HPC NETWORK MODELS

HPC applications tend to have nearest-neighbor or local
communication patterns. Such applications yield high per-
formance on networks that exploit communication locality
for example, torus networks have direct physical connec-
tions between nearest neighbors. However, certain classes
of applications, such as those using fast Fourier transforms

or adaptive mesh refinement, tend to communicate over a
broader range of the network, leading to communication
with the far end of the network [23], [24]. Such applications
are well suited for network topologies that have a low
network diameter, such as the dragonfly [11], [12].

We have used two performance evaluation approaches
to explore the design space of the torus and dragonfly net-
work models. First, we use synthetic traffic patterns where
workloads are characterized by using stochastic processes
with network packets being generated with a specific in-
terarrival time, packet size, and destination distribution [3],
[25], [26]. Second, we replay trace-based traffic, where post
mortem traces capture the network communication of scien-
tific applications running on leadership-class supercomput-
ers.

3.1 Synthetic workloads
Synthetic traffic patterns are used primarily to stress the net-
work topologies and evaluate the effectiveness of a network
with a specific form of traffic. In our prior work [25], [26],
we have demonstrated how torus and dragonfly with up to
a million simulated network nodes perform with synthetic
traffic patterns. We use two variations of two forms of traffic
with the dragonfly and torus network models. The first
is an adversarial traffic pattern such as nearest-neighbor
traffic on the dragonfly, which congests the local and global
channels connecting the routers. For the torus networks,
we used a diagonal traffic pattern that is a measure of
determining how effective the network can sustain its bi-
section bandwidth [27]. The second variation is a traffic
pattern that is useful for evaluating the best-case network
performance such as a uniform random traffic pattern on
the dragonfly [11] and nearest-neighbor communication on
the torus.

3.2 Trace-based workloads
While synthetic traffic patterns are simple to implement
and useful in assessing whether the network behaves in
an expected way, using scientific application workloads
provides a way to evaluate the performance implications
of the desired networks on scientific applications.

We have used publicly available HPC network traces
provided by the Design Forward Program [28] with our
CODES network models. These traces provide detailed in-
strumentation of large-scale applications including point-to-
point and collective operations and are collected by using
the DUMPI MPI trace package [29], which provides a library
to collect and read these MPI traces. The DUMPI traces
include detailed information about the type of MPI oper-
ations executed by the application as well as the time spent
executing that operation. We have used traces from the
following applications that represent a variety of relevant
communication pattern and network scale:

(i) The AMG application workload: AMG is a parallel
algebraic multigrid solver used for linear systems in un-
structured grids [30]. The AMG network trace track the
communication for a single “V cycle” of the multigrid
sequence [14], [28]. AMG achieves parallelism by using data
decomposition to divide the grid into equally sized logi-
cal 3D data chunks, which exhibits a 3D nearest-neighbor
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communication pattern. The network traces of the AMG
application used in our experiments have 13,824 MPI ranks,
the largest available trace for AMG, with an approximate
point-to-point data transfer of 10 GiB in the form of point-
to-point messages. The AMG application had a runtime of
7.5 seconds, with 13,824 MPI ranks executed on 576 hosts
with 39.66% time spent in communication.

(ii) Multigrid application workload: Multigrid is a geo-
metric multigrid cycle from the production elliptic solver,
Boxlib, that provides the ability to write parallel, block-
structured adaptive mesh refinement codes [31]. The com-
munication pattern of Multigrid involves communication
across the diagonal, which has similarities with the neigh-
borhood communication in AMG. However, Multigrid com-
munication is distributed across a larger set of ranks as
compared to AMG, and it can be considered as many-to-
many communication. The network traces of the Multigrid
application used in our experiments have 110,592 MPI
ranks, the largest available of the Design Forward traces.
The overall data transfer in the form of point-to-point mes-
sages is 326 GiB. The Multigrid application had a runtime of
5.199 seconds, with 110,592 MPI processes executed on 4608
hosts with 3.4% time spent in communication.

(iii) Crystal Router application workload: Crystal
Router is a scalable code that represents the many-to-many
MPI communication pattern coming from the application
code Nek5000. The application trace is from the extracted
kernel of the production application Nek5000 [28]. Crys-
tal Router uses a recursive doubling approach. Each rank
conforms to an n-dimensional hypercube and is recursively
split into n − 1 dimensional hypercubes that involves com-
munication among a small group of ranks. The trace of
the Crystal Router application used in our experiments has
10,000 MPI ranks, the largest available trace for Crystal
Router, with an overall data transfer of around 2 TiB in
the form of point-to-point messages. The Crystal Router
application had a runtime of 1.37 seconds with 10,000 MPI
processes executed on 417 hosts with 89% time spent in
communication.

4 SIMULATION ENVIRONMENT

In this section, we describe the interconnect simulation
support in CODES developed to drive the dragonfly and
torus network models with synthetic traffic patterns as
well as post mortem communication traces from scientific
applications. For post mortem traces, we describe how the
CODES network models and trace-based workloads interact
with each other by using an intermediate “MPI simulation
layer” that simulates the semantics of MPI network calls.

4.1 CODES network workloads component

The CODES network workload component is an abstraction
layer that allows MPI trace generators/readers such as SST
DUMPI [29] to drive CODES network models with real
application traces through a consistent network workload
API. It also provides the ability to drive network models
with synthetic traffic patterns as described in Section 3.1.
Our network workload model follows the design principles
established in the CODES I/O workload component [32]

and applies them to the HPC network traces. We have used
network traces described in Section 3.2 to drive the network
models via the CODES workload abstraction layer.

4.2 CODES MPI Simulation Layer
In order to accurately simulate the MPI operations coming
from scientific applications, the simulation needs to main-
tain the causality among these operations. The job of the
MPI simulation layer is to take the operations from the
CODES workload layer and simulate the MPI tasks on top of
the network models while maintaining the correct causality
order. For example, simulating a MPI WaitAll operation
inhibits sending further messages until a set of messages
complete.

CODES	  	  
model-‐net	  
component	  

CODES	  	  
Network	  workload	  

component	  

MPI	  Simula;on	  layer:	  
(simulated	  opera;ons:	  
Send/	  Receive/	  Wait)	  

Feeds	  MPI	  opera-ons	  
Send	  /Receive	  
Network	  messages	  

Postmortem	  
network	  traces	  

Synthe;c	  traffic	  
paGerns	  

Fig. 2. Interaction of network workload component and model-net com-
ponent.

