
Modeling a Million-Node Slim Fly Network Using Parallel
Discrete-Event Simulation

Noah Wolfe, Christopher Carothers
Rensselaer Polytechnic Institute

110 8th St
Troy, NY

wolfen,chrisc@rpi.edu

Misbah Mubarak, Robert Ross,
Philip Carns

Argonne National Laboratory
9700 South Cass Avenue

Lemont, IL 60439
mmubarak,rross,carns@mcs.anl.gov

ABSTRACT
As supercomputers close in on exascale performance, the in-
creased number of processors and processing power trans-
lates to an increased demand on the underlying network
interconnect. The Slim Fly network topology, a new low-
diameter and low-latency interconnection network, is gain-
ing interest as one possible solution for next-generation su-
percomputing interconnect systems. In this paper, we present
a high-fidelity Slim Fly flit-level model leveraging the Rens-
selaer Optimistic Simulation System (ROSS) and Co-Design
of Exascale Storage (CODES) frameworks. We validate our
Slim Fly model with the Kathareios et al. Slim Fly model
results provided at moderately sized network scales. We
further scale the model size up to n unprecedented 1 mil-
lion compute nodes; and through visualization of network
simulation metrics such as link bandwidth, packet latency,
and port occupancy, we get an insight into the network be-
havior at the million-node scale. We also show linear strong
scaling of the Slim Fly model on an Intel cluster achieving
a peak event rate of 36 million events per second using 128
MPI tasks to process 7 billion events. Detailed analysis of
the underlying discrete-event simulation performance shows
that a million-node Slim Fly model simulation can execute
in 198 seconds on the Intel cluster.

Categories and Subject Descriptors
I.6.4 [Computing methodologies]: Modelling and simu-
lation

General Terms

Keywords
Slim Fly, Network topologies, Parallel discrete event simu-
lation, interconnection networks

1. INTRODUCTION
Performance of interconnection networks is integral to large-
scale computing systems. Current HPC systems have thou-
sands of compute nodes; for example, the Mira Blue Gene/Q
system at Argonne has 49,152 compute nodes [23]. Some
of the future pre-exascale machines, such as Aurora to be
deployed at Argonne National Laboratory, will have over
50,000 compute nodes [13]. The ability of the interconnec-
tion network to transfer data efficiently is essential to the
successful implementation and deployment of such large-
scale HPC systems. There is a trade-off of latency, cost,
and diameter among the potential network topologies that
currently exist. One topology that meets all three metrics
is Slim Fly, as proposed by Besta and Hoefler [4]. High
bandwidth, low latency, low cost, and a low network diam-
eter are all properties of the Slim Fly network that make it
a solid option as an interconnection network for large-scale
computing systems.

In this paper, we present a highly efficient and detailed
model of the Slim Fly network topology using massively par-
allel discrete-event simulation. Validating against the Slim
Fly simulator by Besta and Hoefler [4], our Slim Fly model
is capable of performing minimal, nonminimal, and adaptive
routing under uniform random and worst-case traffic work-
loads. Our model is also capable of large-scale network mod-
eling; and in this paper, we execute a million-node SlimFly
network on the RSA Intel cluster at Rensselaer Polytechnic
Institute (RPI) Center for Computation Innovations. In ad-
dition, our model has been implemented to execute under
optimistic event scheduling using reverse computation and
achieves 36 million events per second while maintaining 99%
efficiency. This level of performance establishes our Slim Fly
model as a useful tool that will give network designers the
capability to analyze different design options of Slim Fly
networks.

The main contributions of this paper are as follows.

• A Rensselaer Optimistic Simulation System (ROSS)
parallel discrete event Slim Fly network model that
can simulate large-scale Slim Fly networks at a detailed
fidelity and provide insight into network behavior by
recording detailed metrics at this scale. The Slim Fly
model is also shown to be in close agreement with the
Kathareios et al. Slim Fly network simulator [14].

• We simulate and provide a detailed visual analysis of

a Slim Fly network at a scale of 74,000 nodes, inspired
by the Argonne Aurora supercomputer.

• This paper also models the largest discrete-event Slim
Fly network to date at just over 1 million nodes and
crossing the 7 billion committed events mark.

• In terms of the simulation performance itself, a strong-
scaling study of our simulation demonstrates that our
Slim Fly model is highly scalable and can achieve an
event rate of 43 million events per second on 16 nodes,
128 processes of the Intel cluster at RPI [8]

The remainder of the paper is organized as follows. Sec-
tion 2 provides the network simulation design in terms of
the topology, routing algorithms and flow control. We also
describe the details of the discrete event simulation imple-
mentation. Section 3 presents the validation experiments.
Section 4 describes the network and discrete-event simula-
tion performance results. Section 5 discusses related work,
and Section 6 summarizes our conclusions and briefly dis-
cusses future work.

2. SLIM FLY NETWORK MODEL
In this section, we describe the simulation design of the Slim
Fly topology as well as its implementation in the form of a
discrete event simulation.

Table 1: Descriptions of symbols used

Topic Symbol Description

p Nodes connected to a router
Nr Total routers in network (Nr = 2q2)

SF Nn Total nodes in network (Nn = Nr ∗ p)
k′ Router network radix
k Router radix (k = k′ + p)
q Prime power

CODES/ LP Logical Process (simulated entity)
ROSS PE Processing element (MPI rank)

2.1 Slim Fly Topology
Introduced by Besta and Hoefler [4], the Slim Fly consists of
groups of routers with direct connections to other routers in
the network similar in nature to the dragonfly interconnect
topology. Each router has a degree of local connectivity to
other routers in its local group and a global degree of con-
nectivity to routers in other groups. Unlike the dragonfly
topology, however, the Slim Fly does not have fully con-
nected router groups. Within each group, each router has
only a subset of intragroup connections governed by one of
two specific equations based on the router’s subgraph mem-
bership. Furthermore, all router groups are split into two
subgraphs. Each router possesses global intergroup connec-
tions only to routers within the opposite subgraph, forming
a bipartite graph between the two subgraphs. These global
connections are also constructed according to a third equa-
tion [4]. Figure 1. shows a simple example of the described
structure and layout of the Slim Fly topology.

