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Abstract. Concurrent accesses to the shared storage resources in cur-
rent HPC machines lead to severe performance degradation caused by
I/O contention. In this study, we identify some key challenges to effi-
ciently handling interleaved data accesses, and we propose a systemwide
solution to optimize global performance. We implemented and tested sev-
eral I/O scheduling policies, including prioritizing specific applications by
leveraging burst buffers to defer the conflicting accesses from another ap-
plication and/or directing the requests to different storage servers inside
the parallel file system infrastructure. The results show that we mitigate
the negative effects of interference and optimize the performance up to
2x depending on the selected I/O policy.
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1 Introduction

Large-scale applications already individually suffer from unmatched computation
and storage performance, leading to a loss of efficiency in I/O-intensive phases.
But another problem appears when several applications compete for access to a
common parallel file system, leading to further degradation of I/O performance
as a result of contention. Most modern supercomputers have moved from the
paradigm of one large application using the entire machine to one where many
smaller applications run concurrently. In [1], we see that half of the jobs executed
on Argonne’s Intrepid machine were using less than 2048 cores (i.e. only 1.25%
of the entire available cores); and since many of the same applications were
ported to its successor, Mira, we suspect the pattern on this new system to
be no different. Consequently, multiple applications commonly run concurrently
and share the underlying storage system. This practice, however, can severely
degrade the I/O bandwidth that each application experiences. This phenomenon,
called cross-application I/O interference, stems from diverse sources: network
contention at the level of each storage server, poor scheduling decisions within



the storage service (i.e., parallel file system) leading to different servers servicing
requests from distinct applications in a different order, or additional disk-head
movements when interleaved requests from distinct applications reach the same
storage device.

The use of burst buffers in HPC systems [2, 3] has emerged with the ini-
tial goal to relieve the bandwidth burden on parallel file systems by providing
an extra layer of low-latency storage between compute and storage resources.
The Cori system at the National Energy Research Scientific Computing Center
(NERSC) [4], uses CRAY’s Datawarp technology [5]. The Los Alamos National
Laboratory Trinity supercomputer [6] will also use burst buffers with a 3.7 PB
capacity and 3.3 TB/s bandwidth. Intel has also discussed the use of burst buffer
nodes under the new Fast Forward storage framework [7] for future HPC sys-
tems. One common characteristic in all these use cases is to increase the total
I/O bandwidth available to the applications and optimize the input/output op-
erations per second (i.e., IOPS). In addition to serving as a pure storage option,
the notion of a burst buffer can make storage solutions smarter and more active.

In this paper, we address the problem of cross-application I/O interference by
coordinating burst buffer access to prevent such I/O degradation. We propose
several ways to mitigate the effects of interference by preventing applications
from accessing the same file system resources at the same time. We build on our
previous work leveraging cross-application coordination [1] and propose three
new strategies to mitigate interference. Two of these strategies are based on the
use of burst buffers to delay actual accesses to the storage system when multiple
applications are interfering. The third strategy dynamically partitions the paral-
lel file system’s resources in order to dedicate distinct subsets of storage servers
to each application when contention is detected. In summary, the contributions
of this paper are: (i) we propose the coordination of burst buffer access to manage
concurrent accesses to the underlying storage system (Section 3); (ii) we design
and implement several strategies to mitigate the effects of I/O interference (Sec-
tion 4); (iii) and we evaluate these strategies with several microbenchmarks and
show their results (Section 5). Section 6 presents related work, and Section 7
summarizes our conclusions and briefly discusses future work.

2 Background and Motivation

2.1 I/O Interference

Supercomputers generally are designed for maximum computing power to solve
a small number of large, tightly-coupled and compute-intensive problems. While
computing and network resources can be shared effectively by state-of-the-art
job schedulers, the same cannot be said about the storage resources (i.e., shared
parallel file systems). In fact, [8] and [9] suggest that I/O congestion, within and
across independent jobs, is one of the main problems for future HPC machines. A
significant source of performance degradation seen on the Jaguar supercomputer
at Oak Ridge National Laboratory was identified as concurrent applications
sharing the parallel file system [10].