Figure 2 shows the interaction of the network models,
the network workloads layer and the simulated MPI layer.
For trace-based simulations, the MPI operations simulated
are MPI sends and receives (blocking and nonblocking) and
MPI waits (MPI WaitAll and MPI Wait). The MPI send
operations are passed onto the model-net layer described
in Section 4.3, so that the MPI message can be transported
over the network. In order to accurately simulate MPI
send, receive, and wait operations, the posted receives are
matched with the arrived messages. In the case of block-
ing send/receive, no further operation is issued until the
blocking send or receive is completed. To simulate MPI wait
operations, the simulation keeps track of the request IDs
of the MPI send/receive operations that have been com-
pleted so far. When a MPI Wait or MPI WaitAll operation
is posted, the list of request IDs in the wait operation is
matched against the completed request IDs tracked by the
simulation. If all request IDs match, the simulation processes
the next MPI operation. If some of the request IDs have
not completed so far, the simulation does not proceed with
the next MPI operation until it gets notification that all
request IDs listed in the wait operations have completed.
MPI Wait any and Wait some operations are currently not
being simulated as they will cause a mismatch of requests
completed by the simulation and the trace.

For synthetic network traffic, MPI messages generated
according to a specific size, interarrival time, and destination
distribution are handed directly to the network models.
We can also simulate collective communication operations
by using a data-driven approach with both the torus and
dragonfly network models, although that is beyond the
scope of this paper [13].

4.3 CODES network models
We use a simulation abstraction layer in CODES, “model-
net”, that allows multiple network models (e.g., torus and
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Fig. 3. Event flow in the dragonfly network model (credit flow control
shown at dragonfly nodes only).

dragonfly) to be used interchangeably as the underlying
network of higher-level storage and application models.
The model-net framework in CODES provides a consistent
networking API through which one can easily switch mul-
tiple network models while making minimal changes to the
higher-level models. The model-net framework also unifies
common functionality across network models, such as map-
ping the simulated network entities to the MPI processes
executing the parallel discrete-event simulation.

In our dragonfly and torus network models, we have
implemented the following features that are common in a
typical HPC network:

(i) To regulate traffic on the network, the network models
use a flow control methodology based on a credit-based
flow control scheme in which the upstream node/router
keeps a count of free buffer slots in the virtual channels
(VCs) [33] of the downstream nodes/routers [2], [11].

(ii) We model an input-queued virtual channel router
for the networks. The router has input and output ports,
where each port supports up to v virtual channels (VCs) [33]
and each VC has a specific buffer capacity. We assume
that the router can send/receive packets in parallel as long
as the packets are not being sent/received over the same
router link. The dragonfly network uses dedicated high-
radix routers where a router has k input ports and k output
ports, where k is the radix of the router. For the torus net-
work, a router is embedded on the compute node, with each
router having 2n ports where n is the torus dimensionality.

4.3.1 Dragonfly network model

The dragonfly network model in CODES supports the net-
work configuration as suggested by Kim et al. [11]. Each
router port has multiple virtual channels in order to pre-
vent deadlocks. Our dragonfly model supports minimal,
randomized nonminimal (Valiant’s algorithm) and adaptive
routing algorithms. The randomized nonminimal routing
randomly selects a global channel to which packets are di-
verted for load balancing, as suggested in [11]. The adaptive
routing algorithm checks the queue lengths of the minimal

and non-minimal ports to select the one having less conges-
tion [18]. With minimal routing, our model uses two virtual
channels per router to prevent deadlocks. With nonminimal
and adaptive routing, three virtual channels per router are
used for to prevent deadlock.

Our dragonfly network model comprises three LP types:
a dragonfly node LP, a router LP, and a model-net LP.
At the model-net abstraction layer on top of the network
models is a model-net LP type through which MPI messages
are injected by the MPI Simulation layer described in Sec-
tion 4.2. These messages are scheduled on the underlying
network (e.g., torus or dragonfly) in the form of network
packets. Figure 3 shows the event flow in the dragonfly
network model. The dragonfly node LP receives the packets
from the model-net LP and breaks the packet into flits
that are communicated to the dragonfly router LPs. The
dragonfly router LPs receive the flits and determine the next
router/dragonfly node LP for the flits based on the routing
algorithm (minimal, nonminimal, or adaptive routing). All
dragonfly virtual channels have a certain buffer capacity
in flits. Before injecting flits over the network or passing
them over to another channel, the sender dragonfly LP
checks for available buffer space on the virtual channel. If
buffer space is not available for the next channel, the flit
is placed in a pending queue until a credit arrives for that
channel. Based on the routing algorithm and destination,
the flits may traverse multiple routers before arriving at the
destination dragonfly node LP. Once all flits of a packet
arrive at the destination node LP, they are forwarded to
the receiving model-net LP. When using nonminimal or
adaptive routing, each flit is forwarded to a random global
channel; as a result, the flits may arrive out of order at the
receiving destination node LP. Therefore, we keep a count of
the flits arriving at the destination dragonfly node LP and
once all flits of a message arrive, an event is invoked at the
corresponding model-net LP, which notifies the higher level
MPI simulation layer about message arrival.

4.3.2 Torus network model
The CODES torus model closely follows the design features
and configuration parameters of the torus networks of the
Blue Gene (BG) series of supercomputers. Hence, our model
uses realistic design parameters of a torus network, and we
can validate our simulation results against the existing Blue
Gene torus architecture. Similar to the Blue Gene architec-
ture, our torus model uses a bubble escape virtual channel
to prevent deadlocks [2]. Following the specifications of the
BG/Q 5D torus network, the CODES torus models have
packets with a maximum size of 512 bytes, in which each
packet is broken into flits of 32 bytes for transportation over
the network [20]. Our torus network model uses dimension-
order routing to route packets. In this form of routing, the
radix-k digits of the destination are used to direct network
packets, one dimension at a time [34].

