Extreme-Scale Stochastic Particle Tracing for
Uncertain Unsteady Flow Analysis

Wenbin He
The Ohio State University
2015 Neil Ave.,
Columbus, OH 43210 USA

Hangi Guo
Argonne National Laboratory
9700 S. Cass Ave.,
Argonne, IL 60439 USA
Email: hguo@anl.gov

Tom Peterka
Argonne National Laboratory
9700 S. Cass Ave.,
Argonne, IL 60439 USA
Email: tpeterka@mcs.anl.gov

Abstract—We present an efficient and scalable solution to
estimate uncertain transport behaviors using stochastic flow maps
(SFM,) for visualizing and analyzing uncertain unsteady flows.
SFM computation is extremely expensive because it requires
many Monte Carlo runs to trace densely seeded particles in the
flow. We alleviate the computational cost by decoupling the time
dependencies in SFMs so that we can process adjacent time steps
independently and then compose them together for longer time
periods. Adaptive refinement is also used to reduce the number of
runs for each location. We then parallelize over tasks—packets of
particles in our design—to achieve high efficiency in MPI/thread
hybrid programming. Such a task model also enables CPU/GPU
coprocessing. We show the scalability on two supercomputers,
Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K
Opteron cores and 8K GPUs), that can trace billions of particles
in seconds.

I. INTRODUCTION

Visualizing and analyzing data with uncertainty are im-
portant in many science and engineering domains, such as
climate and weather research, computational fluid dynamics,
and materials science. Instead of analyzing deterministic data,
scientists can gain more understanding by investigating un-
certain data that are derived and quantified from experiments,
interpolation, or numerical ensemble simulations. For exam-
ple, typical analyses of uncertain flows involve finding possi-
ble pollution diffusion paths in environmental sciences with
uncertain source-destination queries and locating uncertain
material boundaries in computational fluid dynamic models
with uncertain Lagrangian analysis.

In this work, we develop a scalable solution to compute
stochastic flow maps (SFMs), which characterize transport
behaviors in uncertain unsteady flows. SFMs are the gener-
alization of flow maps of deterministic data and hence are the
basis for uncertain flow analysis. Formally, the flow map is a
function that maps the start location and the end location after
time 7" in a flow field; the SFM follows the same definition
except that the end location is stochastic. Applications based
on SFMs include not only uncertain source-destination queries

Email: he.495 @buckeyemail.osu.edu

Sangmin Seo Han-Wei Shen
Argonne National Laboratory The Ohio State University
9700 S. Cass Ave., 2015 Neil Ave.,
Argonne, IL 60439 USA Columbus, OH 43210 USA
Email: sseo@anl.gov Email: shen.94 @osu.edu

but also uncertain flow separatrix extraction [1] and uncertain
flow topology analysis [2]. For example, finite-time Lyapunov
exponent (FTLE) analysis can be generalized to understand
uncertain transport behaviors in uncertain flows [1]. The distri-
bution of Lagrangian coherent structures (LCS)—the material
boundaries in unsteady flows—can be further extracted as
the ridges in stochastic FTLE fields. Similarly, uncertain flow
topologies are based on the distributions of SFMs. Even more
methods for uncertain flow analysis methods are likely to be
developed for various applications, but the main obstacle will
be the SFM computation.

SFM computation is extremely expensive and thus requires
supercomputers. Currently, the only practical solution for
computing SFMs is to perform Monte Carlo runs, which trace
the particle stochastically in the uncertain data. However, one
must trace billions or even trillions of particles for a typical
analysis. For example, if the number of grid points and Monte
Carlo runs is 10° and 102, respectively, and if the data has
103 time steps, the overall number of particles will be 10'2.
As documented in previous studies [1], [2], it may take hours
to days to run a small problem, even with GPU acceleration.

Achieving high scalability with existing parallel particle
tracing algorithms in SFM computation is difficult. Two basic
parallelization strategies exist: parallel-over-seeds and parallel-
over-data. The parallel-over-seeds algorithms distribute parti-
cles over processes, and each process loads the required data
on demand. The parallel-over-data algorithms partition the data
into blocks, distribute the blocks to different processes on
initialization, and exchange particles that are leaving the local
blocks during the run time. However, the parallel efficiency
decreases rapidly as we add more computational resources
because of the flow complexity and the communication cost.
In recent publications, the parallel efficiency is about 45% on
16K cores for 162M particles [3] and 35% on 16K cores for
40M particles [4]. Tracing billions or even trillions of particles
at extreme scale is still challenging.

We have observed two major differences between deter-

ministic and stochastic flow map computations. First, the task
dependencies in deterministic flow map computation are strict,
but they can be loosened in SFM computation. By default,
one must trace a particle based on its current location. In
the stochastic case, the “current” location is also stochastic;
thus the strong dependency can be released by transforming
the problem into a probabilistic model. Second, the problem
size of SFM computation is much larger. Existing parallel
algorithms do not scale for the numbers of particles required
by the Monte Carlo runs. The challenges are the memory
footprint, the designs of task models, load balancing, and
communication patterns. Solving these challenges requires a
new parallel framework for SFM computation.

We propose a decoupled SFM computation that removes
the time dependencies, in turn reducing communication and
improving scalability. For time-varying uncertain flow data, we
can compute SFMs between adjacent time steps independently
on supercomputers and then compose them for any arbitrary
time interval of interest. The rationale for the composition
is the law of total probability. The computation is based on
sparse matrix multiplication. Because the working data (two
adjacent time steps) is much smaller than the whole sequence,
we can duplicate the working data across processes as much
as possible, so that more data are locally available. Decoupling
the advection into short time intervals also shortens the travel
distances of particles, and thus less communication is required.
In addition, we introduce adaptive refinement over the number
of Monte Carlo runs for each seed location. Experiments
show that computing decoupled SFMs combined with adaptive
refinement is more efficient.

In our software architecture, we adopt a novel hierarchical
parallelization. On the top level, processes are subdivided
into groups, each with a duplication of the working data.
They are embarrassingly parallel over shuffled seed locations.
Within groups, each process has a portion of data blocks, and
MPl/thread hybrid parallelization is used. A dedicated thread
is used to manage nonblocking interprocess communications,
and a pool of threads is employed to process particle tracing
tasks. Lock-free data structures are also used to manage the
tasks queues. All compute cores work concurrently without
any synchronization.

The task model design is also unique. The granularity of a
task is a packet of particles associated with the same block.
The benefits of this approach are avoiding frequent context
switch in MPI/thread parallelization and enabling CPU/GPU
coprocessing when GPUs are available. The philosophy of
coprocessing is to schedule complex and heavy tasks for
GPUs while leaving lighter tasks for CPUs. To the best of
our knowledge, our system is the first such hybrid CPU/GPU
implementation for parallel particle tracing problems.