The I/O performance degradation is caused by contention for resources.
These resources include network hardware used for I/O requests, file system
servers that are responsible for metadata operations and other I/0 requests, the
servers that are responsible for committing the I/O requests to the underlying
storage devices, and the storage media itself, as well as virtual resources such
as locks that are used to manage distributed accesses [11, 12]. In this study we
focus on the file system level. The main cause of interference in this level is how
the parallel file system services I/O requests from multiple applications (i.e., the
internal scheduler).

Prior work addressed this contention through storage server coordination,
where the basic idea is to serve one application at a time in order to reduce
the completion time and, in the meantime, maintain the server utilization and
fairness. [13]. However, applications still experience a bandwidth reduction since
the storage resource is still shared. Other work suggested solutions in the file
system scheduler [14, 15, 16]. However, those solutions need to be integrated
into the parallel file system’s server code. In this paper, we propose that by
preventing applications from concurrently accessing the same storage resources,
we can exploit the full potential of existing parallel file systems and allow the
system to provide higher global I/O throughput across multiple applications.

2.2 Burst Buffers

Scientific applications often demonstrate bursty 1/O behavior [17, 18]. Typically
in HPC workloads intense, short phases of I/O activities, such as checkpoint-
ing and restart, periodically occur between longer computation phases [19, 20].
New storage system designs that incorporate non-volatile burst buffers between
the main memory and the disks are of particular relevance in mitigating such
burstiness of I/0 [21].

Burst buffers as an intermediate storage tier located between RAM and spin-
ning disks are designed to help scientific applications in many ways: improved
application reliability through faster checkpoint-restart, accelerated I/O per-
formance for small transfers and analysis, fast temporary space for out-of-core
computations and in-transit visualization and analysis [4]. The most commonly
used form of a burst buffer in current HPC systems is dedicated burst buffer
nodes [2, 22]. These nodes can exist in the I/O forwarding layer or as a distinct
subset of the computing nodes (i.e., not part of the compute resources but re-
sponsible for acting as burst buffer nodes) or even as entirely different nodes
close to the processing resources (i.e., extra resources if available). A a burst
buffer can also be located inside the main memory of a computing node or as a
fast non-volatile storage device placed in the computing node (i.e., NVRAM de-
vices, SSD devices, PCM devices etc). Besides the above, the main functionality
of burst buffers is to quickly absorb I/O requests from the computing elements
and asynchronously issue them to the parallel file system (PFS), allowing the
processing cores to return faster to computation. In this paper, we propose to
use such burst buffers and, by coordinating them, tackle the I/O interference
caused by multiple applications running concurrently in the system.
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Fig. 1: Buffer-based coordination strategies. Black arrows correspond to cross-
application communications that allow them to know when to switch their buffer-
ing system on or off.

3 Owur Approach

Burst buffers are placed between the application and the parallel file system
layer. Thus they are naturally suitable to act as I/O traffic controllers and
prevent applications from accessing the underlying file system resources at the
same time. Burst buffers can achieve this objective by making a certain applica-
tion stage the I/O (i.e., buffer the requests) while another one is accessing the
shared parallel file system. We argue that when concurrent accesses from mul-
tiple applications are detected, we can avoid the undesirable 1/O interference
by dynamically changing the data distribution to the PFS, specifically by using
burst buffers to direct I/0O traffic to the underlying resources in a nonconflicting
manner.

3.1 I/0 Staging Policies

Previously proposed strategies, which consist of simply blocking one application
for the benefit of the other (first come - first served order or interruption of the
running application), have the disadvantage of completely blocking one applica-
tion while it could actually perform some computation. As an example, if the
I/O phase consists of compressing and writing chunks of data (as implemented
in HDF5), the application could compress multiple chunks and stage them when
there is contention, instead of blocking on a write operation. Another example is
in the case of collective I/O [23] (in particular two-phase I/O) where instead of
blocking on the first write, multiple rounds of communication could be completed
before writing is performed.

We introduce two strategies based on I/O staging to prevent or mitigate
I/O interference. Figure 1 demonstrates our approach for the cases where an
application has some other options for making progress instead of waiting for
another application to complete its I/O operations. Using the burst buffers,
an application waiting for access to the file system can actually stage its 1/0



operations locally and execute them later, that is, block only when closing the
file or forcing a flush.