An important feature of the Slim Fly topology is that its
graphs are constructed to guarantee a given maximum diam-
eter. One example set of graphs, which we use in this paper,

…" …" …"…"

…" …" …" …"

routers" nodes" node"connec,ons" local"connec,ons" global"connec,ons"

Figure 1: General structure and layout of MMS Slim Fly
graphs. Global connections between subgraphs have been
generalized for clarity. There are no intergroup connections
within the same subgraph. Each router contains one global
connection to one router in each of the q-many router groups
in the opposing subgraph.

is the collection of diameter 2 graphs, called MMS graphs,
introduced by MCKay et al. [16]. MMS graphs guarantee a
maximum of 2 hops when traversing the network layer; and
because they approach the Moore bound [18], these graphs
constitute some of the largest possible graphs that main-
tain full network bandwidth while maintaining a degree of
2. The 2-hop property holds true while scaling to larger
node graphs because the router radix grows as well. For
example, routers in a 3K node network require a 28 radix
router, while a much larger 1M node network needs a 367
radix router.

Following the methods derived in [12] and summarized and
applied to the Slim Fly topology in [4], we developed a sepa-
rate application to create the nontrivial MMS network topol-
ogy graphs that govern the interconnection layout of nodes
and routers in Slim Fly networks. The process requires (1)
finding a prime power q = 4w+ δ that yields a desired num-
ber of routers Nr = 2q2; (2) constructing the Galois field
and, more important, the primitive element ξ that gener-
ates the Galois field; (3) using ξ, computing generator sets
X and X ′ [12] and using them in conjunction with equa-
tions 1–3 to construct the interconnection of routers; and
(4) sequentially connecting compute nodes to routers.

An example MMS graph is provided in Figure 2. As shown,
all routers have three coordinates (s, x, y) indicating the lo-
cation of the router in the network. The s ∈ {0, 1} coor-
dinate indicates the subgraph, while the x ∈ {0, ..., q − 1}
and y ∈ {0, ..., q−1} coordinates indicate the router’s group
and position within the group, respectively. Following the
coordinate system, Equation 1 is used to compute the in-
tragroup connections for all groups of subgraph 0 shown in
Figure 2. Equation 2 performs the same computationfor all
groups in subgraph 1, shown in red. Equation 3 determines
the connections between the two subgraphs, shown in blue.
For simplicity, Equation 3 connections are displayed only for
router(1, 0, 0).

router(0, x, y) is connected to (0, x, y′) iff y − y′ ∈ X; (1)

router(1,m, c) is connected to (1,m, c′) iff c− c′ ∈ X; (2)

router(0, x, y) is connected to (1,m, c) iff y = mx+ c; (3)

0,0,0#
 #
 #

0,0,3#
 #
 #

0,0,1#
 #
 #0,0,2#
 #
 #

0,1,0#
 #
 #

0,1,3#
 #
 #

0,1,1#
 #
 #0,1,2#
 #
 #

0,2,0#
 #
 #

0,2,3#
 #
 #

0,2,1#
 #
 #0,2,2#
 #
 #

0,3,0#
 #
 #

0,3,3#
 #
 #

0,3,1#
 #
 #0,3,2#
 #
 #

0,0,4#
 #
 #

0,1,4#
 #
 #

0,2,4#
 #
 #

0,3,4#
 #
 #

0,4,0#
 #
 #

0,4,3#
 #
 #

0,4,1#
 #
 #0,4,2#
 #
#

0,4,4#
 #
 #

Figure 2: Example MMS graph with q = 5 illustrating the
connection of routers within groups and between subgraphs.

2.2 Routing Algorithms
Our Slim Fly model currently supports three routing algo-
rithms for studying network performance: minimal, nonmin-
imal, and adaptive routing.

2.2.1 Minimal Routing
The minimal, or direct, routing algorithm routes all net-
work packets from source to destination using a maximum
of two hops between routers (property of MMS graphs guar-
antees router graph diameter of two regardless of the size of
the graph). If the source router and destination router are
directly connected, then the minimal path consists of only
one hop between routers. If the source compute node is con-
nected to the same router as the destination compute node,
then there are zero hops between routers. In the third case,
an intermediate router must exist that shares a connection
to both source and destination router so the packet traverses
a maximum of two hops.

2.2.2 Nonminimal Routing
Nonminimal routing for the Slim Fly topology follows the
traditional Valiant randomized routing algorithm [25]. This
approach selects a random intermediate router that is differ-
ent from the source or destination router and routes mini-
mally from source router to the randomly selected intermedi-
ate router. The packet is then routed minimally again from
the intermediate router to the destination router. The num-
ber of hops traversed with valiant routing would be double
that of minimal routing. In the optimal case when all three
routers are directly connected, the path will be two hops.
On the other end of the spectrum each minimal path to and
from the intermediate router can have two hops, bringing
the maximum number of possible hops to four.

2.2.3 Adaptive Routing
Adaptive routing mixes both minimal and nonminimal ap-
proaches by adaptively selecting between the minimal path
and several valiant paths. To make direct comparisons for
validating our model, we follow a slightly modified version
of the Universal Globally-Adaptive Load-balanced (UGAL)
algorithm [26] shown in [14]. First, the minimal path and

Figure 3: Worst-case traffic layout for the Slim Fly topology.

several nonminimal paths (nI) are generated, and their cor-
responding path lengths LM and Li

I , i ∈ 1, 2, ...nI are com-
puted. Next, we compute the penalty c = Li

I/LM ∗ cSF ,
where cSF is a constant chosen to balance the ratio. Next,
the final cost of each nonminimal route Ci

I = c ∗ qiI is com-
puted, where qiI is the occupancy of the first router’s output
port corresponding to the path of route i. The cost of the
minimal path is simply the occupancy of the first router’s
port along the path qM . Then, the route with the lowest
cost is selected, and the packet is routed accordingly. With
this method, each packet has a chance of getting routed with
anywhere from one to four hops.