The torus network model has a two LP types, a model-
net LP and a torus node LP. The MPI messages are passed
on to the model-net LP by the MPI simulation layer. These
messages are scheduled on the underlying torus node LP in
the form of network packets, which are then further broken
into flits. Each torus node LP is connected to its neighbors
via channels having a fixed buffer capacity. Similar to the
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dragonfly node LP, the torus network model uses a credit-
based flow control to regulate network traffic. Whenever a
flit arrives at the torus network node, a hop delay based
on the router speed and port bandwidth is added in order
to simulate the processing time of the flit. Once all flits
of a packet arrive at the destination torus node LP, they
are forwarded to the receiving model-net layer LP, which
notifies the higher level MPI simulation layer about message
arrival.

5 VALIDATION OF NETWORK MODELS

To validate the accuracy of the simulation, one can compare
the simulation measurements either with a real architecture
or with another validated simulation framework. For the
CODES torus model, we validated against real Blue Gene/P
and Q architectures. For the CODES dragonfly network
model, we validated against the serial time-stepped sim-
ulation framework booksim. that was used to validate the
dragonfly topology proposal [25], [35]. One can argue that
dragonfly model can also be validated against real hardware
such as Cray XC30. However, Cray XC30’s dragonfly topol-
ogy layout does not follow Dally’s a=2p=2h configuration
for load-balancing traffic [12].

5.1 Dragonfly network model validation
We verified that the dragonfly network model agrees with
the booksim-1.0 version under a variety of packet arrival
rates, routing algorithms, and synthetic traffic patterns. We
present here simulation results for the dragonfly model
network latency of ROSS and booksim with 1,024 simulated
nodes and 264 routers, using configuration p = h = 4
and a = 8. The booksim’s dragonfly topology uses virtual
channels [33] to avoid routing deadlock. Each VC maintains
a buffer state that has a depth in packet flits. Similar to the
CODES dragonfly model, the booksim dragonfly model also
uses credit-based flow control. Our previous work provides
further information about the specific routing algorithms
and configuration parameters used for validation [25].

To make our dragonfly model consistent with the booksim
dragonfly model, we make two assumptions in our model
that comply with booksim. First, all packets encounter a fixed
delay when being transmitted over global or local channels.
For both simulators, the latency is set to 1, 10, and 100
cycles for node channels, local (intragroup) channels, and
global (intergroup) channels, respectively. Second, single
flit packets are used to avoid routing complications such
as those associated with virtual cut through or wormhole
routing [11], [12].

Figure 4 compares the communication latency reported
by the two simulators using minimal and adaptive routings
with uniform random (UR) traffic having varying traffic
loads. With minimal routing, our dragonfly model has an
average of 4.2% and a maximum of 7% difference from
booksim results. The adaptive routing resembles the behavior
of minimal routing under UR traffic. For the adaptive rout-
ing configuration, our dragonfly model reports an average
of 3.0% and a maximum of 7.8% difference from booksim
results.

In the worst-case (WC) traffic, all packets from one group
are sent to the next group over the single global channel

connecting the two groups. This produces high latency with
minimal routing as congestion builds on the single global
channel connecting the two groups. The traffic pattern can
be load balanced by using either randomized nonminimal or
adaptive routing. Nonminimal routing gives slightly under
50% throughput with the worst-case traffic pattern [11], [17].
Figure 5 reports communication latency under worst-case
traffic with minimal and adaptive routing. As the load starts
increasing, both simulators report a high latency with mini-
mal routing under worst-case traffic. With adaptive routing,
both simulators report a better latency than with minimal
routing, because adaptive routing senses congestion on the
channels and opts for the nonminimal route [11].

Our model results are close to the observed booksim re-
sults for the minimal and adaptive routing algorithm using
both synthetic communication patterns explored by Kim et
al. [11], [12]. We believe the small differences lie in the way
we model the router architecture. Specifically, booksim uses
an internal speedup for routers by accelerating the router’s
cycle counter. We approximated the internal speedup of
booksim by adjusting the router’s internal delays accordingly.
Additionally, the simulators use different random number
generators.

5.2 Torus network model validation

We validated the accuracy of the CODES torus network
model with empirical measurements from the Blue Gene
architecture. We compared the latency measurements from
our CODES torus model with the mpptest benchmark
on the Blue Gene/P and Blue Gene/Q architectures [36].
The mpptest benchmark measures the performance of MPI
message-passing routines with many participating MPI pro-
cesses, and it can isolate sudden changes in system perfor-
mance by varying the message size. We used the mpptest
bisection test, in which each MPI process communicates
with exactly one other process such that half of the processes
in the communicator are communicating with the other half.
One can configure the distance between the MPI processes
such that two processes communicating with each other
can exchange MPI messages that traverse a fixed number
of hops. This strategy also helps measure the bisection
bandwidth of a network where packets traversing through
a fixed number of hops cross the mid-point of a network.

We measured the MPI performance on Argonne’s BG/P
system Intrepid and RPI Computational Center for Inno-
vation (CCI) BG/Q AMOS system using mpptest. The
mpptest performance benchmark was executed on 512
compute nodes on the Argonne Intrepid BG/P and 1,024
compute nodes on the CCI BG/Q using bisection traffic
pattern with 1 MPI rank per compute node. We used 1
MPI rank per compute node since we were interested in
observing the network behavior, not how the nodes inter-
nally manage the network traffic. The MPI eager protocol,
which uses deterministic routing, was used to measure MPI
performance on the BG systems [37]. The torus configura-
tion on the BG/P is 8 x 8 x 8 (1 mid-plane) and on the
BG/Q is 8 x 4 x 4 x 4 x 2 (1 rack). The channel bandwidth
of the ROSS torus model was configured according to the
BG systems: 2 GiB/s (1.8 GiB/s available to user) per
torus link on BG/Q and 425 MB/s (374 MB/s available to
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Fig. 4. Average network latency with minimal routing uniform random traffic (left) and adaptive routing uniform random traffic (right).
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Fig. 5. Average network latency with minimal routing, worst-case traffic (left), and adaptive routing worst-case traffic (right).
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user) per torus link on BG/P. We ran our torus network
simulator in the following four configurations simulating
an MPI job with one MPI rank per node: (1) 512-node (1
mid-plane) BG/P configuration with messages traversing 8
hops between the source and destination; (2) 1,024-node (1
rack) BG/Q configuration with messages traversing exactly
8 hops between source and destination; (3) 512-node (1
mid-plane) BG/P configuration with messages traversing
exactly 1 hop between source and destination nodes; and
(4) 1,024-node (1 rack) BG/Q communication with messages
traversing 11 hops, the maximum number of hops a message
can travel on 1 rack. The number of virtual channels was set
to 1 in the torus model, and dimension-order routing was
used.