The goal for these strategies is to prevent applications from accessing the
underlying storage system at the same time while allowing them to do something
else and not wait for the resource being blocked. Considering two applications A
and B, where A starts its I/O phase before B, we hold the following assumptions:
(a) applications notify each other in a timely manner about their respective 1/O
intentions (e.g., entering an I/O phase); (b) applications, when instructed to start
staging their I/O, have some other work to perform (e.g., some computation);
and (c) while an application is staging, its I/O consists of write-only phases. We
propose two strategies with two variations each as follows.

Strategy la: Application A starts staging its operations as B enters an I1/0O-
intensive phase. It blocks if necessary and flushes only after B has completed its
I/O phase. It continues writing after flushing if its operations are not completed.
This strategy is shown in Figure 1(a).

Strategy 1b: Application A starts staging its operations as B enters an
I/O-intensive phase. It then flushes its buffer when it has no more available
work even if B has not completed its operations yet. This strategy is shown in
Figure 1(b).

Strategy 2a: As B starts its I/O phase, it learns that A is already accessing
the file system and therefore starts staging its I/O requests. It blocks if neces-
sary and flushes only after A has completed its I/O phase. It continues writing
after flushing if its I/O operations are not completed. This strategy is shown in
Figure 1(c).

Strategy 2b: When B starts its I/O phase, it discovers that application A
is already accessing the file system; therefore, it starts staging its I/O requests.
It flushes the buffers as soon as it has no more available work, even if A has
not completed its I/O phase. It continues writing if its I/O operations are not
completed. This strategy is shown in Figure 1(d).

We propose these strategies having in mind different classes of applications
where the I/O phase might be time sensitive (i.e., they cannot wait for some
other application to finish) or where more bursty behavior is present in one of
them. The two different approaches in each strategy, stage and block or stage
and flush, offer greater flexibility to the system in order to execute concurrent
applications and get the maximum I/O throughput from the PFS.

3.2 Dynamic Partitioning of PFS

The dynamic partitioning strategy involves partitioning in space rather than in
time. Figure 2 illustrates our approach. We shift from both applications accessing
all available servers to partitioning the PFS into distinct subsets and directing
each application’s requests to different sets of storage servers. The intuition
behind the benefits of this strategy is that the performance of a parallel file
system usually does not scale linearly with the number of storage servers accessed
by an application. Preventing applications from accessing the same set of servers
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Fig. 2: Partition-based strategy. Instead of accessing all the storage servers, appli-
cations communicate and agree to interact with nonconflicting subsets of servers.

will prevent interference at the level of storage servers and their disks, leaving
only the network as a potential source of contention, however a reduced set of
storage servers will offer a lower bandwidth than will the full set. We distinguish
two variations of this strategy.

Strategy 3a: We define a static, predefined partitioning where both appli-
cations access different storage servers from the beginning until the end of their
execution. Even though fewer storage servers can offer less bandwidth to the ap-
plication, the prevention of I/O interference in the file system level (i.e., exclusive
access to the disks) might be enough to outperform the use of the entire PFS
installation. Splitting the servers into disjoint sets can be performed according
to several criteria; it depends on the available knowledge of the application’s
I/0 needs, scale, priority, and so forth. In this study, we explored proportional
sharing of the available storage servers according to the dataset size (i.e., total
amount of data) and the application size (i.e., number of MPI processes). For in-
stance, for 8 available storage servers; consider that application A writes 48 MB
per process and B writes 16 MB. For the same number of processes, application
A would write on 6 servers and B on the remaining 2.

Strategy 3b: The second variant is dynamic partitioning of the file system
when interference is detected. Burst buffers can make intelligent decisions; and,
when appropriate (i.e., when multiple applications try to access the file system
at the same time), they redirect I/O into separate and distinct subsets of storage
servers for each application. When no contention exists, applications are exposed
to the entire set of available servers in order to achieve maximum bandwidth.
This strategy is appropriate only for write workloads, since read workloads are
tied to the set of servers where the required data is stored. In our previous
example, consider that application A starts writing to all 8 servers; when B
starts an I/O phase, A directs all its I/O requests to 6 storage servers and B
writes to the remaining 2. After B finishes, A goes back to writing on all 8
servers.