2.3 Traffic Workloads
To accurately simulate and analyze the network communi-
cation using a Slim Fly interconnection topology, we im-
plemented two traffic workloads. The first workload is the
uniform random (UR) traffic pattern that selects a random
destination compute node anywhere in the network that is
different from the source and destination computes nodes.
The second workload is a worst-case (WC) traffic pattern
that simulates an application that is communicating in a
manner that fully saturates links in the network and thus
creates a bottleneck for minimal routing. In this workload,
each compute node in a router, R1, will communicate to a
node within a paired router that is the maximum two hops
away. Another pair of routers that share the same middle
link with the previous pair of routers will be established to
fully saturate that center link. As shown in the example in
Figure 3, all compute nodes connected to R1 communicate
with nodes connected to R3 along the blue path. Also, the
reverse communication is true, because all nodes connected
to R3 communicate with nodes connected to R1 along the
red path. The router pair R2 and R4 are set up in the same
manner communicating along the gray and green paths, re-
spectively. This setup of network communication puts a
worst-case burden on the link between routers 2 and 3 as 4p
nodes are creating 2p data flows. With all nodes paired in
this configuration, congestion quickly builds up for all nodes
in the system and limits maximum throughput to 1/2p.

2.4 Congestion Control
Both virtual channel [10] and credit based flow control [11]
are used in our Slim Fly model to prevent congestion. Fol-
lowing the approach in [4], we discretize our selection of vir-

tual channels to the number of hops a message packet has
taken. In other words, for every hop i that a message packet
takes, when leaving a router, that packet uses the ith vir-
tual channel. Packets that take a local route and have only
one hop will always use V C0. Packets that take a global
path (assuming minimal routing) will use V C0 for the first
hop and then V C1 for the second hop. Clearly, the opti-
mal number of VCs to use in minimal routing is two. In
the case of nonminimal routing such as valiant and adaptive
routing, the number of virtual channels used is four, because
the maximum possible number of hops in a packet’s route is
four.

In terms of the implementation, an output vc variable is
added to the compute node message state structure and ini-
tialized to 0 when a message is created. Each time a router
sends a message, it sends the message on the output vc
virtual channel and increments output vc so that the next
router on the path will use the next corresponding VC.

2.5 Discrete-Event Simulation
Capturing performance measurements of extreme-scale net-
works having millions of nodes requires a simulation that
can efficiently decompose the large problem domain. One
such approach, used in this paper, is parallel discrete-event
simulation (PDES). PDES decomposes the problem into dis-
tinct components called logical processes (LPs), each with its
own self maintained state in the system. These LPs model
the specific computing components in the simulation such
as routers, nodes, and workload processes. LPs interact and
capture the system dynamics by passing timestamped event
messages to one another. These LPs are further mapped to
physical MPI rank processing elements (PEs), which com-
pute their corresponding LPs’ events in timestamped order.

We have implemented our Slim Fly model using ROSS [6], a
discrete event simulator with support for both conservative
and optimistic parallel execution. Conservative execution
uses the YAWNS protocol [21] to keep all LPs from com-
puting events out of order. The optimistic event scheduler
allows each LP to keep its own local time and therefore com-
pute events out of order with respect to other LPs. Opti-
mistic event scheduling is faster than conservative schedul-
ing. However, this speedup comes at the cost of out-of-
order event execution, which is handled by reverse compu-
tation [7]. When a temporal anomaly occurs and an event
is processed out of timestamp order, all events must be in-
crementally rolled back to restore the state of the LP to just
before the incorrect event occurred.

The rollback process uses a reverse event handler to undo the
events. The reverse handlers for the model must be provided
by the model programmers. The reverse event handler is
a negation of the forward event handler performing inverse
operations on all state changing actions. For example, in the
Slim Fly model using nonminimal routing, when a message
packet arrives at its first router from a node, that router LP
performs forward operations in the router-receive forward
event handler. The router LP (1) increments the number of
received packets, (2) sends a credit event to the sending node
LP, (3) computes the next destination by sampling a random
number for the random intermediate destination, and (4)
creates a new router-send event to relay the packet to the

Figure 4: Diagram showing the general execution path of
events in the Slim Fly–specific ROSS parallel discrete-event
simulation.

next hop router LP. The reverse event handler needs to undo
these operations by (1) decrementing the received packets
state variable, (2) sending an anti-message to the sending
node to reverse the credit sent, (3) unrolling the random
number generator by one, and (4) creating an antimessage
(a message indicating an event was issued out of timestamp
order and needs to be rolled back in optimistic execution)
to cancel the router-send event.

We also implemented our Slim Fly model with CODES (Co-
Design of Exascale Storage) [9]. This is a simulation toolkit
built on top of ROSS that can be used to simulate stor-
age [24] and HPC network systems. CODES helps facilitate
the use of HPC network workloads and simulating network
communication in the context of discrete event simulations.
CODES also provides a range of network models including
dragonfly [19], torus [20], and analytical LogGP [2]. Our
Slim Fly network model is an addition to the CODES net-
work models. Using the CODES simulation framework, ded-
icated MPI workload LPs (representing MPI processes at-
tached to compute nodes) generate and receive messages.
Messages generated by workload LPs are sent immediately
to their corresponding attached compute node LPs with
minimal delay in simulation time. Subsequent message-
generated events are created at a given interval to approxi-
mate the desired network injection rate, incorporating net-
work latencies.

In our Slim Fly model, each LP represents one router, com-
pute node, or simulated MPI workload process in the net-
work. Also, each timestamped event represents a network
packet transferring through the network. Figure 4 shows the
general structure and event-driven procedure for the Slim
Fly network simulation. In this figure, we are running the
simulation on two physical cores with one MPI rank per
core, resulting in two PEs. The LPs are distributed equally
among the two PEs. Events/messages, represented by the
arrows between LPs, are transferred between the LPs. For
simplicity, only the LPs involved in the example are illus-
trated.