We demonstrate the scalability of our system on two
leadership computing facilities: Mira in Argonne National
Laboratory and Titan in Oak Ridge National Laboratory. On
Mira, we test the performance up to 1 million Blue Gene/Q
cores over 16,384 nodes. On Titan, we test up to 131,072
AMD Opteron cores cooperating with 8,192 NVIDIA K20X

GPUs. On these supercomputers, our method allows tens of
billions of particles to be traced in seconds. Our system thus
can help scientists analyze uncertain flows in greater detail
with higher performance than previously possible. In summary,
the contributions of this paper are as follows.

o A decoupled scheme that makes it possible to compute
SFMs in a highly parallelized manner.

e An adaptive refinement algorithm to reduce SFM com-
putation cost.

o A fully asynchronous parallel framework for stochastic
parallel tracing based on thread pools, nonblocking com-
munication, and lock-free data structures.

o A parallel CPU/GPU coprocessing particle tracing imple-
mentation based on the asynchronous framework.

The rest of this paper is organized as follows. We introduce
the background and review related work in Section II. The
decoupled and adaptive SFM computation is described in
Section III, followed by the parallel framework design in
Section IV. We demonstrate the application cases in Section V
and then evaluate the performance in Section VI. Conclusions
are drawn in Section VII.

II. BACKGROUND

We formalize the concepts of stochastic flow maps and
review the related work on uncertain flow visualization and
parallel particle tracing.

A. Stochastic Flow Maps

We review the concepts of flow maps in deterministic data
and then describe their generalization in uncertain flows.

Formally, in a deterministic flow field v : R+l 5 R” the
flow map ¢ maps the (n + 2)-dimensional tuple (xg, to,%1)
into R™, where n is the data dimension and ¢, t; are time.
As illustrated in Fig. 1(a), the physical meaning of qﬁié (x0)
is the location at time ¢; of the massless particle released at
the spatiotemporal location (xg, o). Assuming v satisfies the
Lipschitz condition, the flow map is defined by the initial value
problem

991 (x0)
oty

In analyses such as FTLE, the flow map is usually computed at
the same resolution as that at the data discretization. Particles
are seeded at every grid point (or cell center) and then traced
over time until time ¢;. Numerical methods, such as Euler or
Runge-Kutta, are usually used in the particle tracing. Based
on the definition, we can derive that

= v(¢}!(x0)), and ¢}°(x0) =xo. (1)

012 (x0) = 12 (91 (%0)) = ¢ (x1),)

where tg < t; < to.

The uncertain flow field V : R*"™1 — R” and its flow
map ¢ are stochastic. As shown in Fig. 1(b), for a given seed
(x0, to), the final location of this particle at time ¢ is a random
variable denoted as <I>§(1] (x0). The probability density function
of ®4!(x) is defined as

to t t

T el

.

XZIZP/S(XO)

t

pg (Xo)/

o
o =@1(xq)

@) (b)

Xi=Dsp(Xo)

Fig. 1. (a) Flow map computation in a deterministic flow; (b) SFM computation in an uncertain flow; (c) decoupled SFM computation.

pit(x0; %) = Pr(®f (x0) = %), 3)

where p is a (2n + 2)-dimensional scalar function. The usual
approach is to trace a number of particles in V by Monte Carlo
simulations and then to estimate the densities of particles. For
each particle originated from (x,t), the final location is the
solution of the stochastic differential equation

dPil (x0) = V(P (x0), t1)dty + B(®) (x))déy,, (4)

where B and ¢ characterize the random disturbance. This
system can be solved by Euler-Maruyama or stochastic Runge-
Kutta methods. The computation of p is extremely expensive.
Hence, we propose to alleviate the cost with a novel paral-
lelization strategy. Similar to the property for stochastic flow
maps, we have

Pr(®;2(xo) = xa) = Pr(®2(x1) = x2 | 04 (x0) = x1).
3)
We will use Eq. 5 to efficiently compute pig given that pié
and pif are already known (Section III).

B. Uncertain Flow Visualization and Analysis

Uncertain flows impose a grand challenge in visualization,
because they are based on two core topics—uncertainty vi-
sualization and flow visualization. Comprehensive reviews on
uncertainty visualization can be found in [5], [6], and reviews
on flow visualization are available in [7], [8], [9].

We categorize uncertain flow visualization techniques into
two major types: Eulerian- and Lagrangian-based methods.
This classification based on fluid dynamics considers flow
fields at specific spatiotemporal locations and at individual
moving parcels, respectively. Eulerian uncertain flow visual-
izations usually directly encode data into visual channel, such
as colors, glyphs [10], and textures [11]. Our focus instead in
this paper is on the Lagrangian-based methods that analyze
transport behaviors in uncertain unsteady flows.

Lagrangian uncertain flow visualization includes topology
analysis for stationary data and FTLE-based analysis for time-
varying data. Otto et al. [12] extend vector field topology to
2D static uncertain flow. Monte Carlo approaches are used to
trace streamlines that lead to topological segmentation. The
same technique is applied to 3D uncertain flows in a later
work [2]. For 3D unsteady flows, vector field topologies are no

O Process1 O Process 2
S ona) ¢ o
/1 [N

N

(a) (b) (@

Fig. 2. Parallel particle tracing paradigms: (a) parallel-over-data; (b) parallel-
over-seeds; (c) parallel-over-tasks used in this paper. The task granularity in
(c) is a pack of particles associated with the same block.

longer feasible because they are unstable and overwhelmingly
complicated. FTLE and LCS are alternatives for analyzing
unsteady flows. One use of FTLE in uncertain unsteady flows
is FTVA [13], which is based on the variance of particles
advected from the same locations over a time interval of
interest. Recently, Guo et al. [1] proposed two metrics to
generalize FTLE in uncertain unsteady flows: D-FTLE and
FTLE-D. The former is the distribution of FTLE values that
can lead to uncertain LCS extraction; the latter measures the
divergence of particle distributions and has showed better
results than variance-based methods. In this paper, we address
the common problem of these methods: the high computational
cost of Monte Carlo particle tracing.

C. PFarallel Particle Tracing

Parallel particle tracing is a challenging problem in both the
HPC and visualization communities. A comprehensive review
of this topic can be found in [14]. Parallel particle tracing
algorithms can be categorized into two basic types—parallel-
over-data and parallel-over-seeds, as illustrated in Fig. 2. The
two paradigms can also be combined for better scalability.