The strategies presented in this paper could be scaled to more than two appli-
cations. However this would entail that we know which application should buffer,
which is outside the scope of this work that mostly focuses on the opportunities
such strategies provide for mitigating interference.



4 Design and Implementation

To evaluate the various strategies presented in Section 3, we implemented a
userspace buffering system, called BBIO (Basic Buffered 1/0)? working under
the POSIX and LibC interfaces. BBIO is a library comprising two parts. Its static
part libbbio.a can be linked to any code and provides the user-level interface to
initialize and control buffers. The dynamic part libbbio_posiz.so can be preloaded
to replace existing POSIX and LibC functions (such as write and furite).
Hence, the application will buffer its I/O only if the dynamic library is preloaded,
making the use of BBIO as simple as setting an environment variable.

The FILE structure provided by the standard C library already provides a
local memory buffer. Although the user can control the size of this buffer, the
user has no control over when the program will decide to flush it. In contrast,
BBIO allows the user to control both the size of the buffer allocated to a file
where this buffer is located and the moment the buffer can be flushed.

4.1 Interface and API

Our BBIO library presents the following interface to application developers.

— BBIO_Init(const char* path, size_t size): initializes BBIO, giving it the
path to a directory where it can write buffered data (path to an SSD, for
instance). Leaving this path NULL instructs BBIO to use RAM as storage.
The size provided is the maximum size allowed for a buffer associated with
any single file descriptor. Whenever the buffer is filled or if a write is issued
with a size that cannot fit the buffer, the buffer automatically resizes if there
is available space or is flushed.

— BBIO_Enable(int fd): enables buffering for a particular file descriptor. By
default, buffering is enabled for all files outside of system directories.

— BBIO_Disable(int fd): disables buffering for a particular file descriptor. If
buffering was previously enabled and some data have been put in the buffer,
the buffer is flushed.

— BBIO_Flush(int fd): forces a flush on the buffer associated with the file
descriptor.

— BBIO_Finalize(): finalizes BBIO. It will flush all the buffers currently man-
aged.

— BBIO_On flush(int fd, BBIO_Callback cb): installs a callback function
that will be called before any flush (whether this flush is triggered manually
by BBIO_Flush, BBIO Disable, or BBIO_Finalize or automatically when the
buffer is full). The callback will not be called when trying to flush an empty
buffer. The BBIO _Callback object must have the signature void () (int £d).

Using this interface lets us implement various interference-avoiding strategies
based on cross-application communication. For example, using BBIO_On_flush

3 Our implementation is available at https://bitbucket.org/mdorier/bbio.
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can detect some other application’s I/O traffic, thus preventing the application
from flushing its buffer while another application is accessing the PFS, and wait
for the file system to be available again.

4.2 Implementation Details

When BBIO captures a POSIX or a LibC function call, it first checks whether
if the referenced file descriptor has a buffer associated with it. Such a buffer is
either an mmap-ed file in a local disk or an anonymous memory segment. The
buffer associated with a file is not a local copy of this file. Instead, the local
file is a log of the operations to be performed on a file. For example, a write
operation will add an operation code identifying it, followed by the size of the
write and then a copy of the data. If several contiguous writes are issued, BBIO
combines them by updating the size of the first one and appending the data of
subsequent ones. Because of this log-structured implementation, BBIO is not yet
able to work with files accessed both in read and write modes. BBIO will still
associate a buffer to files opened in both read and write modes but will disable
it if read operations are issued.

While most parallel file systems provide some ways to control the distribution
policy across servers (stripe size and number of servers to stripe across), they
usually do not provide a coordinated way to specify which servers should be
used among multiple applications. To simulate such a possibility, we deployed
separate PVFS instances on different sets of storage servers each, and let each
application access its own PVFS instance.

5 Experimental and Evaluation Results

5.1 Methodology

Platform description: All experiments were carried out on a 65-node SUN
Fire Linux-based cluster at the Illinois Institute of Technology. The computing
nodes are Sun Fire X2200 servers, each with dual 2.3 GHz Opteron quad-core
processors and 8 GB of main memory. A 250 GB hard drive and an additional
PCI-E X4 100 GB SSD are attached to each node as the storage devices. All
65 nodes are connected with Gigabit Ethernet. The network topology of the
cluster consists of three groups of nodes connected to three distinct network
switches with adequate capacity (i.e., 22 nodes on a router of 25 Gbits/sec)
and a master node. We ran a series of network benchmarks to investigate the
network’s capabilities, and we found that the Gigabit Ethernet is sufficient to
support our experiments without being a bottleneck. A subset of these compute
nodes on network switch 1 was used to deploy a PVFS file system [24], and all
client processes were dispatched on switches 2 and 3 simulating a supercomputer
infrastructure with a separate PFS (i.e., all requests to servers go through the
inter-rack network and not through the faster intra-rack connections).



