

US-UK Phase 3 Task 1 Oxidation in Supercritical Fluids, NETL

Gordon R. Holcomb

US-UK Phase 3 Workshop
March 20-21, 2017
Pittsburgh, PA

Supercritical Steam

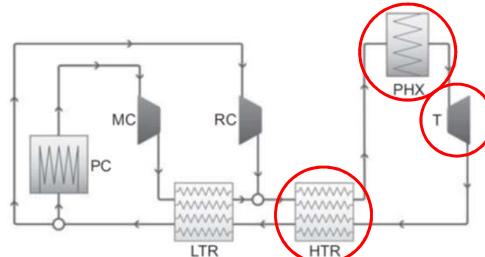
Steam conditions and net plant efficiencies for pulverized coal power plants

Nomenclature	Conditions	Net Plant Efficiency (HHV)
Subcritical	2400 psi/1050°F/1050°F (165 bar/566°C/566°C)	35%
Supercritical (SC)	3600 psi/1050°F/1075°F 248 bar/566°C/579°C	38%
Ultra-Supercritical (USC)	>3600 psi/1100°F/1150°F (>248 bar/593°C/621°C)	>42%
Advanced Ultra-Supercritical (A-USC)	4000-5000 psi/1300-1400°F (276-345 bar/704-760°C)	>45%

adapted from EPRI Report 1022770, 2011

Categories are materials related, largely due to creep strength

- USC: advanced ferritic & austenitic steels required
- A-USC: nickel-base superalloys required



sCO₂ Power Cycles – Indirect

• Recompression sCO₂ Brayton Cycle

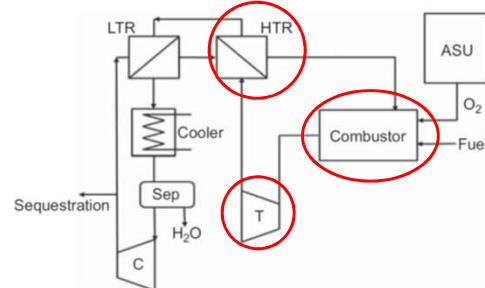
- Widely proposed for Concentrated Solar and Nuclear Energy due to their relatively narrow temperature range requirements
- The split recuperator allows a portion of the high pressure sCO₂ to bypass the LTR to balance its heat duty and improve efficiency
- For Fossil Energy applications, consideration must be given to use the significant thermal energy remaining in the combustion flue gas after passing through the PHX

High Temperature Components

T as high as 760°C
 P as high as 350 bar
 Essentially pure sCO₂
 Our tests at

- 720°C/245 bar
- 700°C/200 bar
- 700°C/1bar
- 99.999% pure sCO₂

Figure 12.3 Recompression cycle. HTR, high-temperature recuperator; LTR, low-temperature recuperator; MC, main compressor; PC, primary cooler; PHX, primary heat exchanger; RC, recycle compressor; T, turbine.


Weiland et al, 2017 3

sCO₂ Power Cycles – Direct

• Semi-open sCO₂ Brayton Cycle

- Oxycombustion using O₂ instead of air to burn fuel
- More akin to gas turbines (indirect cycles more akin to steam turbines)
- Higher turbine inlet temperatures and thus higher efficiencies
- High pressure sCO₂ output allows for CO₂ transport and sequestration
- Working fluid not pure CO₂, but contains other combustion products including H₂O

High Temperature Components

T as high as ~1250°C
 P as high as 350 bar
 Our tests at

- 750°C/1 bar
- CO₂/H₂O/O₂ Mixtures
- Future tests to include SO₂

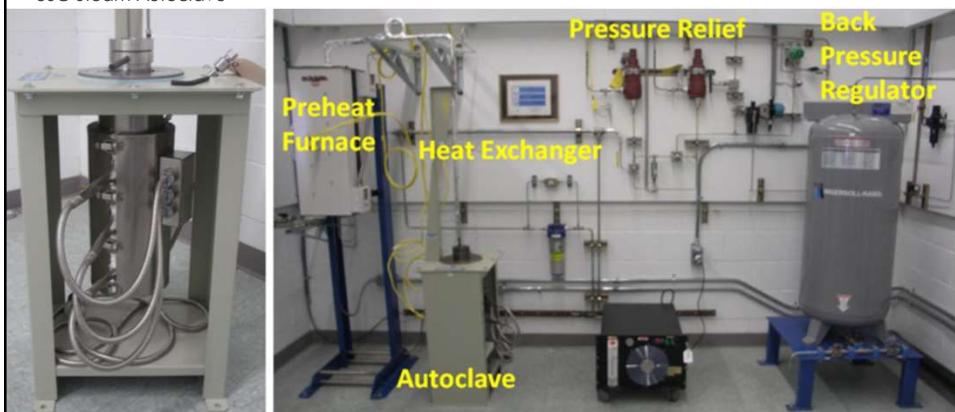
Figure 12.15 Direct-fired simple supercritical CO₂ Brayton cycle (Strakey et al., 2014). ASU, air separation unit; C, compressor; HTR, high-temperature recuperator; LTR, low-temperature recuperator; T, turbine.