Parallel-over-data algorithms rely on data partitioning for
load balancing. A common practice of data partitioning is to
subdivide the domain into regular blocks. Peterka et al. [15]
show that static round-robin block assignments with fine
block partitioning can lead to good load balancing in tracing
streamlines in 3D vector fields. The static load balancing can
be further improved by assigning blocks based on estimated
workloads [16]. Nouanesengsy et al. [3] further partition the
data over time in FTLE computation. In addition to regular
blocks, irregular partitioning schemes are used to improve

the load balancing. For eample, Yu et al. [17] propose a
hierarchical representation of flows, which defines irregular
partitions for parallel particle tracing. Similarly, mesh repar-
titioning algorithms are used to balance the workload across
processes [18]. Our method follows the regular decomposition
and round-robin assignments for intragroup parallelism.

In parallel-over-seeds algorithms, seeds are distributed over
processes. Pugmire et al. [19] explore this strategy to load data
blocks on demand; thus there is no communication between
processes to exchange particles. Guo et al. [20] present a
framework to manage the on-demand data access based on
the key-value store. Fine-grained block partitioning and data
prefetching are employed to improve the parallel efficiency.
The parallel-over-seeds paradigm shows better performance
in applications such as 3D stream surface computation [21],
but it often suffers from load-balancing issues because flow
behaviors are complicated and unpredictable. Work stealing
has been used to improve the load balancing in 3D stream
surfaces computation [22]. Mueller et al. [23] propose a work
requesting approach that uses a master process to dynamically
schedule the computations. In this work, we dynamically
schedule the tasks between worker threads within single pro-
cesses.

Hybrid methods combine both parallelization paradigms.
For example, a hybrid master/worker model can be used to
dynamically schedule both particles and blocks [19]. DStep [4]
employs multitiered task scheduling combined with static data
distribution. The framework is further extended to handle
a large number of pathline tracing tasks for ensemble flow
analysis [24]. In this work we must handle even larger scales
of particles adaptively. Camp et al. [25] develop a hybrid
implementation based on an MPI/threads programming model,
which is also used in a distributed GPU-accelerated particle
tracing implementation [26].

We regard our system as a hybrid method. We parallelize
over data within process groups while parallelizing over seed
locations across the groups. The MPI/threads model is also
used with a unique task design, which is a packet of particles
instead of single particles that are used by Camp et al. [25].
This model also enables us to trace massive particles on all
available CPU and GPU resources simultaneously. We further
compare our work with previous studies in the following
sections.

Our work is also related to adaptive refinements in FTLE
computation. Barakat and Tricoche [27] show that the FTLE
field can be estimated by sparse samples instead of tracing
densely seeded particles. An alternative approach is to sacrifice
accuracy by hierarchical particle tracing [28]. These methods,
however, are difficult to scale in distributed parallel environ-
ments. Our algorithm instead adapts the number of Monte
Carlo runs in a full-resolution SFM computation.

III. DECOUPLED AND ADAPTIVE SFM COMPUTATION

In this section, we introduce the decoupled scheme and the
adaptive refinement algorithm to compute SFMs. The work
flows of our methods are shown in Fig. 3. We first compute

Uncertain Decoupled Arbitrary Vis &
Unsteady SFMs Interval Analysis
Flows SFMs

Fig. 3. The workflow of our methods.

decoupled SFMs and then compose them to SFMs of arbitrary
time intervals. The SFMs are further used for visualization and
analysis.

A. Decoupled Computation of SFMs

Decoupling the particle advection of successive time steps is
the key to achieving high scalability in SFM computation. De-
coupling removes the time dependencies, so that we can first
compute SFMs for adjacent time steps in independent runs and
then compose them for arbitrary time intervals. Decoupling
has two benefits. First, for adjacent time steps, the lifetimes
and travel distances of particles are less than in long time
periods, reducing the communication cost and the memory
footprint. Second, the working datasets in independent runs
are much smaller and hence easier to handle the entire data at
once, leaving more memory to duplicate the working dataset
across processes. Thus, data locality is improved, and less
communication is required in order to exchange tasks between
processes.

We illustrate the SFM decoupling in Fig. 1(c). Formally, we
decouple the computation of pfj , given arbitrary ¢ and j that
satisfy 0 < ¢ < 57 < ny — 1, where n; is the number of time
steps of the data. We first independently compute SFMs for
adjacent time steps piﬁc’““), 0 < k < ny — 2, and then derive
py! based on piij*“.

The theoretic foundation of our algorithm is based on Egs. 3
and 5. Without loss of generality, we wish to compute pif)
given pi! and p;>. The scalar function p;? can be written as

3
P2 (03 x2) & Pr(®!2(x0) = x)

(:)/ Pia (x03x1) Pr(®f; (x1) = %2 | @} (x0) = x1)dxs
D

(x2) / P12 (303 1) Pr(®1 (x0) = 31 | B (x0) = %1)
D

Pr((I’E (x1) = X2 | ‘I)EJ (x0) = x1)dx
(:)/ pié(xo;xl) x 1 x Pr(@if(xl) = Xg)dx1,
D

3
(:)/ 1 (%03 X1) P2 (%15 Xg)dxy,
D

(6)

where D is the domain of the uncertain vector field V. The
rationale of (*) is the law of total probability, and (**) is based
on that ®{! (xo) and ®{*(x;) are independent.

We discretize p over the same mesh as the input data mesh
and store pij in the square matrix P. The density of traced
particles is estimated and stored in P. Pg is usually sparse, and
its dimension is m X m, where m is the number of cells in the

. Adaptive
Initial Samples
P Refinement

End Locations
> o SFM Y

[] [] —

° Stable? .~ Done

o e o

@ <te

b .

o l)

Fig. 4. Adaptive refinement.

mesh. Pg (p,q) is the transition probability of the transport
from the pth to the gth cell between the ith and jth time
steps. The generalized discrete form of Eq. 6 is simply matrix
multiplication:

P/ = H PhtL (7)
i<k<j

In the matrix multiplication, we further reduce the computation
and storage cost by pruning small elements in the matricies. In
our implementation, we use the PETSc library [29] for sparse
matrix multiplication.

B. Adaptive Refinement of SFMs

We dynamically control the number of Monte Carlo runs for
each seed location in order to improve precision and reduce
computational cost. Adaptive refinement is based on the obser-
vation that transport behaviors in flows are usually coherent.
Barakat and Tricoche [27] propose an adaptive refinement
of deterministic flow maps based on reconstruction of sparse
samples. Denser seeds are needed in regions with rich flow
features, and fewer samples are necessary in less complicated
parts. However, the technique is hard to scale in parallel. We
instead use densely seeded particles and adaptively control the
number of stochastic runs for each seed.