Software used: The operating system is Ubuntu
Server Edition 12.04, the parallel file system installed AppA AppB
is OrangeFS v2.9.2; and the data distribution policy MP! Barrier
chosen is the “simple distribution” [25]. We compiled
our code using gcc compiler version 4.8. The MPI im-
plementation is MPICH 3.1.4. We developed an IOR-
like microbenchmark that starts by splitting its set
of processes into two separate sets running on differ-
ent sets of compute nodes, representing two distinct
applications. Each process writes a series of N re-
quests of size S contiguously in a file, using POSIX
furite calls. Between each request, the processes
wait (sleep) a given delay d representing computa-
tion that could occur between requests. The second
group of processes waits a specified amount of time D
before starting its own series of I/O operations while
the first set begins performing I/O. Both applications have a delay d between
each write request. Figure 3 summarizes the behavior of our microbenchmark.
The coordination between applications in our benchmark is done by using MPI
communication. For example, in strategy 1, to know when B starts its I/O phase,
A posts a nonblocking barrier before beginning its series of I/O operations. It
then checks (MPI_Test) for completion of this barrier before each write. When
B starts its I/O phase, it posts the matching nonblocking barrier, allowing A to
know that B has started its I/0.

Measurements: For each group of processes acting as a distinct application,
we wrapped all I/O operations between timing calls (i.e., MPI_Wtime), and we
calculated the total time spent in I/O. We repeated all experiments five times,
and we report the average values. We also leveraged the tools introduced in
our previous work [1]: A-graphs are plots of a given performance metric as a
function of the interapplication delay D. We consider only positive values of D
(i.e., application B starts its I/O phase after application A). We also present the
results in terms of an interference factor, which is a slowdown with respect to the
application running without contention (i.e., an interference factor of 2 means
that the duration of the write phase has been multiplied by 2). The interference
factor thus is defined as Iy = 1o m?gwt;’mea:znf crence We always measure the
duration of an I/O phase as the time between the moment the file is opened and
the moment it is closed; thus the interrequest delay (N — 1) x d is counted in
this duration, but the interapplication delay D is not.

Fig.3: Overview of our
microbenchmark.

5.2 Experimental Results

Default case with nterference (no strategies). We first quantify the in-
terference encountered by the applications for different values of d and as a
function of D. In this set of experiments, two groups of 256 processes write a
series of 32 blocks of 1 MB in individual files, leading to 8 GB of output per
application. We do not implement any coordination strategy; instead, we let the
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Fig.4: Default case with no strategy applied. Interference factor observed by
each application as a function of the delay D (sec) and for different values of the
inter-request delay d (ms).

two applications interfere. Figure 4 shows the observed interference factor for
applications A (a) and B (b). We first observe that when a delay is introduced
between 1/0 requests, the interference factor experienced by each application is
lower than when there is no delay at all. A second observation is that although
the two applications are identical, the interference factor in both is often larger
than 2 (up to 2.3 here) even when the two I/O phases do not start at the same
time. This shows that the slowdown produced by interference is larger than what
we would expect from a proportional sharing of resources, thus motivating our
strategies. We also observe that when the applications start at the same time,
the slowdown is significant and cannot be ignored; on the other hand, when
the inter-application delay is larger than 25-30 seconds, the interference factor
reduces because the first application is almost finished when the second starts
accessing the PFS.

I/0 staging-based strategies. We evaluated our two I/O staging-based strate-
gies with their two respective variations presented in Section 3.1 using the same
configuration as above.