Weiland et al, 2017 4

Experimental Exposures

500 h exposure increments

- **sH₂O**
 - 700°C/200 bar
 - Initiated more careful water purity practices
- **sCO₂**
 - 700°C/200 bar
 - 99.999% CO₂
 - Round Robin Activities (Oregon State University is lead organization)
- **aCO₂**
 - 700°C/1 bar
 - 99.999% CO₂, pO₂ monitored
- **DFCO₂**
 - 750°C for Ni-base alloys
 - Lower Temperature for Fe-base alloys
 - CO₂ + 4% H₂O + 1% O₂ (+1000 ppm SO₂) at 1 bar
 - CO₂ + H₂O at up to 250 bar (possible upgrade to include O₂)



5

Experimental Exposures

USC Steam Autoclave

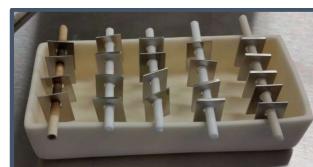
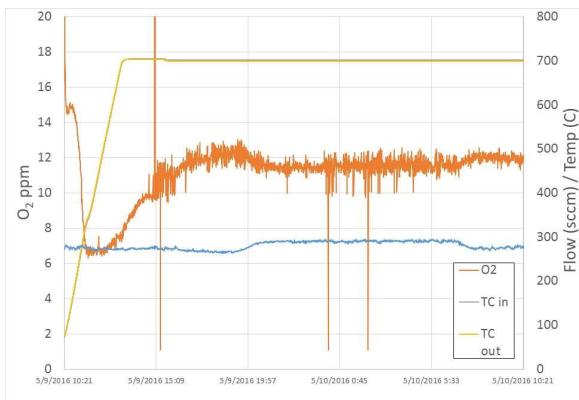
- Flow controlled with a high pressure pump
- Pressure controlled with a back pressure regulator
- ASME dual rated to 704°C/346 bar and 760°C/228 bar
- Autoclave body made of 230

6

Experimental Exposures

sCO₂ Autoclave

- Flow controlled with a high pressure pump
- Pressure controlled with a back pressure regulator
- ASME rated to 800°C/277 bar
- Autoclave body made of 230
- Capability to operate with up to 25% water
- Three zone furnace with set points adjusted for a flat temperature zone where samples are located

7

Experimental Exposures

aCO₂ Monitoring of pO₂

8

Experimental Exposures

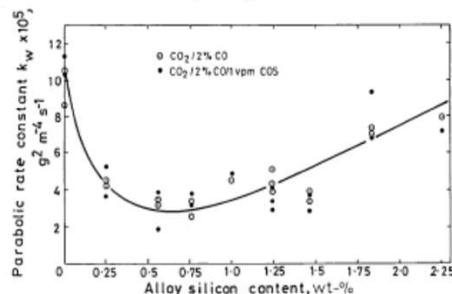
Direct Fired CO₂

- Mass flow controllers for CO₂ and O₂
- Syringe pump for H₂O
- Atmospheric pressure
- 750°C
- DF29
 - High water content case
 - 70% CO₂, 0.7% O₂, 29.4% H₂O
- Future tests, DF4
 - Natural gas fuel based
 - 95% CO₂, 1% O₂, 4% H₂O