Figure 6 presents a latency comparison of the mpptest
benchmark on a BG/P midplane and a BG/Q rack vs. the
CODES 3D and 5D torus models with 512 and 1,024 nodes,
respectively. The distance between the communicating MPI
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processes is 8 hops for both mpptest and the CODES
torus models (configurations 1 and 2). One can see close
latency agreement between the MPI performance prediction
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Fig. 9. Average hops traversed on dragonfly network for a 10,000 MPI
ranks Crystal Router trace (top), 13K AMG trace (middle), and 110K
Multigrid trace (bottom).

of the CODES torus model and the mpptest benchmark for
message sizes ranging from 4 bytes to 130 kilobytes.

Figure 7 provides a latency comparison of the CODES
3D torus model and mpptest performance benchmark on
the Argonne BG/P Intrepid for 512 compute nodes with
nearest-neighbor traffic (configuration 3). The distance be-
tween the communicating MPI processes is 1 hop for both
mpptest and CODES torus models.

Figure 8 presents a latency comparison of the CODES 5D
torus model with the mpptest performance benchmark on
BG/Q using furthest- node communications (configuration
4). The distance between communicating MPI processes is
11 intermediate hops on BG/Q, which is the maximum
number of hops that an MPI message can traverse on a
1,024-node torus configuration.

From these statistics, one can see close latency agreement
between the MPI performance prediction of the CODES
torus model and the mpptest performance benchmark for
message sizes ranging between 4 bytes and 130 kilobytes.

6 NETWORK PERFORMANCE EVALUATION

In this section, we present two case studies of how the trace-
based communication capability can be used to explore
the design space of torus and dragonfly network models
for representative application workloads. As described in
Section 3.2, we use network traces from a Geometric Multi-
grid application executed on 110K MPI processes, AMG
application with 13,824 MPI processes and Crystal Router
from Nek5000 with 10,000 MPI processes. For the dragonfly
network model, we explore the effect of using minimal,
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Fig. 10. Average packet latency on dragonfly network for a 10,000 MPI
ranks Crystal Router trace (top), 13K AMG trace (middle) and 110K
Multigrid trace (bottom).

nonminimal, and adaptive routing algorithms on the net-
work performance of these communication patterns. For
the torus network model, we examine the effect of varying
torus dimensionality on the performance of these communi-
cation patterns. For both network simulations, we measure
detailed statistics for each simulated MPI rank to study the
network performance (average packet latency, number of
hops traversed, link busy time, and communication time of
the applications). Link busy time is the total simulated time
that the buffers stay full for that particular link, which indi-
cates the degree of congestion over the link. Communication
time is the maximum simulated time that the simulated
MPI ranks spend in communication, including the time
to complete blocking MPI operations such as MPI Wait,
MPI WaitAll, MPI Send, and MPI Recvs. For both network
models, we have used a buffer depth of 8 KiB (16 KiB for
dragonfly global channels) and a packet size of 512 bytes.

All experiments were executed on up to 8 nodes of
Argonne’s leadership facility (ALCF’s) Cooley cluster and
RPI Computational Center for Innovation (CCI)’s RSA clus-
ter. ALCF cooley system has 126 compute nodes with each
node having 12, 2.4 GHz Intel Haswell processors [38]. The
system has a total of 47 Terabytes of RAM with each node
having 384GB RAM. CCI’s RSA cluster has a total of 34
nodes connected via 56 Gb InfiniBand network. Each node
has two four-core 3.3 GHz Intel Xeon processors and 256 GB
of system memory [39].

6.1 Dragonfly network model
We use the dragonfly network model to study the impact
of minimal, randomized nonminimal, and adaptive routing
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Fig. 11. Busy time of terminal-router links for a 10,000 MPI ranks Crystal
Router trace (top), 13K AMG trace (middle) and 110K Multigrid trace
(bottom).

algorithms on the network performance of the AMG, Multi-
grid and Crystal Router application traces. The dragonfly
bandwidth configuration in our experiments is 5.25 GiB/s
for local and terminal-router ports, 4.7 GiB/s for global
ports, close to Edison, the Cray XC30 system [16]. Figure 9
shows the average number of hops traversed per rank for
the application traces with different routing algorithms. Fig-
ure 10 shows the average packet latency over the dragonfly
network with the application traces using different routing
algorithms. Figure 11 shows the busy time of the terminal
to router links of the dragonfly network with different
routing algorithms. One can see that even though minimal
routing traverses the least number of hops as compared with
randomized nonminimal and adaptive, the average packet
latency and link busy times are lower for adaptive and non-
minimal routing algorithms. In all three cases, minimal rout-
ing has a high packet latency and busy times. The reason is
that the performance of minimal routing depends largely
on the traffic pattern. With load-balanced traffic patterns
that involved extensive nonlocal communication, minimal
routing tends to give better performance than other form
of routings do. However, nearest-neighbor traffic patterns
can cause extensive communication between groups with
minimal routing because it sends all traffic over the same
minimally connected route. Among the three application’s
traffic patterns, AMG has a 3D nearest-neighbor communi-
cation pattern whereas Multigrid and Crystal Router also
involve some degree of neighborhood communications as
opposed to nonlocal communication. When communication
is with a closed subset or neighboring group, the single
channel between any two groups leads to congestion with
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Fig. 14. Busy time of local (left) and global (right) links of the router in
dragonfly model for a 110,592 MPI ranks Multigrid trace.

minimal routing. Randomized nonminimal routing balances
load over the local and global channels by diverting flits to
a random intermediate group, which distributes the traffic
over the underutilized channels and reduces congestion. As
defined in Section 4.3.1, adaptive routing selects a mini-
mal or nonminimal traffic route depending on the queue
length for minimal and nonminimal ports. In all these cases,
adaptive routing mimics nonminimal routing as it senses
congestion over the minimal route. Therefore, it takes the
nonminimal path for the majority of the packets.