Results with Strategy 1la: Figures 5(a) and 5(b) present the results where
A buffers when B starts writing. Application A flushes and continues only after
B is finished. This strategy is advantageous to B, whose observed interference
factor is around 1 (no slowdown) since it enjoys exclusive access to the PFS.
From A’s perspective, staging its requests instead of interfering with B leads to
a lower interference factor, between 1.2 and 1.8, instead of 1.2 to 2.2 in the default
case with interference. For B there is no slowdown (since it is prioritized), and
for A the interference factor is lower because burst buffers allow it to continue
executing until it is absolutely necessary to block and wait for B to finish.

Results with Strategy 1b: Figures 5(c) and 5(d) depict the results of
the other variation, where A is buffering when it detects that B is writing; but
instead of blocking waiting for B to finish, it flushes and continues. The intuition
for this variation of the strategy is that we could tolerate some interference to
happen in both applications. It lies somewhere between the previous variation of



[ Delayo' —+— | [ Delayo' —+— | [ Delayo —— | [ Delayo' —+— |
22 Delay250 22 22 22
2ot Delay500 —*— -f g2r Delay500 —*— 2ot Delay500 —*— - g2r Delay500 —*— 7
8 .. Delay750 —o— |
\
o

08 5015202530 35 40 45 50 06 55015202530 35 40 45 50 5015202530 35 4045 50 5015202530 35 404550
Inter-application delay (D) Inter-application delay (D) Inter-application delay (D) Inter-application delay (D)

(a) Application A (b) Application B (c) Application A (d) Application B

Fig. 5: Strategy 1. Interference factor observed by each application as a function
of the delay D(sec). Variation la to the left in (a) and (b) and variation 1b to
the right in (c) and (d).

the same strategy and the pure blocking of A until B finishes. For A the behavior
is similar to that described earlier, with the difference that interference is less
apparent as D increases, because A is allowed to flush the buffer and need not
block waiting for B to finish. Specifically for interapplication delay less than 30
seconds, the interference factor for A is kept around 1.5 (lower than the default
but slightly lower than strategy la) and drops to 1.2 after that. Application B
experiences an interference factor of around 1.2, slightly higher than before since
the flushing of A happens earlier and forces B to lose the exclusive access to the
PFS.

Results with Strategy 2a: This strategy is similar to Strategy la but
with priority reversed. Here, A writes having exclusive access to the PFS, and
B upon entering its I/O phase starts staging the requests until it blocks waiting
for A to finish. Application B flushes the buffers and continues writing only after
A has finished its I/O operations. Figures 6(a) and 6(b) show the results. As
expected, A demonstrates an interference factor close to 1, while B starts with
around 1.5-1.6 for interapplication delay 0 seconds (i.e., when both applications
start at the same time) and drops close to 1 for delays larger than 30 seconds,
approximately the time needed to complete the I/O phase.

Results with Strategy 2b: As with Strategy 1b, in this case B stages
its operations when it enters its I/O phase because A is writing, however B
flushes the buffers even if application A is not finished yet. Figures 6(c) and 6(d)
demonstrate the results for both applications. Application A performs stably
with interference factor around 1.2 for all values of D. Application B, on the
other hand, when it starts at the same time as A, observes an interference factor
of 1.6, which gradually decreases as delay D increases. One observation is that
this decrease comes with higher interapplication D than Strategy 2a has, because
the flushing of the buffers, before A has finished, increases the interference for
both applications.

Partition-based Strategies. To evaluate the partitioning strategy, we con-
ducted three tests with four configurations each as follows. The first test con-
siders two applications A and B, identical in scale (i.e., same processes) and
workload (i.e., data per process), and is referred as 50-50% in the figures. The



Delayo' —+— | 22l Delayo' —+— | o2 | Delayo' —— | 22| Delayo' —+— |
5 Delay250 2 Delay250 5 Delay250

2ot Delay500 —*— - g2r Delay500 —*— g2t Delay500 —*— - g2r Delay500 —*— 7

S gl Delay750 —&— | S8 Delay750 —o— -| Sal Delay750 —o— | 818 L Delay750 —&— -|

08 5015202530 35 40 45 50 06 55015202530 35 40 45 50 08 65015202530 35 40 45 50 06 5015202530 35 40 45 50
Inter-application delay (D) Inter-application delay (D) Inter-application delay (D) Inter-application delay (D)