The adaptive refinement for each seed is illustrated in Fig. 4.
In the kth iteration, a batch of particles is traced from the
seed x, and the density of these particles is estimated as
Dy (x0;%). The loop exits if Dy_1(xp;x) and Dy (x0;x) are
statistically identical, otherwise enters the next iteration. Our
criterion to stop iteration is the difference of information en-
tropies between Dj,_1(Xo; %) and Dy (Xo; x). The information
entropy of a random variable X is defined as

H(X) = - Play) log(P(w1)) ®
=0

where m is the number of probabilistic states (number of
cells in this case) and P(x;) is the probability of state x;.
We then evaluate H(Djy_1(x0;x)) and H(Dy(x0;x)). If
|H(Dy) — H(Dy—1)| is greater than a preset threshold, we
add more samples; otherwise we stop the iteration and store
Dy (x0; x) in the sparse matrix. Fig. 5(a-d) show a comparison
of adaptive refinement with fixed numbers of Monte Carlo
runs in the uncertain Isabel dataset. More particles are traced
in the hurricane eye regions, while fewer are sampled in other

regions. Comparing (b) with (c) and (d), we can see that
the entropy field generated by adaptive refinement is more
similar to the results generated with large numbers of samples.
Based on this result, we conclude that adaptive refinement can
achieve better precision with fewer of particles.

IV. SOFTWARE ARCHITECTURE DESIGN

Our parallel particle tracing framework exploits hierarchi-
cal parallelization. At the top level, upon initialization, the
processes are divided into groups. In the intergroup level,
we parallelize over seed locations. Each group duplicates the
working data and traces a different set of seeds. Inside each
group, we parallelize over data. Each process has a portion
of data blocks. A novel task model based on MPI/thread
hybrid parallelization is used. The rationale for our hierarchy
is based on decoupled and adaptive SFM computation. First,
the decoupling makes it possible to have higher degrees of data
duplication for better scalability because the working data of
two adjacent time steps are smaller than that of the whole
dataset. Second, the adaptive refinement allows asynchronous
processing, which also boosts the scalability of parallel particle
tracing.

We further implement a novel design of task model—
packets of particles—to achieve high parallel efficiency in the
MPI/thread model. Within each process, the tasks are sched-
uled and processed by a pool of threads in parallel. The inter-
process task exchange is managed by a dedicated thread, which
handles nonblocking MPI communication. Lock-free data
structures are used to exchange data between threads. In gen-
eral, this design is fully asynchronous—communication and
computation are overlapped, and threads are synchronization-
free. This design improves data locality and enables CPU/GPU
coprocessing.

A. Initialization

Because the decoupled SFM computation yields smaller
working data, typically two adjacent time steps, it is possible
to duplicate data in order to improve data locality. We first
partition the data into blocks and then determine how many
processes to assign to each group for the given memory limit.
For example, given 4 processes, the total number of blocks
is 64, and the maximum number of blocks per process is 32.
Then we create 2 process groups.

Within groups, the blocks are distributed across processes.
As in Peterka et al. [15], we statically assign blocks to
processes by a round-robin scheme. Each process is in charge
of one or more blocks. In addition, threads and lock-free
data structures for task exchanging are also created upon the
initialization.

B. Task Model

Fig. 6 illustrates the task model. We define a task as a
tuple (blkID, type, particles[]), where particles[] is a packet
of particles associated with only on block (blkID). Notice that
each task is associated with one block (blkID). The granularity
of a task is one or more particles, up to a given limit. Each

1600

——— Sm— pm— p—
() (b) (@

(d)

Fig. 5. Experiment results of the uncertain Isabel data: (a) the number of Monte Carlo runs with adaptive refinement; (b) the entropy of SFMs computed
with adaptive refinement; (c) and (d) the entropy of SFMs computed with 256 and 2,048 runs, respectively; (e) uncertain LCSs; (f) the FTLE-D. (a)-(d) are

slice rendering and (e)-(f) are volume renderings.

initialize seeds send particles back checkif all particles with
for tracing to home block the same seed are finished

NS NN

INIT TRACE RETURN CHECK

continue particles
in another block
initialize more particles for the seeds if necessary

Fig. 6. Task model.

particle is a tuple (xo, x) consisting of its initial and current
spatiotemporal locations, respectively.

Four types of tasks are depicted in the model: initialization
(INIT), tracing (TRACE), return (RETURN), and checking
(CHECK).

e INIT tasks are used to initialize particles for a list of seed
locations in the given block. Particles are created either
by the system for bootstrapping or by the CHECK tasks
when more particles are necessary to refine the SFMs.

o TRACE tasks start or continue to trace a pack of particles
that are not finished yet. If particles are moving out of
the current block, new TRACE tasks associated with the
target blocks are created.

e RETURN tasks are created by TRACE tasks to send
finished particles to their home blocks.

e CHECK task checks termination for particles released at
the same location xq. The density is written to the output
sparse matrix if it is converged; otherwise new INIT
tasks are created to refine the density.

C. Thread Model

We use multithreading for parallelism within a single pro-
cess. Fig. 7 illustrates the thread model in our design. Two
types of threads exist: the communication threads and the
worker threads. Because each process is assigned only a subset
of blocks, the worker threads can handle only messages that
are associated with the blocks they have. Several lock-free
producer-consumer queues are used to schedule and exchange
tasks between threads. There are two groups of queues: the

A 1

|A LS v 3

| Qwork (CPU) || Qwork (GPU) Qsend Worker [Worker || Comm

INIT blk_id=32 |[TRACEOO OO O|[Po P - pni | Threads || Threads || Thread |
TRACEOO OO O[[00000000 (CPL) (GPU) g
TRACEOO OO O || @ ‘%
0o0000000[lcooo00 | >
TRACEO O TRACEOO 00O @ . . 3
CHECKOOO |[00000000] @ @ 2
TRACEOOOO @ @ 8
INIT blk_id=3 @

CHECKO© 0 0 0|[0c0000000

) enqueue()l l l

Fig. 7. Thread model.

1 1

Algorithm 1 Worker thread loop. The process_task() function
processes a input task and returns a list of new tasks to
continue the computation.
while !all_done do
if Quork-pop(task) then
new_tasks[] = process_task(task)
for all task in new_tasks[] do
comm.enqueue(task.blkID, task)

work queues and the send queues that keep the pending tasks
for the local and remote processes, respectively.

Algorithm 1 shows the pseudo code of the worker thread
main loop. The worker threads function as both producers and
consumers. Worker threads consume tasks and also produce
new tasks to deliver particles to their next or final destinations.
The new task is enqueued to the work queue if the current
process owns the destination block; otherwise the task is
appended to the send queues. The enqueue () function
(Algorithm 2) simplifies the task routing.