Upon receiving a message event, the compute node LP de-
composes the message into packets and extracts the message
destination. The compute node LP computes the next hop

and corresponding output port for each packet using the
selected routing algorithm. Prior to sending a packet, the
sending node LP checks the occupancy of the selected port
and virtual channel. If space exists, the packet is allocated,
and a receive event is scheduled on the destination router
with a time delay. This time delay incorporates the band-
width and latency of the corresponding network link. If the
buffer is full, the node LP follows credit-based flow control
and must wait for a credit from the destination router to
open up a space on the corresponding link.

In order to accurately analyze the Slim Fly network, var-
ious parameters and statistics are collected and stored in
both the LPs and the event messages. These statistics in-
clude start and end times of packets on the network, average
hops traversed by the packets, and the virtual channels be-
ing used.

Once a packet arrives at the router LP, a credit event is
sent back to the sending LP to free up space in the send-
ing LP’s output buffer. The LP then extracts the desti-
nation node ID. The router LP determines the next hop
and corresponding output port, once again using the rout-
ing algorithm specified. The router also follows the same
credit-based flow control scheme as the compute node LP.

After the packet reaches its destination node LP, the node
waits for all packets belonging to that message to arrive be-
fore issuing a message arrival event on the destination work-
load LP. At this point, we can collect the statistics stored
in the messages, for example, packet latency and number of
hops traversed.

3. SLIM FLY MODEL VALIDATION
In this section, we present a comparison with published Slim
Fly network results by Kathareios et al. [14] to validate the
implementation of our model. The specifics of the IBM-
ETH-SF simulator are not provided, but the authors do
mention that it is based on the Omnest simulator, which
also employs parallel discrete-event simulation. This IBM-
ETH collaborative work presents throughput results for a
Slim Fly network with the configuration below. The con-
figuration is of particular interest because it yields a total
number of compute nodes that is similar to the number of
nodes in the future Summit supercomputer [22].

• q = 13, p = 9, Nn = 3042, Nr = 338, k = 28.

Further network parameters include a 100 Gbps link band-
width for all links with a latency of 50 ns. The routers utilize
virtual channels, a buffer space of 100 KB per port (equally
divided among the VCs), and a 100 ns traversal delay. Flow
control is done with the use of credits and messages are 256-
byte packets. Simulation time for the IBM-ETH-SF was 200
µs with a 20 µs warmup. In our simulation, we include the
warmup time in the total execution and therefore run the
simulation for 220 µs. The results include minimal, nonmin-
imal, and adaptive routing for uniform random and worst-
case traffic workloads. Our simulation results in comparison
with the IBM-ETH-SF results are presented in Figures 5, 6,
and 7. The metric comparison is throughput percentage and

Figure 5: Throughput comparison of minimal routing for
uniform random (UR) and worst-case (WC) traffic work-
loads.

is computed according to Equation 4. Besta and Hoefler [4]
approximate the upper bound for bisection bandwidth for
the Slim Fly topology to be 71% link bandwidth per node

when p = b k
′

2
c. Therefore, our simulated 100 Gbps link

bandwidth translates to a maximum throughput of 71 Gbps
per node. The observed throughput is gained from our Slim
Fly model by performing a sum reduction to get the total
number of packets transferred by all compute nodes, multi-
plying by the 256 byte packet size and dividing by the total
number of compute nodes.

throughput percent =
observed throughput Gbps

0.71 ∗ 100Gbps
∗ 100

(4)

3.1 Minimal Routing Comparison
Figure 5 presents the throughput analysis for the minimal
routing algorithm under input loads varying from 10% to
100% link bandwidth. Focusing on the uniform random
workload case, our Slim Fly model closely matches that of
the IBM-ETH-SF. As expected, the minimal routing algo-
rithm excels under uniform random workloads. Both simu-
lations show the Slim Fly network throughput matching the
injection load from 10% load to about 95% load, at which
point the throughput trails off to roughly 98% throughput
at 100% load. In the worst-case workload results, the two
results are again a close match. Both show a constant 5.5%
throughput utilization from 10% to 100% load. Clearly,
minimal routing is a poor choice for traffic that is not dis-
tributed throughout the network, because minimal routing
has no means of selecting alternate routing paths to avoid
congested links.

3.2 NonMinimal Routing Comparison
The results comparing throughput analysis for nonminimal
routing are shown in Figure 6. In this case, all four sets
of results are close together. Under both uniform random
and worst-case traffic routing, the Slim Fly network achieves
a throughput equal to the injection load until 50% load is

Figure 6: Throughput comparison of nonminimal routing
for uniform random (UR) and worst-case (WC) traffic work-
loads.

Figure 7: Throughput comparison of adaptive routing for
Uniform Random (UR) and Worst Case (WC) traffic work-
loads.

reached. At this point, the network throughput reaches a
bottleneck and maintains just under half-link bandwidth up
to 100% injection load. Nonminimal routing underperforms
compared with minimal routing for uniform random traf-
fic because the maximum path length of all routes is twice
as long in nonminimal routing at four hops compared with
two hops in minimal routing. Therefore, nonminimal rout-
ing reaches congestion in UR traffic at roughly 50% load,
roughly half the load of minimal routing. However, non-
minimal routing outperforms minimal routing in worst-case
traffic because of its ability to perform a uniform load bal-
ancing of traffic as it selects a random intermediate router
along its path.

3.3 Adaptive Routing Comparison
The throughput comparison results for the adaptive rout-
ing algorithm are shown in Figure 7. In all cases, we set
the number of indirect routes, ni = 3, and cSF = 1. Once
again, the observed results for our Slim Fly model agree with

those of the IBM-ETH-SF simulator. In both uniform ran-
dom and worst-case traffic workloads, the network through-
put matches the injection load until 55% load, at which point
the worst-case traffic results reach congestion and are limited
at 58%. The uniform random traffic results continue with
optimal throughput and reach nearly full system through-
put at 100% load. Adaptive routing is able to match the
performance of minimal routing for uniform random traffic
because it can continually select the minimal path for all
packets. Adaptive routing outperforms both minimal and
nonminimal routing for worst-case traffic because of its abil-
ity to dynamically select between the minimal and nonmin-
imal routes.