(a) Application A (b) Application B (c) Application A (d) Application B

Fig. 6: Strategy 2. Interference factor observed by each application as a function
of the delay D(sec). Variation 2a to the left in (a) and (b) and variation 2b to
the right in (c) and (d).

proportional split of 8 available storage servers is in half for this test case. The
second test considers two applications with the same scale, but A writes three
times more data per process than does B, and is referred as 75-25% D in the
figures. In the third test A has three times more processes than does B, but
writes the same data per process and is referred as 75-25% S in the figures. For
those two test cases the proportional split is 6 servers for A and the remaining 2
for B. As we presented in Section 3.2, we have two cases for the partition-based
strategy; static and dynamic partitioning of the PFS, referred to as Strategy 3a
and 3b, respectively.

Results with Strategy 3a (static partitioning): The results are reported
in Figure 7. We notice that when dividing by 2 the number of servers that an
application accesses, the throughput observed by the application is decreased
to about 75% of the throughput observed with all the servers, instead of 50%.
When two applications concurrently access all 8 servers however, the slowdown
is more than 2x. By partitioning the file system and letting each application
access its own set of servers, we achieve an expected result: the application’s
throughput lies somewhere between the throughput observed with contention
and the throughput observed with proportional servers for an individual ap-
plication. This shows that by partitioning the file system so that concurrent
applications do not access the same set of servers, we are able to mitigate the
I/0O interference and increase the I/O performance up to 40% relative to the de-
fault case where applications interfere while sharing the same storage resources.

Results with Strategy 3b (dynamic partitioning): In this experiment,
we modified our benchmark to simulate the dynamic partitioning of the parallel
file system’s storage servers. There are three different installations of PVFS:
one full deployment on all 8 storage servers, and two deployments with the
proportional split. For instance, for the identical applications scenario where
we split the PFS in half, two new deployments of PVFS on 4 storage servers
each were used. Application A opens two files, one on the full and one on the
proportional installation of the PVFS. Application B opens a file on the other
proportional deployment. When A starts executing, it uses the full installation
on 8 servers. Upon the arrival of B, A redirects all its conflicted I/O requests to
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Fig. 8: Strategy 3b. Throughput observed by the applications when writing alone
and in contention to all available servers or to proportional number of servers.

the proportional deployment. Thus no interference occurs since the applications
are accessing a different set of servers. Once B finishes, A goes back to using all
8 servers.

Figure 8 demonstrates this dynamic partitioning strategy. The results are
expressed in terms of bandwidth (MB/s). We can see that when both applications
start at the same time in the case of interfering (i.e., blue and purple lines), the
performance is around 70-80 MB/s, and it increases as the interapplication delay
D increases (i.e., interference is less). The dynamic partitioning strategy offers
application A a bandwidth of 123 MB/s at delay 0, an increase of 75% with
respect to the default case with interference. Bandwidth continues to increase
with D since A is taking advantage of a full 8-server PFS deployment until it is
forced, when B enters its I/O phase, to use the smaller 4-server PFS resource.
On the other hand, B experiences stable performance since it always operates
on a separate set of 4 servers, representing applications with smaller I/O bursts.
We conducted the same dynamic partitioning strategy for the case 75-25% on



data size and job size, and the results are similar. Because of space limitation,
however, we do not present the results here.

5.3 Benefits and Limitations of Buffering
During our experiments we noticed

an effect taking place in certain test
cases. Figure 9 shows the perfor-
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tively. By turning on the buffering
system, we would intuitively expect a
boost in performance. For delay 0, A
achieves 96 MB/s bandwidth, which (delay 750).

is 20% better compared with the in-

terference case with buffering off. For

delay 750 ms however, application A experiences a bandwidth of 87 MB/s, which
is slightly lower than that with buffering off. Additionally, the interference factor
between delay 0 is higher than the case with delay 750 ms.