The maximum number of particles for each task
(max_size_CPU), which defines the granularity of a TRACE
task, is the most important parameter that determines the
scalability of the thread pool. Larger task granularity leads to
load imbalance because there are fewer concurrent tasks and
some threads are starving. On the contrary, a smaller task size
can result in more context switches and more contention for
the task queues. Fig. 8(a) shows a scalability benchmark using
different max_size_CPU values. In this experiment, 64 is

Algorithm 2 Enqueue task

Algorithm 3 Communication thread loop

function ENQUEUE(bIKID, task)
i <bIkID_to_rank(blkID)
if i=comm.rank then
if task.size>max_size_GPU then
split_tasks[]=task.split(tmax_size_GPU)
enqueue_all(split_tasks[])
else if task.size>min_size_ GPU then
stc(;)lzlg) push(task)
else if task.size>max_size_CPU then
split_tasks[]=task.split(tmax_size_CPU)
enqueue_all(split_tasks[])
else
Q(CPU) .push(task)

work
else
push(task)

)
send*

the optimal selection. A similar parameter (max_size_GPU)
needs to be configured when a GPU is available for copro-
cessing with CPUs. The principle to set max_size_GPU is
to have approximately equivalent processing time on GPUs
as that on CPUs, so max_size_GPU is usually larger than
max_size_CPU. More details on the parameter setting in
CPU/GPU coprocessing are in Section IV-E.

The communication thread consumes tasks in the send
queues by sending them to the destination process and en-
queues tasks that are received from remote processes to
work queues. Our thread model uses a dedicated thread for
communication, a common practice in MPI/thread hybrid
parallelization, such as that in Charm++ [31]. The communica-
tion thread in Charm++, however, handles communication on
behalf of worker threads, but the worker threads in our design
do not involve any communication operations. In addition, our
communication thread schedules tasks for load balancing and
CPU/GPU coprocessing.

D. Two-Tiered Asynchronous Communication

We adopt a two-tiered asynchronous design. First, the
interprocess communication overlaps the computation by using
a dedicated communication thread. Second, the communica-
tion thread uses MPI nonblocking communications to further
reduce the delays. Specifically, tasks are exchanged between
blocks across processes by the two-tiered asynchronous com-
munication in to overlap the computation. Each process has a
dedicated communication thread to send and receive messages
from remote processes. The communication thread executes
and manages nonblocking MPI requests without any waits.

The pseudo code of the communication thread main loop is
listed in Algorithm 3. Each process maintains a list of lock-
free send queues {Q’, 4}m, Where i is the destination rank
and m is the number of processes. The tasks in the send
queues are pushed by the worker threads via enqueue ()
calls. In every iteration of the loop, the communication thread
tries to dequeue a bulk of tasks from each Q. The list of
tasks is then serialized and sent to the destination process by

while !all_done do
for all 7 in comm.world do > outgoing tasks
if Q’,,4-pop_bulk(tasks, max_size_send) then
comm.isend(?, serialize(tasks))
while comm.iprobe() do
tasks = unserialize(comm.recv())
for all task in tasks do
enqueue(task.blkID, task)

comm.iexchange(all_done)

> incoming tasks

> exchange status

[Jcomm []iNT [] TRACE [_] RETURN [_] CHECK
P Blks | Biks |pro Bz |pii|pke |pik2]
P Biko |piks B2 |pika |pike Jpie] -
CPUnsBike |Bk2 |pik7 |pez Jpks Jpra][]
cou, (eI Tp) s][] -
CPU, Bik2 |Bka][e |prs Bk | -

<V I O %

Running time

(a)
CPUn Bkn) |0 Bk | Bk] i Bkony] -
Bl | T T | -
CPU, BIk1 T TN |1 ik | -
crunpio 1 Jhe] [i T
>

Running time

(b)

Fig. 9. Gantt chart of (a) our task model and (b) the bulk synchronous parallel
model. Each row represents a thread.

nonblocking send (MPI_TIsend). The incoming messages are
received by MPI_Recv if they are probed by MPI_TIprobe.
The loop exits when all tasks across all processes are finished.
A nonblocking version of Francez’s algorithm [32] is imple-
mented for distributed termination, as in a previous parallel
particle tracing study [22].

We use m — 1 send queues for better performance. In our
design, a set of tasks with the same destination rank is obtained
with the pop_bulk () function in the lock-free queue. Thus,
we can send a larger message that contains multiple tasks,
instead of multiple smaller messages each contains one single
task. We do so because larger message size usually yields
better performance.

The two-tiered asynchronous design enables the full overlap
between computation and communication. As illustrated in
Fig. 9(a), the communication thread (CPUy) and the worker
threads (other CPUs) and the communication thread work
concurrently without any explicit synchronization. In Sec-
tion VI-C we compare our design with communication models
in previous parallel particle tracing studies.

E. CPU/GPU Coprocessing

The thread pool model enables hybrid CPU/GPU paral-
lelization, which fully utilizes the computation power of both

Strong Scalability

Strong scalability

Numbers of Particles Traced in Running Time

Time (seconds)
Time (seconds)

10° max_CPU_size=2048

max_CPU_size=256

max_CPU_size=64 (optimal) optimal

max_CPU_size=1

— — — ideal scaling — — — ideal scaling

—+— Bulksynchronous (Peterka et al. 0~

—e— max_CPU_size=64 (our method)
—=— max_CPU_size=1 (Camp et al,, modified)

™

6M

5M

am

3m

Numbers of Particles

M

num_particles_CPU
num_particles_GPU

1 2 4 8 16 32 63 1 2 4 8
Worker threads per process

(a)

16 32 64 128 256 0 5 10 15 20 25 30 35
Processes

(b)

Running time (seconds)

()

Fig. 8. (a) Benchmark of the flow map computation in tornado simulation data (32K particles) with different max_size_CPU and different numbers of
worker threads per process on 32 Blue Gene/Q nodes. A proper selection of max_size_CPU leads to better performance and scalability. (b) Performance
comparison with two existing parallel particle tracing methods ([30] and [25]). (¢) Number of particles traced in running time with GPU/GPU coprocessing.

CPUs and GPUs in compute nodes. We design strategies to
schedule tasks on CPUs and GPUs.

Our task-scheduling strategy is to fill GPUs with larger
tasks and assign complex or small tasks for CPUs. GPUs
can be seen as SIMD processors, which are suitable for
handling a batch of tasks simultaneously. However, the data
movement cost between the CPU and GPU is significant.
Specifically, the particles must be transferred to the GPU
memory before they are traced, and they have to be copied
back to the main memory for further processing. The clock
speed of GPUs is also slower than that of CPUs. Thus, the
overall performance drops if there are too few particles for a
batch. This phenomenon was observed by Camp et al. [26] in
distributed and parallel environments.

We associate a GPU worker thread (running on the CPU)
with each GPU. The data blocks in the main memory are
copied into GPU in the initialization stage. A designated
GPU task queue is also set up for task scheduling. In the
enqueue () function, larger tasks and smaller tasks are
pushed into the GPU and CPU queues, respectively.