Figure 12 shows the maximum time taken by a simulated
MPI rank over the dragonfly network with all three rout-
ing algorithms and application traces. One can see again
that nonminimal routing yields a lower communication
time than minimal routing. Adaptive routing has a slight
overhead in this case because it uses a minimal path for
the packets until the channels get congested and it senses
congestion over the network. Once it finds congestion over
the channels, it starts sending packets nonminimally. These
experiments demonstrate that the choice of routing algo-
rithms can have a significant impact on the application
performance. Such simulation experiments are an example
of how one can choose the appropriate routing algorithm
specific to a particular application. One can also use such
experiments to explore additional routing options in the
dragonfly network such as piggyback routing and progres-
sive adaptive routing [18].

Using our network simulations, we can also capture
the statistics on individual network links. With dragonfly
networks, some of the local and global links can become
hotspots and congest the entire network. Figure 14 shows
the cumulative distribution function of the busy times of
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Fig. 15. Average packet latency on torus network for a 10,000 MPI ranks
Crystal Router trace, 13K AMG trace and 110K Multigrid trace.

the local and global channels of the router for the three
routing algorithms with the 110K Multigrid application
trace. Figure 14 left shows the busy times of local channels
of a router whereas the right graph shows the busy times of
global channels of a router for a 110K MPI process Multigrid
trace. One can see that with minimal routing, roughly 20%
of local channels get their buffers full for a high duration
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Fig. 16. Average hops traversed on torus network for a 10,000 MPI ranks
Crystal Router trace, 13K AMG trace and 110K Multigrid trace.

of simulated time. In case of nonminimal and adaptive
routings, 34% and 39% of the local channels get their buffers
full (respectively) but for a relatively shorter duration of
simulated time. The busy time of global channels is also
higher for minimal routing than adaptive and nonminimal
routings. This demonstrates the fact that with minimal
routing, a selected group of local and global channels are
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excessively congested whereas several other routes remain
unutilized. Nonminimal and adaptive routings, on the other
hand, make use of a broader group of local and global
channels without introducing excessive load over the same
group of channels. This experiment is an example of how
one can use simulation to identify network hotspots with
different application traces and routing algorithms.

6.2 Torus network model
Dimensionality and link bandwidth are the two key proper-
ties of a torus network. In this section, we explore the effect
of dimensionality and link bandwidth of a torus network on
the application performance. We choose four different torus
dimensions: 3D, 5D, 7D, and 9D, with each node having
a fixed bandwidth of 20 GB/s. The link bandwidth varies
with torus dimension where each node has a fixed aggregate
bandwidth for all links. For a 3D torus, the link bandwidth
is 3.33 GB/s; for a 5D torus, the link bandwidth is 2.0 GB/s;
for a 7D torus, the link bandwidth is 1.42 GB/s; and for
a 9D torus, the link bandwidth is 1.11 GB/s. Figure 15
shows the average packet latency, and Figure 16 shows the
average number of hops traversed on a 3D, 5D, 7D, and 9D
torus networks with Crystal Router, AMG and Multigrid
application traces. The first case of Crystal Router involves
a many-to-many communication pattern, and it involves
intense data transfers between a selected number of ranks
(usually 5). For this reason, we see the 5D torus giving the
lowest average latency, because the communication pattern
aligns well with the network and there is sufficient link
bandwidth (2 GB/s) available. Even though the 7D and 9D
torus networks traverse relatively fewer hops than does the
5D torus, they have a lower link bandwidth that yields a
higher packet latency.

The AMG traffic pattern involves 3D nearest-neighbor
communication. For this reason, we see a 3D torus network
giving the lowest packet latency and traversing the fewest
number of hops. The packet latency for 5D, 7D, and 9D torus
networks is higher than for the 3D torus in this case be-
cause higher-dimensionality tori have lower bandwidth per
link. Additionally, the mapping of the 3D nearest-neighbor
pattern is not well aligned with higher torus dimensions,
leading to a higher number of hops being traversed. We
note that the dimension length and symmetry of the torus
network play a key role in determining the overall network
performance. In the case of AMG, our experiments show
that a fully symmetric 3D torus 24x24x24 gives 4.6x better
packet latency than an asymmetric torus 36x24x16 (not
shown in the graphs).

The Multigrid traffic pattern involves neighbor commu-
nications, but in this case the neighborhood of a process is
larger than with AMG. In a sense, Multigrid communica-
tions are many-to-many with a relatively smaller amount of
data transferred between ranks (2–3 MB). For this reason,
we see higher dimensionality tori (7D and 9D) traversing
the minimum number of hops in this case. The average
packet latency is also lowest in the 7D torus. The 3D torus
has a poor performance in this case because the process
neighborhood is larger and packets have to traverse a large
number of hops.

Figure 13 shows the maximum communication time of
the three application traces using different torus dimen-

sions. With Crystal Router, the 5D torus network gives a
relatively better performance than the others do. For the
AMG application trace, the 3D torus has the lowest commu-
nication time relative to other torus dimensions. The 7D and
5D tori have a lower communication time than the others do
in the case of a Multigrid application trace. The take-away
message of these experiments is that the torus dimensional-
ity and link bandwidth can have a significant impact on the
overall application communication time. Such simulations
can be used to tune the application performance according
to the underlying torus network’s dimension lengths and
bandwidth configurations.

7 SIMULATION PERFORMANCE

To test the performance of the simulation itself, we recorded
the simulation runtime to execute each of these large-scale
traces on the torus and dragonfly network models. All
simulations were executed on Argonne’s Cooley cluster and
RPI’s RSA cluster on up to 64 cores (8 nodes). By recording
the simulation runtime, we wanted to ensure that we are
able to execute these large-scale simulations in a reasonable
amount of time. Figure 17 shows the simulation runtime
of the three application traces on the network models. For
both the torus and dragonfly network models, we can see
that the Crystal Router application trace consumes the most
time. The reason is that the traffic pattern of Crystal Router
transfers a substantial amount of data among the MPI ranks.
In the case of the 10,000 MPI ranks trace, Crystal Router
transfers a total of 2 TiB of data, which translates into large
event queues throughout the simulation. Additionally, Crys-
tal Router involves frequent MPI WaitAll operations after
every few sends or receive operations. This frequent syn-
chronization leads to a large number of simulation rollbacks
with the ROSS optimistic mode because one out-of-order
event can cause a chain of rollbacks of dependent events.
On the other hand, the 110K node Multigrid application
trace takes an average of 80 minutes to execute on 64 cores
of the RSA and Cooley clusters. The AMG application trace
is executed on only 8 cores or 1 node of the cluster, but
it still takes an average of 30 minutes to execute on the
torus network and an average of 2 hours to execute on the
dragonfly network. With the help of this experiment, we
observe that CODES network simulations can execute on a
modest number of compute cores in a reasonable amount of
time.