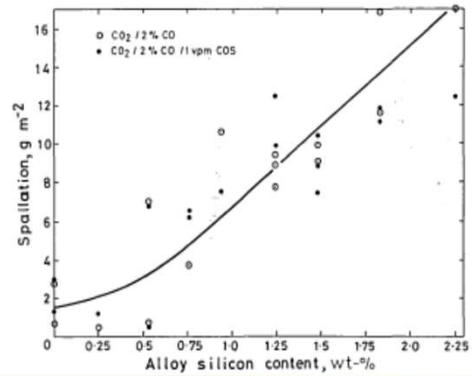
9

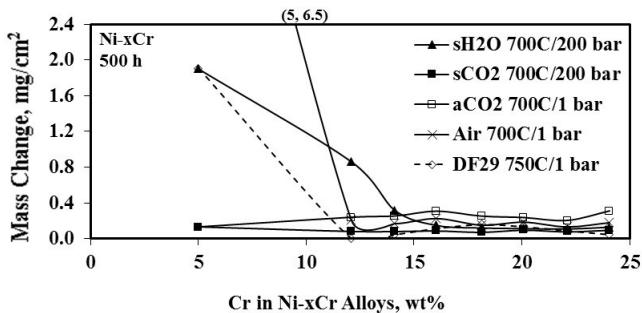
Alloys

- **Ni-base commercial alloys**
 - 625, 600, 740H, 230, 263, 282, 617, 120
- **Fe-base commercial alloys**
 - 304H, 316L, 800, 310S, E-Brite, T91
- **Ni-base model alloys**
 - Low Cr internal oxidation model alloys: Ni5Cr, Ni2.3Al4.6Cr
 - Function of Cr: Ni12Cr, Ni14Cr.....Ni24Cr
 - Function of Si: Ni22Cr with 0, 0.1, 0.3, 0.6, 0.9, 1.2, and 1.5Si
- **Fe-base model alloys**
 - Function of Si: Fe22Cr with 0, 0.1, 0.3, 0.6, 0.9, 1.2, and 1.5Si
 - Function of Si: Fe22Ni22Cr with 0, 0.1, 0.3, 0.6, 0.9, 1.2, and 1.5Si



10

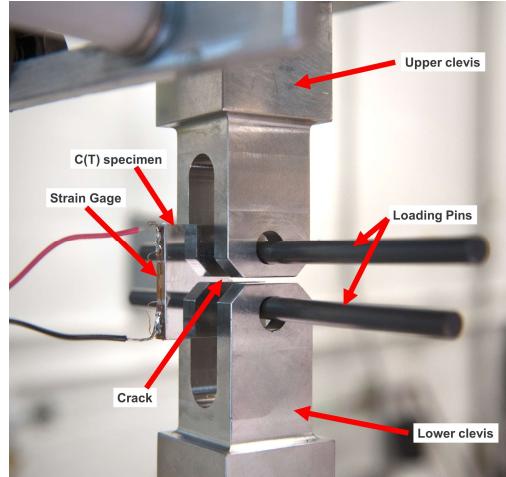

Why Si?


- Small alloy additions of Si can lead to the formation of an amorphous SiO_2 layer at the metal-oxide interface
- Besides enhancing chromia formation, SiO_2 can also act as a barrier to C diffusion (and limit carburization)
- Lobb, Sasse, and Evans 1989 showed benefits in CO_2 containing gases
 - k_p at a min at 0.5 to 1.0 wt% Si
 - Increase in spalling at above 0.6 wt% Si

2 Variation of parabolic rate constant k_p with alloy Si content for 20Cr-25Ni-Nb steel at 900°C

Results—Ni-xCr Alloys (5-24Cr)

Critical Cr level for chromia formation/stability (after 1000 h):


- Between 5-12 Cr in DF29 and Air
- Chromia scales maintained in pure CO_2
- Between 12-14 Cr in sH_2O

Fatigue Crack Growth—Experiment

- ASTM standard E647
- Typically use compact tension specimen C(T)
- Least amount of material to yield the greatest amount of information
- Utilize servo-hydraulic load frame for controlled cycle of sample
- Load control for precise control of waveform
- Higher frequency testing utilizes sine wave for stability
- Lower frequency testing utilizes triangular waveform for symmetric strain rates

13

Alloys and Samples

Alloy	Fe	Cr	Ni	Co	Mo	Si	Ti	Al	Mn	Cu	V	Nb	C	
347H	Bal	17.6	9.1	0.1	0.2	0.3			1.1	0.1	0.1	0.7	0.05	
*	282	0.2	19.4	Bal	10.1	8.7		2.2	1.4				0.06	
	625	3.4	22.1	Bal		8.9	0.1	0.2	0.1	0.1	0.2		3.3	0.05

Compact Tension Specimens
Nominally 22 x 23 x 3 mm

Ground surfaces to 600 grit

Triuplicate Specimens in each test

14

Fatigue Crack Growth—Results (H282)

- Tested the effect of prior exposure on threshold ΔK
 - Gas exposure at 730°C for 500 hours
 - Supercritical gas at 200 Bar
 - Ambient gas at 1 Bar
 - Loading at $R = 0.1, f = 40$ Hz, sinusoidal waveform
 - Apparent reduction in ΔK_{th} with high temperature gas exposure
 - Increase in threshold $\Delta a/\Delta N$ for CO₂ exposed samples
 - Repeatable effect
 - Multiple samples
 - Multiple labs
 - Speculate effect may be due to residual stress in samples
 - An additional test after exposure in a vacuum is underway

Saarimaki et al., Mat. Sci. Engr. A, 658 (2016) 463-471

15

Acknowledgement & Disclaimer

Acknowledgement

This project is conducted in support of DOE-FE Crosscutting Technology Research, Advanced Turbines, and Advanced Combustion Programs and is executed through NETL Research and Innovation Center's Advanced Alloy Development Field Work Proposal.

Disclaimer

This report was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.

16