Similar to the rationale of max_size_CPU for CPU work-
ers, we also need to limit the task size for the GPU, that
is, min_size_GPU. In principle, the running time cannot
be too long, in order to keep load balanced. We usually set
max_size_ CPU < min_size_GPU < max_size_GPU.

Although we have two different work queues for CPUs
and GPUs, the tasks do not have to be processed by their
designated processors. A CPU worker thread can dequeue a
task from the GPU queue when the thread is starving, and
vice versa for GPU worker threads. When a task 7" in the
GPU queue is processed by a CPU worker thread, 7" may be
split before further processing. Because the task size is usually
greater than max_size_CPU, the incoming task is cut into
two subtasks 7T} and T5. Task 77 has size max_size_CPU,
and task 75 is the rest. T is processed with the current CPU
worker thread, and 75 is enqueued to worker queues for further
processing. Notice that 7> may or may not qualify as a GPU
task depending on its size.

When a task 7" in the CPU queue is obtained by a GPU

worker thread, it may or may not be processed with the
associated GPU. First, if the size of the TRACE task 7 is
smaller than min_size_GPU, it is still handled by a CPU.
Second, the INIT or RETURN are also processed on a CPU.

F. Implementation

We implemented the prototype system with C++11. MPI
is used for interprocess communication. For each process, the
worker threads are created with Pthreads, and the parent thread
plays the role of the communication thread. We use a lock-
free concurrent queue implementation [33] to exchange tasks
between threads. Because only one thread makes MPI calls,
we use the MPI__THREAD_FUNNELED mode on initialization.
DIY [30] is used for domain decomposition. The Block I/O
Layer (BIL) library [34] is used to efficiently load disjoint
block data across different files and processes collectively. We
also implemented a thread-specific random number generator
for stochastic particle tracing, because the random number
generator in the C++ standard library does not scale multiple
threads in our experiments. The GPU code is written in
CUDA. Upon initialization, the data blocks are copied to the
GPU memory, and then a buffer that can fit max_size_GPU
particles is created. Particles in the TRACE task are copied
to the GPU and then copied back after they are traced. After
the computation, we store the SFMs in a sparse matrix that is
managed by the PETSc library [29].

V. APPLICATION RESULTS

We applied our method to two weather simulation datasets
with uncertainties: uncertain Hurricane Isabel data and ensem-
ble Weather Research and Forecasting (WRF) data.

A. Input Data

Uncertainty arises in the Hurricane Isabel data from tem-
poral down-sampling. In climate and weather simulations, a
common practice is to dump average data hourly or daily
instead of every time step. Such data down-sampling reduces
the I/O cost but sacrifices accuracy. We follow Chen et al. [35]
who use quadratic Bezier curves to quantify the uncertainty
of the original Hurricane Isabel data which is from the IEEE

Fig. 10. Experiment results of the WRF ensemble simulation data: (a) uncertain source-destination queries; (b) uncertain LCSs; (¢) FTLE-D.

Visualization Contest 2004. The spatial resolution of the
original data is 500 x 500 x 100. The down-sampled dataset
we use in the experiment keeps the full spatial resolution but
aggregates every 12 time steps into one. The parameters of
the quadratic Bezier curves and the Gaussian error are used
to reconstruct the uncertain flow field for SFM computation.

The uncertainty of the ensemble WRF data arises from
averaging the ensemble members. The input data, courtesy
of the National Weather Service, is simulated with the High
Resolution Rapid Refresh (HRRR) model [36]. The model is
based on the WRF model and assimilates observations from
National Oceanic and Atmospheric Administration (NOAA)
and other sources. The spatial resolution of the model is
1799 x 1059 x 40, and we use 10 ensemble members with 15
hourly averaged outputs for our experiment. The uncertainty
is modeled as Gaussian—the mean and covarances of the
ensemble members are computed for every grid point location.

B. Uncertain Source-Destination Queries

Fig. 10(a) shows the uncertain source-destination query
results. We create particles along a line in the domain and
visualize the distributions of these particles after every hour
by volume rendering. The visualization results show that the
uncertainties of SFMs grow as the advection time increases.
We can also see that the uncertainty of transport behavior
in the mountain areas is greater than in the plains. This
phenomenon matches the fact that numerical weather forecasts
are more unstable in mountains.

C. Uncertain FTLE and LCS Visualization

FTLE and LCS are the most important tools for analyzing
deterministic unsteady flow. The FTLE was proposed by
Haller [37], and it measures the convergence or divergence
for the time interval of interest. Recently, Guo et al. [1] gen-
eralized FTLE and LCS to analyze uncertain unsteady flows
based on SFMs. Three new concepts were introduced: D-FTLE
(distributions of FTLE), FTLE-D (FTLE of distributions), and
U-LCS (uncertain LCS). We compute FTLE-D and U-LCS
from the uncertain Isabel data and the WRF ensembles in
Fig. 5 and Fig. 10, respectively.

The FTLE-D and U-LCS in Fig. 5(e) and (f) show connec-
tive bands of the uncertain Isabel data. The spiral arm that
extends to the east coast separates two different motions: the
flow going upwards and the flow keeping their original levels.

Because there is more uncertainty in updraft and downdraft
flows, the boundary of the two features is fuzzy, as shown in
the U-LCS and the FTLE-D.

In the WRF ensembles, we can also observe that the upward
and downward air flows lead to uncertainties in U-LCS and
FTLE-D. These are due mainly to the land surface variability.
We can see four distinct regions in Fig. 10(b) and (c): the on-
shore flow from the Pacific Ocean to the Cascade mountains,
a cold front from Oklahoma to Dakotas, and two unstable
troughs in the Midwest and the East. The visualization results
of FTLE-D and U-LCS, which are confirmed by meteorolo-
gists, highlight these unstable zones.

VI. PERFORMANCE EVALUATION

We study the scalability of our methods on two supercom-
puters: Mira and Titan. We also compare our parallel particle
tracing scheme with previous studies.

A. Scalability Study on the Blue Gene/Q Systems

We conducted scalability study on Mira, an IBM Blue
Gene/Q system at Argonne National Laboratory. The theoret-
ical peak performance of Mira is 10 petaflops. Each compute
node has 16 1.6 GHz PowerPC A2 cores, which support 64
hardware threads in total. The memory on each node is 16
GB, and the interconnect is a proprietary 5D torus network.

To maximize the utilization of computation nodes, we run
one MPI process on each node, with one communication
thread and 63 worker threads for computation. These choices
are based on the experiments in Section IV-C. We limit the
memory for data blocks to 1 GB per process, so we have 4
and 16 processes per group for the uncertain Isabel data and
the ensemble WRF data, respectively. For the uncertain Isabel
data, we use both fixed numbers of Monte Carlo runs and
adaptive refinements for comparison. For the fixed sampling,
the number of runs is 256; thus, the total number of particles
is about 6.5 billion.