3.4 Network Visualization
Continuing the analysis, we show visual representations of
router occupancy and message sends and receives for both
router LPs and compute node LPs during the above simula-
tions. These visualizations provide insight into large, com-
plex network simulations.

The router occupancy metric collects the number of packets
sitting in queue waiting for space to open up on the neces-
sary router output port. Since we use VCs for congestion
control, the router occupancy metric can be further divided
into virtual channels with 2 VCs per port per router used in
the case of minimal routing and 4 VCs per port per router
used in nonminimal routing. Since virtual channels help al-
leviate congestion, their occupancy can provide insight to
help identify the source of congestion in the network.

Figure 8 presents a number of graphs visualizing the occu-
pancy of all virtual channels for all ports on all routers in the
simulation. All four Slim Fly test cases are from Figure 5,
which run the 3K-node Slim Fly model using minimal rout-
ing for uniform random traffic. In this case, there are 338
routers with a network radix of 19 and 2 VCs per port. The
result is a total of 6,422 ports, each with 2 virtual channels.
Figures 8a–8d display the occupancy of VC0 with increasing
load from 50% to 100%, and Figures 8e–8h display the same
for VC1.

The 3K-node Slim Fly model experiences little congestion
until about 90% injection load, where VC0 sees a uniform
distribution of roughly 20% congestion in the network. At
100% injection load, the network begins to reach the buffer
space limit as packets enter the network at an increased rate,
further explaining why we see a slight dip in throughput per-
formance for minimal routing under uniform random traffic
in Figure 5. The VC0 buffer fills up first, indicating that the
compute nodes are injecting packets into the network faster
than the routers can relay them.

In addition to buffer occupancy, the number of message
packets sent and received by all routers and compute nodes
is visualized over the simulation time. The results are col-
lected during the same simulation in Figures 8d and 8h and
are displayed in Figure 9. The first noticeable feature is the
large spike in the beginning of the compute node sends (Fig-
ure 9a). Occurring at the beginning of the simulation, this
spike is a result of the initial packet burst into the system,
which is followed by a balancing out as the network reaches
a steady state. The same phenomenon is reflected as a slow

(a) VC0 50% Load (b) VC0 90% Load (c) VC0 95% Load (d) VC0 100% Load

(e) VC1 50% Load (f) VC1 90% Load (g) VC1 95% Load (h) VC1 100% Load

Figure 8: Router occupancy comparison for simulations using UR traffic and minimal routing with increasing injection load.
Figures are best viewed in color.

start in router sends and receives plots in Figures 9c and 9d.
These figures all resemble the uniform random traffic work-
load being simulated, except for the initial startup phase.
We can also note that the steady-state section of the router
sends graph has more of a yellow hue than does the router
receives plot, indicating that the routers consistently receive
message packets but have slightly more variance in the rate
at which they are able to send packets, which can contribute
to the slight drop in network throughput observed at 100%
load.

The added capability of visual analysis of these important
network metrics not onl helps detect network congestion but
also helps identify the time, location, and effect of congestion
on the entire network simulation.

4. LARGE-SCALE PERFORMANCE
To show the full capabilities of the ROSS discrete event Slim
Fly model simulator, we constructed and analyzed large-
scale Slim Fly model configurations. The analysis includes
discrete-event compute statistics and strong scaling on the
Intel cluster at the Center for Computational Innovations at
RPI to emphasize the efficiency of the new Slim Fly simula-
tor. Following the same simulation parameters as in Section
3, we use 100 Gbps link bandwidth with a latency of 50 ns.
Routers utilize virtual channels, a buffer space of 100 KB
per port, and a 100 ns traversal delay. Each message con-
sists of 256-byte packets. In all the adaptive routing cases,
we set the number of indirect routes, ni = 3, and cSF = 1
µs. The increased model sizes result in much larger end-to-
end runtimes (the time including the initial configuration of
LPs in addition to the simulation processing time). In or-
der to generate results in time for the paper submission, the

(a) Compute Node Sends (b) Compute Node Receives

(c) Router Sends (d) Router Receives

Figure 9: Messages sent and received over time for the simu-
lation using UR traffic and minimal routing using 100% load.
Figures 9a and 9b show the number of sends and receives
sampled over the simulation run time for all the compute
nodes. Figures 9c and 9d show the same for all routers in
the simulation.

Figure 10: Million-node and 74K-node Slim Fly model per-
formance analysis with uniform random traffic and minimal
routing.

simulated time is decreased from 220 µs, as in the previous
section, to 100 µs.

4.1 74K-Node Slim Fly Model
In this section, we simulate the Slim Fly model at the scale
of Aurora, the future supercomputer to be deployed at Ar-
gonne National Laboratory. Aurora is stated to have more
than 50,000 nodes, which is significantly larger than Sum-
mit [13]. Assuming that the Knights Hill version of the Intel
Xeon Phi, which will be the compute architecture for the
system, is released with 3 TFLOPs, the future Aurora su-
percomputer will need to have 60,000 nodes in order to reach
the quoted 180 PFlOPS of system performance. A network
the size of the future Aurora supercomputing system results
in a Slim Fly topology with the following configuration:

• q = 37, p = 27, Nn = 73, 926, Nr = 2738, k = 82.

This 73,926-node model is the smallest configuration that
can obtain at least 60,000 nodes without exceeding the p =

b k
′

2
c restriction for obtaining optimal system throughput.