To compare the performance of optimistic discrete-event
simulations with traditional serial time-stepped simula-
tions, we present a performance comparison of the CODES
discrete-event dragonfly network model with the book-
sim simulation framework [35]. Since booksim is a single-
threaded simulator, we configured CODES in its serial mode
to keep the measurements comparable. By default, booksim
has three warmup and three measurement phases each
having 10,000 cycles. Since we have a single simulation
phase in CODES, we configured the simulation end time
to have a warmup phase of 30,000 cycles followed by a
measurement phase of 30,000 cycles. In this way, we get
the same overall simulation end time for both simulators.
Both simulators were configured to continuously generate
packets after a fixed time interval. The tests were carried
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Fig. 17. Simulation runtime for dragonfly (left) and torus (right) network models on 16 to 64 cores of ALCF Cooley and CCI RSA clusters.
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Fig. 18. Simulation runtime (cycles) of CODES vs. booksim for 1K nodes, 264 routers with uniform random traffic using minimal routing (left) and
adaptive routing (right)

out on a system with dual 6-core Intel X5650s running
at 2.67 GHz. The machine has an available memory of
48 GiB and 12 MB of L3 cache that is shared among all
threads/cores. Figure 18 shows the performance of single-
threaded ROSS and booksim with both UGAL and MIN
routing. The CODES dragonfly attains a minimum of 5x
up to a maximum of 11x speedup over booksim in serial
mode with minimal routing and a minimum of 5.3x speedup
and a maximum of 12.38x speedup with adaptive routing.
These results demonstrate the performance benefits of using
a discrete-event scheduling approach over traditional time-
stepped series simulations.

Additionally, previous work [40] compares the perfor-
mance of CODES with state-of-the-art simulation frame-
works like SST and BigSim in sequential mode. The per-
formance results demonstrate that CODES torus network
model is an order of magnitude faster than the BigSim torus
model. We note that the execution time of CODES torus
model is 50% lower than SST torus model, even in sequential
mode. As noted in [40], SST does not support packet-level
fidelity for its network models in parallel builds.

8 RELATED WORK

The BigSim simulator is a parallel discrete-event simulator
that has been used to model HPC system architectures, such
as Blue Gene and PERCS [6], [41]. It has two modes of
execution: online and post mortem. The online mode runs
the parallel simulation while executing real applications
whereas the post mortem mode simulation uses network
traces to feed into the parallel discrete-event simulation.
It has been used to explore various intelligent topology-
aware mappings and routing techniques to avoid hot spots
due to multiple levels in the PERCS topology. The BigSim
simulator predicts the application performance for a future

machine by obtaining traces through emulation on exist-
ing architectures. The simulation for future machines is
then driven by these network traces. The PERCS network
topology is simulated for up to 307,200 cores at the packet-
level detail. However, BigSim is based on the POSE PDES
engine that imposes high overheads and limits its scalability.
A performance study [40] demonstrates that BigSim is an
order of magnitude slower than the CODES network models
in sequential execution mode.

Dally and Kim use booksim, a serial, time-stepped series
simulation framework that can support multiple network
topologies including torus, dragonfly, and fat tree [11], [12].
Booksim was used to simulate the dragonfly topology on a
scale of 1,024 compute nodes and 264 routers with synthetic
traffic patterns. The simulation was used to explore the rout-
ing choices in the design of dragonfly networks—minimal,
nonminimal, and adaptive routing—for various HPC traffic
patterns including nearest-group (worst-case) and uniform
random synthetic traffic. A modified version of booksim was
also used to simulate the SlimFly network topology [42], [43]
that uses the Moore bound concept to get a small network
diameter and large global bandwidth. Simulation results for
network sizes of up to 10K nodes are presented by using
booksim’s minimal, valiant, and adaptive routing.

SimGrid [44] uses a single-node online simulation of MPI
applications in which part of the application is executed
as a simulation component. To achieve online simulation
scalability and speedup, SMPI simulations use analytical
models to account for network contention. Given the RAM
footprint reduction techniques with online simulation, the
performance of the simulation is faster than the simulated
time.

Dimemas, an MPI performance analysis tool, is used
with a detailed Omnest-based network simulator, Venus,
to get trace-driven simulation [3]. Birke et al. use Venus
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with the Dimemas and Paraver tools to study the impact
of an HPC communication network using real application
traces [45]. Similar to our model-net layer in CODES, Venus
breaks messages into packets, injects packets into the net-
work, and reassembles packets at the destination. When a
complete simulated message arrives at the destination, its
information is returned to Dimemas. The network topolo-
gies focused on in this work are the mesh, the hierarchical
full mesh, and the fat tree. Initial results that show perfor-
mance improvement on up to 256 LPs are also shown on the
Blue Gene platform.

An extreme-scale simulator xSim is presented in [46],
[47] that runs the applications on a lightweight paral-
lel discrete-event simulation of concurrent tasks (threads).
XSim collects the performance data from the application in
the form of processing and network models. The network
model also has a virtual message-passing layer through
which the MPI application can be executed on a smaller
HPC system and its performance parameters can be evalu-
ated on a extreme-scale HPC system. As part of performance
tests, the entire NAS parallel benchmark suite up to 16K
nodes is executed in the simulated HPC environment.

The Structural Simulation Toolkit (SST) [48] uses a
component-based parallel discrete-event model built on top
of MPI. SST uses a conservative distance-based optimiza-
tion to model a variety of hardware components including
processors, memory, and networks under different accuracy
and details. The network topologies currently supported are
two- and three-dimensional meshes, binary tree, fat tree,
hypercubes, and flattened 2D butterfly. Detailed SST models
run at a small-scale of few simulated nodes. SST macro is
a recent addition that enables running DUMPI traces at a
large-scale using coarse-grained simulation approach.