Fig. 11(a) and (c) show the timings of SFM computation
on both datasets with different numbers of processes on Mira.
Ideal scaling curves based on linear speedup are shown for
reference. From the benchmark we can see that the speedup
is nearly linear. The parallel efficiency of 4K, 8K, and 16K
processes are 92%, 85%, and 72%, respectively. The main
reason for this scalability is the decoupled SFM computation
that removes the time dependency. Because we need to load

Strong Scalability Strong Scalability Strong Scalability

10° N 10°E 8764 10*
4858
@102 > 10? —
710 3 k<
c c
8 S S 10200
2 8 g0
o (7] [
£ £ £
= 10 F 10"} —+— titan_fixed_hybrid =
—e— titan_fixed_cpu_only
—+— mira_fixed ~ —=— titan_fixed_gpu_only
—e— mira_adaptive S —+— titan_adaptive_hybrid — mira_fixed
— — — ideal scaling) — — — ideal scaling 10> — — — ideal scaling
10 100 102
64 128 256 512 1K 2K 4K 8K 16K 64 128 256 512 1K 2K 4K 8K 256 512 1K
Processes Processes Processes
() (b) ©

Fig. 11. Strong scalability studies of our method: (a) uncertain Isabel data on

only two adjacent time steps at once, we can duplicate
more working data for less communication. Fig. 11(a) also
shows that adaptive refinement reduces the computation time,
compared with fixed sampling.

B. Scalability Study on CPU/GPU Hybrid Architectures

We benchmarked the CPU/GPU coprocessing on Titan,
which is a Cray XK7 supercomputer at Oak Ridge National
Laboratory. Titan has 18,688 compute nodes, each equipped
with an AMD Opteron 6274 16-core CPU that operates at 2.2
GHz with 32 GB of main memory. In addition to the CPU,
each node also contains an NVIDIA Tesla K20X GPU with 6
GB memory. The number of CUDA cores on a single GPU is
2,688, running at 732 MHz.

Fig. 11(b) shows the strong scalability benchmark on the
uncertain Isabel dataset. The problem size is the same as that
on Mira, namely 6.5 billion particles. In the experiments, we
fully used the CPU resources by running 15 worker threads
and one communication thread per process on each node. In
the CPU/GPU coprocessing mode, one of the worker threads
managed the GPU. We conducted three runs to study the
effectiveness of CPU/GPU hybrid parallelization: the pure
CPU mode, the pure GPU mode, and the hybrid mode. The
pure GPU mode is used for comparison only. In this mode,
only one worker thread is used, and all tasks are conducted
on the GPU regardless of task size; that is, min_GPU_size
is zero.

Results show that the computation time of the hybrid mode
is about 2.5x faster than the pure CPU mode. We refer to
Camp et al. [26] who report a speedup of 1x to 10.5x on
a distributed-memory GPU particle tracer compared with a
CPU-only code on 8 nodes. Based on the previous studies,
we believe that our 2.5x speedup is promising. Our hybrid
parallelization design enables the full use of available hard-
ware resources on compute nodes, including all CPU and GPU
cores. The scheduling of CPUs and GPUs is also adaptive,
capable of balancing working time between CPU and GPU
workers. Moreover, the hybrid implementation is scalable up
to 131,072 Opteron cores with 8,192 NVidia K20 GPUs in
our test. At this scale, tracing billions of particles only spends
less than 10 seconds.

Mira; (b) uncertain Isabel data on Titan; (c) ensemble WRF data on Mira.

C. Comparison with Existing Parallel Particle Tracing Algo-
rithms

We compared our method with existing parallel particle trac-
ing algorithms. The baseline approaches are these of Peterka
et al. [30] and Camp et al. [25]. Both algorithms partition
data into blocks for parallel processing and use MPI/thread
hybrid parallelization. We implemented these algorithms and
compared their performance on the same dataset and problem
size. In the experiment, we used the deterministic tornado
dataset and 32 threads per process for computation. Only one
process group was used, so there is no data duplication for the
comparison. The timings with respect to different numbers
processes are shown in Fig. 8(b), and we can see that our
method outperforms the others.

The parallel model used by Peterka et al. [30] is bulk
synchronous (Fig. 9(b)). In this model, each block of data
is associated with a thread in one single process. The particles
are traced in the current block until they cross the block
bounds, and then they are exchanged between neighbor blocks
collectively. Compared with the bulk synchronous parallel
model, our model does not associate blocks with threads. We
also fully overlap the communication and computation in our
framework.

The thread pool pattern is used in Camp et al. [25], but
the major difference in our design is the task model and
the software design. In Section IV-C, we showed that our
task model yields fewer context switches and enables the
CPU/GPU coprocessing. In addition, we use lock-free data
structures and two-tiered asynchronous communication for
intra and interprocess task exchange.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a scalable SFM computation
method for uncertain flow visualization and analysis. The keys
to achieving high scalability are the decoupled and adaptive al-
gorithms, the MPI/thread hybrid parallelization, and the unique
task design that assembles packets of particles. The decoupling
allows us to compute SFMs of adjacent time steps and then
compose them together. The number of stochastic runs can be
adaptively configured for better efficiency and precision. We

parallelize over tasks, which are packets of particles, to achieve
high efficiencies in the MPI/thread hybrid programming. Our
parallelization design also enables CPU/GPU coprocessing
when GPUs are available. Results show that our method can
help scientists analyze uncertain flows in greater detail with
higher performance than previously possible.

We would like to extend our work to support more many-
core architectures, such as the Intel Xeon Phi. The data
localities can be also improved in NUMA architectures. We
would also like to incorporate more uncertain flow analysis
tools, such as uncertain topology analysis. Our algorithms
could also be used in in situ flow analysis frameworks in the
future.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357. This work is also supported by
the U.S. Department of Energy, Office of Advanced Scientific
Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) program.

REFERENCES

[1]1 H. Guo, W. He, T. Peterka, H.-W. Shen, S. M. Collis, and J. J. Helmus,
“Finite-time Lyapunov exponents and Lagrangian coherent structures in
uncertain unsteady flows,” IEEE Trans. Vis. Comput. Graph., vol. 22,
2016, to appear.

[2] M. Otto, T. Germer, and H. Theisel, “Uncertain topology of 3D vector
fields,” in Proceedings of IEEE Pacific Visualization Symposium 2011,
2011, pp. 67-74.

[3] B.Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka, “Parallel
particle advection and FTLE computation for time-varying flow fields,”
in SCI12: Proc. ACM/IEEE Conference on Supercomputing, 2012, pp.
61:1-61:11.