We tested the model using all three routing algorithms—
minimal, nonminimal, and adaptive—using both uniform
random and worst-case traffic workloads. Both system through-
put utilization and average packet latency are shown in Fig-
ure 10. The results follow the same general trend as was ob-
served for the 3K-node Slim Fly validation model in Section
3. Minimal routing performs nearly full bandwidth under
uniform random traffic. Simulating worst-case traffic, mini-
mal routing maintains roughly half the throughput achieved
with 10% load of uniform random traffic. Nonminimal rout-
ing hits congestion at 50% load under both uniform random
and worst-case traffic. Again, this is the result of the non-
minimal routing algorithm forcing path lengths to be twice
as long as minimal routing. Adaptive routing achieves bet-
ter throughput over minimal and nonminimal routing for
worst-case traffic because it has the added benefit of select-
ing between the minimal or nonminimal route. The low
result at higher loads using adaptive routing may be a re-
sult of the 100 µs simulation time not allowing such a large
network simulation to reach steady state. This prevents the
nonminimal output buffers from fully saturating, thus pre-
venting the adaptive algorithm from selecting the minimal
path at high loads.

4.2 Million-Node Slim Fly Model
Further showcasing the scalability of the Slim Fly model,
we scale the topology over 1 million nodes. To the best of
our knowledge, this is the largest simulated Slim Fly net-
work model. The million-node Slim Fly uses the following
configuration:

• q = 163, p = 19, Nn = 1, 009, 622, Nr = 53, 138,
k = 255.

The feasibility of such a large Slim Fly topology must take
into account the requirement of a router/switch containing
at least 264 ports. Also, utilizing only 19 node connections
per router leaves a significant amount of bandwidth on the
network side of the router and provides the ability to scale
the system up to 6.4 million nodes with up to p=122 nodes
per router. This number of nodes reaches the desired p =

b k
′

2
c where we still achieve full link bandwidth throughout

the system [4]. Unfortunately, this also raises the necessary
router radix k′ to 367.

Figure 9 presents the throughput and average packet latency
results for the million-node simulation using minimal rout-
ing and uniform random traffic. Unlike the 74K-node Slim
Fly performance, which trails off to a maximum throughput
of 8.2 GBps, the million-node model achieves a maximum of
8.6 GBps. As mentioned before, the million-node configura-
tion has only 19 nodes per router, well below the suggested

p = b k
′

2
c nodes per router. Therefore, the million-node Slim

Fly model will not experience any congestion under uniform
random traffic with minimal routing because there is am-
ple network bandwidth to satisfy the much smaller injection
load bandwidth.

4.3 Scaling Analysis
In this section, we present the strong-scaling performance
of the Slim Fly network model on the RSA Intel cluster at
RPI. The system has 34 nodes, each node consisting of two
4-core Intel Xeon E5-2643 3.3 GHz processors and 256 GB of
RAM. The million-node Slim Fly model is memory intensive
and therefore limits the number of MPI ranks that can be
executed per node to 4. The 74K-node Slim Fly model has
a much smaller memory footprint, allowing 8 MPI ranks
per node. All simulations are executed by using minimal
routing, uniform random traffic, and an injection load of
10%.

Additionally, ROSS uses simulation-specific parameters that
can be used to tune the simulation performance by con-
trolling the frequency of global virtual time (GVT) calcula-
tion [6]. These parameters are the“batch”and“gvt-interval.”
The batch size is the number of events the ROSS event
scheduler will process before checking for the arrival of re-
mote events (events issued from other MPI ranks) and an-
timessages. The GVT interval is the number of times through
the main scheduler loop before a GVT computation will be
started. The default values“batch=16”and“gvt-interval=16”
are used in the optimistic event scheduling simulations, and
the default lookahead value of 1 is used in the conservative
executions.

Figure 11: Million-node scaling analysis simulating 100 µs
using minimal Routing, UR traffic, and 10% network load.

The scaling performance results are evaluated according to
simulation run time (not including simulation configuration
time), event rate, event efficiency, and total number of pro-
cessed events. These measurements provide insight into how
well the Slim Fly model performs as a ROSS discrete-event
simulation. Event rate is a simple calculation of completed
events per second, and event efficiency describes how much
work is being performed in the positive direction. Instead of
using traditional state saving techniques, ROSS uses reverse
event handlers that undo untimely executed events. This
technique saves state but requires extra compute to unroll
the events. The simulation efficiency measures the amount
of reverse computation using Equation 5 [3].

efficiency = 1− rolled back events

total events
(5)

As shown in Fig. 7, utilizing the ROSS optimistic event
scheduler results in an ideal linear speedup of both the Slim
Fly million-node model and the 74K-mode model. The largest
event rate is achieved running the 74K-node Slim Fly model
on 128 MPI ranks, executing just over 43 million events per
second and processing 543 million events. Not far behind,
the million-node model achieves a rate of 36 million events
per second processing 7 billion events. Mapping the 7 bil-
lion events to 128 MPI processes translates to each process
staying saturated with events and leads to an event effi-
ciency above 99%. Running smaller Slim Fly configurations
on as many processes leads to negative efficiency because of
less available work. At 128 MPI processes, the smaller 74K-
node Slim Fly model has a 3% lower efficiency than does the
million-node model but manages to execute events at a 20%
faster event rate. The smaller number of events per PE in
the 74K-node model translates to less overhead reordering

events to maintain timestamp order.

4.4 Discrete-Event Simulation Analysis
In order to understand the performance of the Slim Fly
model within the context of the underlying discrete-event
simulation engine, this section sheds light on which tasks
the model spends the majority of its clock cycles. Figure 12
presents two area plots showing the distribution of time the
74K-node Slim Fly model simulation spends in each phase of
the ROSS discrete-event computation. Each execution per-
forms the same 220 µs simulation modeling minimal routing
under uniform random traffic with an increasing number of
MPI ranks. Also, each simulation uses a batch size of 16 and
GVT interval of 16. The same general trends observed in
these figures are consistent for all other combinations of non-
minimal and adaptive routing with uniform and worst-case
traffic.