This behavior is further examined and analyzed as follows. We investigated
the internal behavior of every process inside each application. We focus on one
application. The test comprises our microbenchmark where each process is writ-
ing 1 MB of data 32 times with a delay between each I/O operation. In Figure 10
we can see the duration of each I/O request for some randomly selected processes
during our tests. When all processes are writing at the same time with no delay
between each I/O request, we see that the duration of those I/O operations is
longer because of the interference. As the delay between each 1/O request in-
creases (i.e. 250 ms, 500 ms, 750 ms), we see a decrease on the duration of each
request, a self-stabilizing effect where the computation/communication phase of
one process might allow the I/O phase of another one to complete faster. Thus,
turning on the buffer and flushing it at some later point make all processes of a
single application interfere internally with one another. Hence, this solution is
worse than allowing the interference with a second application in the first place.
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Therefore, counterintuitively, staging the I/O of one application to allow another
one to exclusively access the shared storage resource and then flushing all the
buffers from the delayed application at the same time might actually hurt the
overall performance and highly depends on the access patterns the applications
have.

6 Related Work

Many research studies have tried to address the I/O interference issue by schedul-
ing I/O requests at the PFS level. In the network request scheduler presented by
Qian et al. [26], requests embed deadlines and the targeted object’s identifier.
This added knowledge allows the file system to make informed decisions on how
to treat interleaving requests from independent applications. Song et al. [13]
achieve the same result with applications’ ids instead of objects’ ids. AGIOS,
proposed by Boiteau et al. [15], also guides the file system’s scheduler’s decision
through additional information that future I/O requests predicted thanks to
traces. Zhang et al. [12] leverage a “reuse distance” to state whether it is worth-
while for a data server to wait for an application’s new I/O request or to service
other applications requests. Lebre et al. [14] provide multi-applications schedul-
ing with the goal of better aggregating and reordering requests, while trying
to maintain fairness across applications. Gainaru et al. [16] propose scheduling
techniques to optimize the system’s I/O efficiency under congestion. They rely
on the periodicity of the applications and thus the eventual predictability of
their I/0O load.

Closer to our work, Batsakis et al. [27] propose a system in which clients
price their nonblocking requests depending on the ability to delay the requests,
and an auction mechanism chooses which requests should be serviced first. In a
way, the ability to delay a request is also present in our proposed Strategies 1
and 2, where requests can be staged in a burst buffer to allow the computation
to continue. But our proposed strategies work with any type of request, whereas
theirs is tied to nonblocking requests only. Tanimura et al. [28] propose to re-
serve throughput from the storage system. This approach can be compared with
our third strategy based on file system partitioning. However, this reservation



is made at job submission in their approach, whereas ours leverages commu-
nications between applications in order to understand when and how the file
system’s resources should be partitioned.

In a recently published work [29], an I/O orchestration framework named
TRIO is proposed that also coordinates the timing when burst buffers are moving
the checkpointing data to the PFS. By controlling the flushing orders among
concurrent burst buffers TRIO tries to alleviate the contention on storage servers.
However, it does not consider the application’s I/O access patterns, and an
alternating computation-I1/O behavior is not taken advantage of. TRIO focuses
more on when the burst buffers will spill the data to the PFS, whereas we
leverage the existence of burst buffers to act as a traffic controller and prevent
I/0O interference while allowing applications to do other usefull tasks. We also
provide a comprehensive set of strategies to mitigate the negative effects of
I/O interference, and we propose other ways to use burst buffer coordination
(dynamic partitioning of PFS).

7 Conclusion

Cross-application 1/O interference is becoming an important issue as we move
toward exascale. This issue has initiated unconventional approaches in which
independent applications can learn each other’s behavior and coordinate their
accesses to the shared, parallel file system. In this paper, we have proposed three
strategies that applications can employ to better coordinate their accesses. Two
rely on burst buffers and on the fact that instead of blocking, applications can
stage their I/O requests and reissue them later, when the file system is more
available. The third strategy ensures that the applications access distinct sets
of storage servers. We have shown the potential of our three strategies with a
microbenchmark; the results show performance improvements up to 2x.

As future work, we plan to investigate the advantage of these strategies in
a larger set of experiments involving applications of different sizes, different ac-
cess patterns, and different memory requirements, as well as real application
workloads. We also plan to scale all strategies to more than two concurrent
applications. We move from the cross-application coordination scheme, where
applications communicate their I/O behavior to each other, to a system wide co-
ordination scheme where a global, centralized entity is responsible for managing
all concurrent applications’ accesses to the shared underlying storage resources
using our strategies. In this direction, we also plan to equip this entity with 1/0
prediction capabilities, using the Omnisc’IO [30] approach, and thus select the
best coordination strategy.
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