[4] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson,
“Simplified parallel domain traversal,” in SCI1: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2011, pp. 10:1-10:11.

[5] C. R. Johnson and A. R. Sanderson, “A next step: Visualizing errors
and uncertainty,” IEEE Comput. Graph. Appl., vol. 23, no. 5, pp. 6-10,
2003.

[6] K. Brodlie, R. AllendesOsorio, and A. Lopes, “A review of uncertainty
in data visualization,” in Expanding the Frontiers of Visual Analytics
and Visualization, J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C.
Wong, Eds. Springer London, 2012, pp. 81-109.

[7]1 R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” Comput. Graph. Forum, vol. 23, no. 2, pp.
203-222, 2004.

[8] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, “The
state of the art in flow visualization: Feature extraction and tracking,”
Comput. Graph. Forum, vol. 22, no. 4, pp. 1-17, 2003.

[9] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser, “The state of the art in topology-based
visualization of unsteady flow,” Comput. Graph. Forum, vol. 30, no. 6,
pp. 1789-1811, 2011.

[10] C. M. Wittenbrink, A. Pang, and S. K. Lodha, “Glyphs for visualizing
uncertainty in vector fields,” IEEE Trans. Vis. Comput. Graph., vol. 2,
no. 3, pp. 266-279, 1996.

[11] R. P. Botchen, D. Weiskopf, and T. Ertl, “Texture-based visualization of
uncertainty in flow fields,” in Proceedings of IEEE Visualization 2005,
2005, pp. 647-654.

[12] M. Otto, T. Germer, H.-C. Hege, and H. Theisel, “Uncertain 2D vector

field topology,” Comput. Graph. Forum, vol. 29, no. 2, pp. 347-356,
2010.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann, “A variance
based FTLE-like method for unsteady uncertain vector fields,” in Topo-
logical Methods in Data Analysis and Visualization II, ser. Mathematics
and Visualization, R. Peikert, H. Hauser, H. Carr, and R. Fuchs, Eds.
Springer, 2011, pp. 255-268.

E. W. Bethel, H. Childs, and C. Hansen, High Performance Visualiza-
tion: Enabling Extreme-Scale Scientific Insight. CRC Press, 2012.

T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing for steady-
state and time-varying flow fields,” in IPDPSI11: Proceedings of IEEE
International Symposium on Parallel and Distributed Processing, 2011,
pp. 580-591.

B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced parallel
streamline generation on large scale vector fields,” IEEE Trans. Vis.
Comput. Graph., vol. 17, no. 12, pp. 1785-1794, 2011.

H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualization
of large time-varying 3D vector fields,” in SCO7: Proceedings of the
ACM/IEEE Conference on Supercomputing, 2007, pp. 24:1-24:12.

L. Chen and I. Fujishiro, “Optimizing parallel performance of streamline
visualization for large distributed flow datasets,” in Proceedings of IEEE
Pacific Visualization Symposium 2008, 2008, pp. 87-94.

D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber, “Scalable
computation of streamlines on very large datasets,” in SC09: Proceed-
ings of the ACM/IEEE Conference on Supercomputing, 2009, pp. 16:1—
16:12.

H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng,
and J. Pan, “Advection-based sparse data management for visualizing
unsteady flow,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp.
2555-2564, 2014.

D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Parallel stream
surface computation for large data sets,” in LDAVI2: Proceedings IEEE
Symposium on Large Data Analysis and Visualization, 2012, pp. 39-47.
K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream surfaces
on large scale vector fields,” in SCI4: Proceedings of the ACM/IEEE
Conference on Supercomputing, 2014, pp. 1008-1019.

C. Mueller, D. Camp, B. Hentschel, and C. Garth, “Distributed parallel
particle advection using work requesting,” in LDAVI3: Proceedings
IEEE Symposium on Large Data Analysis and Visualization, 2013, pp.
109-112.

H. Guo, X. Yuan, J. Huang, and X. Zhu, “Coupled ensemble flow line
advection and analysis,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2733-2742, 2013.

D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Streamline
integration using MPI-hybrid parallelism on a large multicore architec-
ture,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 11, pp. 1702-1713,
2011.

D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W. Bethel,
K. I. Joy, and H. Childs, “GPU acceleration of particle advection
workloads in a parallel, distributed memory setting,” in EGPGVI3:
Proceedings of Eurographics Parallel Graphics and Visualization Sym-
posium, 2013, pp. 1-8.

S. S. Barakat and X. Tricoche, “Adaptive refinement of the flow map
using sparse samples,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12,
pp. 2753-2762, 2013.

M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line integration,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 8, pp. 11481163, 2011.
S. Balay, W. D. Gropp, L. C. Mclnnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhéuser Press, 1997,
pp. 163-202.

T. Peterka, R. B. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W.
Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building blocks
for custom data analysis,” in LDAVII: Proceedings IEEE Symposium
on Large Data Analysis and Visualization, 2011, pp. 105-112.

L. V. Kale and S. Krishnan, “Charm++: Parallel programming with
message-driven objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175-213.

N. Francez, “Distributed termination,” ACM Trans. Program. Lang. Syst.,
vol. 2, no. 1, pp. 42-55, 1980.

C. Desrochers, “A fast multi-producer, multi-consumer lock-free concur-
rent queue for C++11,” https://github.com/cameron3 14/concurrentqueue.

[34]

[35]

[36]

(371

W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross, “Toward a
general 1/0 layer for parallel-visualization applications,” IEEE Computer
Graphics and Applications, vol. 31, no. 6, pp. 6-10, 2011.

C.-M. Chen, A. Biswas, and H.-W. Shen, “Uncertainty modeling and
error reduction for pathline computation in time-varying flow fields,” in
Proceedings of IEEE Pacific Visualization Symposium 2015, 2015, pp.
215-222.

C. Alexander, S. S. Weygandt, D. C. D. S. Benjamin, T. G. Smirnova,
E. P. James, M. H. P. Hofmann, J. Olson, and J. M. Brown, “The high-
resolution rapid refresh: Recent model and data assimilation develop-
ment towards an operational implementation in 2014.,” in Proceedings of
26th Conference on Weather Analysis and Forecasting / 22nd Conference
on Numerical Weather Prediction. —American Meterological Society,
2014.

G. Haller, “Distinguished material surfaces and coherent structures in
three-dimensional fluid flows,” Physica D: Nonlinear Phenomena, vol.
149, no. 4, pp. 248-277, 2001.

The submitted manuscript has been created by UChicago
Argonne, LLC, Operator of Argonne National Laboratory
(“Argonne”). Argonne, a U.S. Department of Energy Office
of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself,
and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the
Government.