Focusing first on optimistic execution in Figure 12a, we see
the Slim Fly model spends the majority of the time pro-
cessing events. This trend is consistent regardless of the
number of MPI ranks utilized. In addition, the distribution
of time spent in each aspect of the simulation stays constant
for optimistic scheduling as the number of MPI processes
increases. This denotes an ideal distribution of events to
LPs, and even further, an ideal distribution of LPs to PEs.
It allows the simulation to scale linearly because there is an
equal amount of work for each processor, preventing the case
where some processors have less work. Less work causes the
PE to advance its local time much further than the global
virtual time and has a much higher chance of processing an
event out of order and forcing a large number of primary
and secondary rollbacks. All in all, the Slim Fly model ex-
cels under optimistic event scheduling.

In conservative event scheduling using a lookahead value of 1
and starting with 2 MPI ranks, we see a large portion of the
Slim Fly model compute cycles spent in GVT. Unlike opti-
mistic scheduling where each PE can maintain its own local
time and process events accordingly, conservative execution
forces all PEs to maintain the same virtual time, essentially
executing in a semi-lockstep manner. This guarantees that
no messages are processed out of order, but it requires more
interaction from GVT, as shown in Figure 12b. Moving from
2 to 8 MPI ranks, the execution time decreases because of
a linear decrease in processing time, while the GVT com-
putation slightly rises. After 8 MPI ranks, the amount of
work available for the number of processes decreases to the
point that GVT must intervene more often to keep the pro-
cesses in order, so we experience a large increase in GVT
cycles. As the number of MPI processes increases, so does
the number of number of PEs the event scheduler must keep
locked at the same virtual time. This situation inevitably
leads to PEs sitting idle waiting for GVT to advance the
time window.

Overall, the ROSS-CODES Slim Fly network model is an ef-
ficient tool for modeling large-scale Slim Fly configurations.
Using 128 processes on the Intel cluster, the 74K-node model
gives the highest event rate of 43 million events per second,
while the million-node case processes the most events at 7
billion committed events. Both Slim Fly models achieve
strong linear scaling using optimistic event scheduling with

(a) Optimistic Scheduling (b) Conservative Scheduling

Figure 12: Distribution of simulation time for the 74K-node
Slim Fly model with minimal routing, UR traffic, and 10%
load.

the million-node model performing a 100 µs minimal routing
simulation with 10% load under uniform random traffic in
just 198 seconds.

5. RELATED WORK
Significant research has been done in simulating large-scale
network interconnects and using visualization to gain further
insight and understanding. Computing systems are increas-
ingly emphasizing low-latency and low-cost networks.

Liu et al. [15] demonstrate the effectiveness of applying the
fat tree interconnect to large data centers. The work focuses
on the ability of fat tree networks to perform well under
data-center applications at large scale. Unlike our work that
currently focuses on HPC workloads, their work focuses on
workloads approximating the Hadoop MapReduce model.

Mubarak et al. [19] [20] demonstrate the performance of
both the torus and dragonfly network topologies using syn-
thetic workloads at large scale. The simulations are also im-
plemented on top of the CODES and ROSS discrete-event
simulation frameworks and run on IBM Blue Gene/P and
Blue Gene/Q systems. Our work, in contrast, studies the
performance and scaling using an Intel cluster.

Bhatele [5] presents new methods that include visualization
for identifying congestion in dragonfly networks and develop-
ing new task mappings to allow for efficient use of resources.
Still a relatively new topology, the Slim Fly model does not
have any real-world implementations. Therefore, it can ben-
efit from the same methods of simulation and visual anal-
ysis to predict and limit congestion of possible future Slim
Fly systems, especially when executing multiple concurrent
tasks.

Acun et al. [1] present TraceR, a tool that replays the
BigSim application traces on top of CODES network mod-
els. TraceR provides the ability to test CODES network
models under real-world production application workloads.
In contrast, our work simulates synthetic uniform random

and worst-case traffic workloads. Since the TraceR tool has
been interfaced with the CODES and ROSS frameworks, it
can be experimented with on the Slim Fly model.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a Slim Fly network simula-
tor developed using CODES and the parallel discrete-event
simulation framework ROSS. Having implemented minimal,
nonminimal, and adaptive routing algorithms specific to the
Slim Fly model, we simulated the effectiveness of those rout-
ing methods under uniform random and worst-case synthetic
traffic workloads. The results of the Slim Fly model have
been verified by using published results from Besta and Hoe-
fler [4].

Furthermore, the Slim Fly network model has been shown to
scale in network size from a 3,042 and 73,926 node systems,
inspired by the future Summit and Aurora supercomputers,
to a million-node system topology. Additionally, the Slim
Fly model scales linearly in execution up to 128 MPI ranks
on the CCI RSA Intel cluster, achieving a peak event rate
of 43 million events per second with 543 million total events
processed for the 74K-node Slim Fly model. The million-
node model achieves 36 million events per second processing
7 billion events.

Through visualization of network simulation metrics like
buffer utilization and message packet transfers, we get an in-
sight into the behavior of large-scale HPC networks. These
methods provide the ability to view the entire network sim-
ulation and identify the cause and effect of congestion.

Further scaling of the million-node model can also be per-
formed to make full use of the simulated q = 163 MMS
configuration. A Slim Fly configuration can maintain maxi-

mum link bandwidth up to p = b k
′

2
c total nodes per router.

The million-node model we have simulated has a network
radix of k′ = 255 and p = 19 nodes per router. However,
this q = 163 MMS configuration can use up to p = 122 nodes
per router to get a 6.4 million-node model capable of main-
taining full network throughput. Adding additional realistic
workloads that model real world applications is another fu-
ture direction we plan to experiment with. We also plan
to explore other applications for future large-scale Slim Fly
network interconnects by possibly simulating a large-scale
neuromorphic supercomputing system [17].

Acknowledgments
This work was supported by the Air Force Research Labora-
tory (AFRL), under award number FA8750-15-2-0078. This
was also supported by the U.S. Department of Energy, Office
of Science, Advanced Scientific Computing Research, under
Contract DE-AC02-06CH11357.