In summary, while a number of simulations accurately
model HPC network topologies, few of these frameworks
have been shown to execute at the size of extreme-scale
networks. Most simulation frameworks that can execute
network simulations at an extreme scale and support trace-
based simulations tend to rely on simplistic analytical net-
work models instead of going to packet-level detail. We
do note that the BigSim model has been shown to scale
to modeling 300K cores, but the PERCS topology layout is
different from the torus or dragonfly networks. Addition-
ally, the BigSim simulation framework has a slow execution
time [40]. Moreover, the majority of the cited discrete-event
simulation frameworks use conservative event scheduling,
which leads to limited scalability and slower simulation.

9 CONCLUSION

With future HPC systems having up to 100,000 nodes and
an interconnect bandwidth of up to a terabyte per second,
considerable research is in progress to explore network
topologies that can yield high performance for a broad range
of scientific applications and network communication pat-
terns. Our work addresses the challenges faced by today’s
network simulation frameworks in exploring the network
design space. First, our research relies on detailed flit-level
models for network performance prediction instead of sim-
plified analytical models. Second, our network simulations
are highly scalable and efficient, thanks to the optimistic

event scheduling capability of ROSS. Third, we use a vari-
ety of network workloads, both synthetic and trace-based
network communication, instead of relying on a particular
form of workload.

To the best of our knowledge, this is the first work
to explore the largest application traces from the Design
Forward program on top of dragonfly and torus network
simulations at a flit-level detail in a reasonable amount
of time. We have provided examples of how one can in-
vestigate the implications of configuration parameters on
the behavior of these networks for large-scale application
communication patterns. With these network simulations,
not only can we see realistic network performance results,
but we also can instrument our CODES network models
to gain insight into detailed network statistics such as link
traffic and busy times in order to figure out why are we
seeing this network performance [26]. Overall, this work
demonstrates that network designers can use simulation to
explore design options with a variety of synthetic and real
HPC application network traces.
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simulator for performance prediction of extremely large parallel
machines,” in Proc. of 18th IEEE Int. Parallel and Distributed Process.
Symp., 2004, pp. 78–87.

[7] J. Cope et al., “CODES: Enabling co-design of multilayer exascale
storage architectures,” in Proc. of the Workshop on Emerging Super-
computing Technol., Nov. 2011.

[8] P. D. Barnes, C. D. Carothers, D. R. Jefferson, and J. M. LaPre,
“Warp speed: executing time warp on 1,966,080 cores,” in Proc.
of the 2013 ACM SIGSIM Conf. on Principles of Advanced Discrete
Simulation (PADS), May 2013, pp. 327–336.

[9] Argonne Leadership Computing Facility (ALCF), “Aurora,
Argonne’s next generation supercomputer.” [Online]. Available:
http://aurora.alcf.anl.gov(Accessed on: Apr. 27, 2015)

[10] Department of Energy, “Cori Cray XC at NERSC.” [On-
line]. Available: https://www.nersc.gov/users/computational-
systems/cori/

[11] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” ACM SIGARCH Comput. Ar-
chitecture News, vol. 36, no. 3, pp. 77–88, Jun. 2008.



IEEE TRANSACTIONS ON PARALLEL & DISTRIBUTED COMPUTING, VOL. X, NO. X, 2015 14

[12] J. Kim, W. Dally, S. Scott, and D. Abts, “Cost-efficient dragonfly
topology for large-scale systems,” Micro, IEEE, vol. 29, no. 1, pp.
33–40, Feb. 2009.

[13] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Using
massively parallel simulation for MPI collective communication
modeling in extreme-scale networks,” in Proc. of the 2014 Winter
Simulation Conf., 2014, pp. 3107–3118.

[14] Department of Energy, “Design Forward - Exascale Initiative.”
[Online]. Available: http://www.exascaleinitiative.org/design-
forward (Accessed on: Dec. 31, 2014)

[15] C. D. Carothers, D. Bauer, and S. Pearce, “ROSS: A high-
performance, low-memory, modular Time Warp system,” J. of
Parallel and Distributed Comput., vol. 62, no. 11, pp. 1648–1669, Nov.
2002.

[16] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray xc series
network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

[17] M. Garcı́a et al., “On-the-Fly Adaptive Routing in High-Radix
Hierarchical Networks,” in 41st Int. Conf. on Parallel Process. (ICPP),
2012.

[18] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott, “Over-
coming far-end congestion in large-scale networks,” in High Per-
formance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. IEEE, 2015, pp. 415–427.

[19] W. J. Dally and B. P. Towles, Principles and Practices of Interconnec-
tion Networks. Burlington, MA, USA: Morgan Kaufmann, 2004.

[20] D. Chen et al., “The IBM Blue Gene/Q interconnection network
and message unit,” in Int. Conf. for High Performance Comput.,
Networking, Storage and Anal. (SC), 2011, pp. 1–10.

[21] S. R. Alam et al., “Cray XT4: an early evaluation for petascale
scientific simulation,” in Proc. of the 2007 ACM/IEEE Conf. on
Supercomputing (SC), Nov. 2007, pp. 1–12.

[22] C. Vaughan, M. Rajan, R. Barrett, D. Doerfler, and K. Pedretti,
“Investigating the impact of the Cielo Cray XE6 architecture on
scientific application codes,” in IEEE Int. Symp. on Parallel and
Distributed Process. Workshops and Phd Forum (IPDPSW), May 2011,
pp. 1831–1837.

[23] F. Cappello, A. Guermouche, and M. Snir, “On communication
determinism in parallel HPC applications,” in Proc. of the 19th Int.
Conf. on Comput. Commun. and Networks (ICCCN), 2010, pp. 1–8.

[24] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth, and J. S. Vetter,
“Characterization of scientific workloads on systems with multi-
core processors,” in IEEE Int. Symp. on Workload Characterization,
2006, pp. 225–236.

[25] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns, “Mod-
eling a million-node dragonfly network using massively parallel
discrete-event simulation,” in High Performance Comput., Network-
ing, Storage and Anal. (SCC) SC Companion, 2012, pp. 366–376.

[26] M. Mubarak et al., “A case study in using massively parallel
simulation for extreme-scale torus network codesign,” in Proc. of
the 2nd ACM SIGSIM/PADS Conf. on Principles of Advanced Discrete
Simulation, 2014, pp. 27–38.