7. REFERENCES
[1] B. Acun, N. Jain, A. Bhatele, M. Mubarak,

C. Carothers, and L. Kale. Preliminary evaluation of a
parallel trace replay tool for HPC network
simulations. In S. Hunold, A. Costan, D. GimÃl’nez,
A. Iosup, L. Ricci, M. E. GÃşmez Requena,
V. Scarano, A. L. Varbanescu, S. L. Scott, S. Lankes,
J. Weidendorfer, and M. Alexander, editors, Euro-Par

2015: Parallel Processing Workshops, volume 9523 of
Lecture Notes in Computer Science, pages 417–429.
Springer International Publishing, 2015.

[2] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and
C. Scheiman. Loggp: Incorporating long messages into
the logp model—one step closer towards a
realistic model for parallel computation. In
Proceedings of the Seventh Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA ’95,
pages 95–105, New York, NY, USA, 1995. ACM.

[3] P. D. Barnes, Jr., C. D. Carothers, D. R. Jefferson,
and J. M. LaPre. Warp speed: Executing time warp
on 1,966,080 cores. In Proceedings of the 1st ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM PADS ’13, pages
327–336, New York, NY, USA, 2013. ACM.

[4] M. Besta and T. Hoefler. Slim Fly: A Cost Effective
Low-Diameter Network Topology. Nov. 2014.
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis (SC14).

[5] A. Bhatele. Task mapping on complex computer
network topologies for improved performance.
Technical report, LDRD Final Report, Lawrence
Livermore National Laboratory, Oct. 2015.
LLNL-TR-678732.

[6] C. D. Carothers, D. Bauer, and S. Pearce. ROSS: A
high-performance, low memory, modular time warp
system. In Proceedings of the Fourteenth Workshop on
Parallel and Distributed Simulation, PADS ’00, pages
53–60, Washington, DC, USA, 2000. IEEE Computer
Society.

[7] C. D. Carothers, K. S. Perumalla, and R. M.
Fujimoto. Efficient optimistic parallel simulations
using reverse computation. ACM Trans. Model.
Comput. Simul., 9(3):224–253, July 1999.

[8] CCI. RSA cluster, Nov. 2014.

[9] J. Cope, L. N., L. S., C. P., C. C. D., and R. R.
Codes: Enabling co-design of multilayer exascale
storage architectures. In Proceedings of the Workshop
on Emerging Supercomputing Technologies (WEST),
Tuscon, AZ, USA, 2011.

[10] W. Dally. IEEE Transactions on Parallel and
Distributed S.

[11] W. Dally and B. Towles. Principles and Practices of
Interconnection Networks. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2003.

[12] P. R. Hafner. Geometric realisation of the graphs of
McKay-Miller-Siran. Journal of Combinatorial
Theory, Series B, 90(2):223–232, 2004.

[13] Intel. Ushering in a new era: Argonne National
Laboratory’s Aurora system. Technical report, Intel
Corporation, April 2015.

[14] G. Kathareios, C. Minkenberg, B. Prisacari,
G. Rodriguez, and T. Hoefler. Cost-effective
diameter-two topologies: Analysis and evaluation.
Nov. 2015. Accepted at IEEE/ACM International
Conference on High Performance Computing,
Networking, Storage and Analysis (SC15).

[15] N. Liu, A. Haider, X.-H. Sun, and D. Jin. Fattreesim:
Modeling large-scale fat-tree networks for HPC
systems and data centers using parallel and discrete

event simulation. In Proceedings of the 3rd ACM
SIGSIM Conference on Principles of Advanced
Discrete Simulation, SIGSIM PADS ’15, pages
199–210, New York, NY, USA, 2015. ACM.

[16] B. D. McKay, M. Miller, and J. Siran. A note on large
graphs of diameter two and given maximum degree.
Journal of Combinatorial Theory, Series B, 74(1):110
– 118, 1998.

[17] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S.
Cassidy, J. Sawada, F. Akopyan, B. L. Jackson,
N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo,
S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D.
Flickner, W. P. Risk, R. Manohar, and D. S. Modha.
A million spiking-neuron integrated circuit with a
scalable communication network and interface.
Science, 345(6197):668–673, 2014.

[18] M. Miller and J. Siran. Moore graphs and beyond: a
survey of the degree/diameter problem. The Electronic
Journal of Combinatorics [electronic only], DS14:61
p., 2005.

[19] M. Mubarak, C. D. Carothers, R. Ross, and P. Carns.
Modeling a million-node dragonfly network using
massively parallel discrete-event simulation. In
Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and
Analysis, SCC ’12, pages 366–376, Washington, DC,
USA, 2012. IEEE Computer Society.

[20] M. Mubarak, C. D. Carothers, R. B. Ross, and
P. Carns. A case study in using massively parallel
simulation for extreme-scale torus network codesign.
In Proceedings of the 2Nd ACM SIGSIM Conference
on Principles of Advanced Discrete Simulation,
SIGSIM PADS ’14, pages 27–38, New York, NY, USA,
2014. ACM.

[21] D. M. Nicol. The cost of conservative synchronization
in parallel discrete event simulations. J. ACM,
40(2):304–333, Apr. 1993.

[22] NVIDIA. Summit and Sierra supercomputers: An
inside look at the u.s. department of energy’s.
Technical report.

[23] M. Papka, P. Messina, R. Coffey, and C. Drugan.
Argonne Leadership Computing Facility 2014 annual
report. March 2015.

[24] S. Snyder, P. Carns, J. Jenkins, K. Harms, R. Ross,
M. Mubarak, and C. Carothers. A case for epidemic
fault detection and group membership in HPC storage
systems. In S. A. Jarvis, S. A. Wright, and S. D.
Hammond, editors, High Performance Computing
Systems. Performance Modeling, Benchmarking, and
Simulation, volume 8966 of Lecture Notes in
Computer Science, pages 237–248. Springer
International Publishing, 2015.

[25] L. G. Valiant. A scheme for fast parallel
communication. SIAM Journal on Computing,
11(2):350–361, 1982.

[26] S.-J. Wang. Load-balancing in multistage
interconnection networks under multiple-pass routing.
Journal of Parallel and Distributed Computing,
36(2):189–194, 1996.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive, irre-
vocable worldwide license in said article to reproduce, pre-
pare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