[27] D. Chen et al., “Looking under the hood of the IBM Blue Gene/Q
network,” in Int. Conf. on High Performance Comput., Networking,
Storage and Anal. (SC), 2012, pp. 69–79.

[28] Department of Energy, “Characterization of
the DOE Mini-apps.” [Online]. Available:
http://portal.nersc.gov/project/CAL/trace.htm (Accessed on:
Dec. 29, 2014)

[29] Sandia National Labs, “SST DUMPI trace library.” [Online].
Available: http://sst.sandia.gov/using dumpi.html (Accessed
on: Apr. 3, 2015)

[30] Co-design at Lawrence Livermore National Laboratory,
“Algebraic Multigrid Solver (AMG).” [Online]. Available:
https://codesign.llnl.gov/amg2013.php (Accessed on: Apr. 19,
2015)

[31] Department of Energy, “AMR Boxlib.” [Online]. Available:
https://ccse.lbl.gov/BoxLib/

[32] S. Snyder et al., “Techniques for Modeling Large-scale HPC I/O
workloads,” in High Performance Comput., Networking, Storage and
Anal. (SCC) SC Companion, 2015.

[33] W. J. Dally, “Virtual-channel flow control,” IEEE Trans. on Parallel
and Distributed Syst., vol. 3, no. 2, pp. 194–205, Mar. 1992.

[34] W. J. Dally and C. L. Seitz, “The torus routing chip,” Distributed
Comput., vol. 1, no. 4, pp. 187–196, Jan. 1986.

[35] N. Jiang, G. Michelogiannakis, D. Becker,
B. Towles, and W. J. Dally, “Booksim 2.0 user’s
guide.” [Online]. Available: https://nocs.stanford.edu/cgi-

bin/trac.cgi/wiki/Resources/BookSim (Accessed on: Oct. 24,
2014)

[36] W. Gropp and E. Lusk, “Reproducible measurements of MPI
performance characteristics,” in Proc. of the 6th Eur. PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Mach.
and Message Passing Interface, 1999, pp. 11–18.

[37] M. Gilge, “IBM System Blue Gene Solution: Blue
Gene/Q Application Development.” [Online]. Available:
http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf
(Accessed on: Jan. 20, 2015)

[38] “Argonne leadership facility (alcf) cooley, url =
https://www.alcf.anl.gov/user-guides/cooley, author=Argonne
National Laboratory,.”

[39] “Rpi rsa cluster, computational center for innovations, url
= https://secure.cci.rpi.edu/wiki/index.php/RSA Cluster, au-
thor=RPI CCI,.”

[40] B. Acun, N. Jain, A. Bhatele, M. Mubarak, C. D. Carothers, and
L. V. Kale, “Preliminary evaluation of a parallel trace replay
tool for hpc network simulations,” in Workshop on Parallel and
Distributed Agent-Based Simulations, 2015.

[41] A. Bhatele, N. Jain, W. Gropp, and L. V. Kale, “Avoiding hot-spots
on two-level direct networks,” in Int. Conf. for High Performance
Comput., Networking, Storage and Anal. (SC)., 2011, pp. 1–11.

[42] M. Besta and T. Hoefler, “Slim fly: A cost effective low-diameter
network topology,” in Proc. of the Int. Conf. for High Performance
Comput., Networking, Storage and Anal. (SC), 2014, pp. 348–359.

[43] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and
T. Hoefler, “Cost-effective diameter-two topologies: analysis and
evaluation,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2015, p. 36.

[44] P.-N. Clauss et al., “Single node on-line simulation of MPI applica-
tions with SMPI,” in Proc. of IEEE Int. Parallel & Distributed Process.
Symp. (IPDPS), 2011, pp. 664–675.

[45] R. Birke, G. Rodriguez, and C. Minkenberg, “Towards massively
parallel simulations of massively parallel high-performance com-
puting systems,” in Proc. of the 5th Int. ICST Conf. on Simulation
Tools and Techn., 2012, pp. 291–298.

[46] T. Naughton, C. Engelmann, G. Vallée, and S. Bohm, “Supporting
the development of resilient message passing applications using
simulation,” in Proc. of 22nd Euromicro Int. Conf. on Parallel, Dis-
tributed and Network-Based Process. (PDP), 2014, pp. 271–278.

[47] S. Bohm and C. Engelmann, “xSim: The extreme-scale simulator,”
in Int. Conf. on High Performance Comput. and Simulation (HPCS),
2011, pp. 280–286.

[48] A. F. Rodrigues et al., “The structural simulation toolkit,” ACM
SIGMETRICS Performance Evaluation Rev., vol. 38, no. 4, pp. 37–42,
Mar. 2011.

Misbah Mubarak is a postdoctoral researcher in the Mathematics and
Computer Science Division of Argonne National Laboratory. She re-
ceived her Ph.D. and M.S. from Rensselaer Polytechnic Institute in 2015
and 2011 respectively. She also has experience in developing multitier
enterprise applications at CERN, Switzerland, and Teradata corporation.
Christopher D. Carothers is a professor in the Computer Science
Department at Rensselaer Polytechnic Institute. He received his Ph.D.,
M.S., and B.S. from Georgia Institute of Technology in 1997, 1996, and
1991, respectively. He is also the director of Rensselaer’s supercom-
puting facility. His massively parallel discrete-event simulation system
ROSS has efficiently executed using nearly 2,000,000 processors on
the Sequoia IBM Blue Gene/Q supercomputer.
Robert B. Ross is a senior computer scientist in the Mathematics
and Computer Science Division of Argonne National Laboratory and
a senior fellow in the Northwestern-Argonne Institute for Science and
Engineering. He currently holds several leadership positions at Argonne
and in the U.S. DOE computing community, including serving as deputy
director of the Scientific Data Management, Analysis, and Visualization
Institute and as co-lead of the Data Management component of the DOE
Office of Science Exascale Computing activity.
Philip Carns is a principal software development specialist in the Math-
ematics and Computer Science Division of Argonne National Laboratory
and a fellow of the Northwestern-Argonne Institute of Science and
Engineering. He has served as the lead developer on notable projects
such as PVFS, Darshan, and BMI.

jbullock
Typewritten Text
The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").  Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.  The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

jbullock
Typewritten Text

jbullock
Typewritten Text




