
Extreme-Scale Stochastic Particle Tracing for

Uncertain Unsteady Flow Analysis

Hanqi Guo

Argonne National Laboratory

9700 S. Cass Ave.,

Argonne, IL 60439 USA

Email: hguo@anl.gov

Wenbin He

The Ohio State University

2015 Neil Ave.,

Columbus, OH 43210 USA

Email: he.495@buckeyemail.osu.edu

Sangmin Seo

Argonne National Laboratory

9700 S. Cass Ave.,

Argonne, IL 60439 USA

Email: sseo@anl.gov

Han-Wei Shen

The Ohio State University

2015 Neil Ave.,

Columbus, OH 43210 USA

Email: shen.94@osu.edu

Tom Peterka

Argonne National Laboratory

9700 S. Cass Ave.,

Argonne, IL 60439 USA

Email: tpeterka@mcs.anl.gov

Abstract—We present an efficient and scalable solution to
estimate uncertain transport behaviors using stochastic flow maps
(SFM,) for visualizing and analyzing uncertain unsteady flows.
SFM computation is extremely expensive because it requires
many Monte Carlo runs to trace densely seeded particles in the
flow. We alleviate the computational cost by decoupling the time
dependencies in SFMs so that we can process adjacent time steps
independently and then compose them together for longer time
periods. Adaptive refinement is also used to reduce the number of
runs for each location. We then parallelize over tasks—packets of
particles in our design—to achieve high efficiency in MPI/thread
hybrid programming. Such a task model also enables CPU/GPU
coprocessing. We show the scalability on two supercomputers,
Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K
Opteron cores and 8K GPUs), that can trace billions of particles
in seconds.

I. INTRODUCTION

Visualizing and analyzing data with uncertainty are im-

portant in many science and engineering domains, such as

climate and weather research, computational fluid dynamics,

and materials science. Instead of analyzing deterministic data,

scientists can gain more understanding by investigating un-

certain data that are derived and quantified from experiments,

interpolation, or numerical ensemble simulations. For exam-

ple, typical analyses of uncertain flows involve finding possi-

ble pollution diffusion paths in environmental sciences with

uncertain source-destination queries and locating uncertain

material boundaries in computational fluid dynamic models

with uncertain Lagrangian analysis.

In this work, we develop a scalable solution to compute

stochastic flow maps (SFMs), which characterize transport

behaviors in uncertain unsteady flows. SFMs are the gener-

alization of flow maps of deterministic data and hence are the

basis for uncertain flow analysis. Formally, the flow map is a

function that maps the start location and the end location after

time T in a flow field; the SFM follows the same definition

except that the end location is stochastic. Applications based

on SFMs include not only uncertain source-destination queries

but also uncertain flow separatrix extraction [1] and uncertain

flow topology analysis [2]. For example, finite-time Lyapunov

exponent (FTLE) analysis can be generalized to understand

uncertain transport behaviors in uncertain flows [1]. The distri-

bution of Lagrangian coherent structures (LCS)—the material

boundaries in unsteady flows—can be further extracted as

the ridges in stochastic FTLE fields. Similarly, uncertain flow

topologies are based on the distributions of SFMs. Even more

methods for uncertain flow analysis methods are likely to be

developed for various applications, but the main obstacle will

be the SFM computation.

SFM computation is extremely expensive and thus requires

supercomputers. Currently, the only practical solution for

computing SFMs is to perform Monte Carlo runs, which trace

the particle stochastically in the uncertain data. However, one

must trace billions or even trillions of particles for a typical

analysis. For example, if the number of grid points and Monte

Carlo runs is 106 and 103, respectively, and if the data has

103 time steps, the overall number of particles will be 1012.

As documented in previous studies [1], [2], it may take hours

to days to run a small problem, even with GPU acceleration.

Achieving high scalability with existing parallel particle

tracing algorithms in SFM computation is difficult. Two basic

parallelization strategies exist: parallel-over-seeds and parallel-

over-data. The parallel-over-seeds algorithms distribute parti-

cles over processes, and each process loads the required data

on demand. The parallel-over-data algorithms partition the data

into blocks, distribute the blocks to different processes on

initialization, and exchange particles that are leaving the local

blocks during the run time. However, the parallel efficiency

decreases rapidly as we add more computational resources

because of the flow complexity and the communication cost.

In recent publications, the parallel efficiency is about 45% on

16K cores for 162M particles [3] and 35% on 16K cores for

40M particles [4]. Tracing billions or even trillions of particles

at extreme scale is still challenging.

We have observed two major differences between deter-

ministic and stochastic flow map computations. First, the task

dependencies in deterministic flow map computation are strict,

but they can be loosened in SFM computation. By default,

one must trace a particle based on its current location. In

the stochastic case, the “current” location is also stochastic;

thus the strong dependency can be released by transforming

the problem into a probabilistic model. Second, the problem

size of SFM computation is much larger. Existing parallel

algorithms do not scale for the numbers of particles required

by the Monte Carlo runs. The challenges are the memory

footprint, the designs of task models, load balancing, and

communication patterns. Solving these challenges requires a

new parallel framework for SFM computation.

We propose a decoupled SFM computation that removes

the time dependencies, in turn reducing communication and

improving scalability. For time-varying uncertain flow data, we

can compute SFMs between adjacent time steps independently

on supercomputers and then compose them for any arbitrary

time interval of interest. The rationale for the composition

is the law of total probability. The computation is based on

sparse matrix multiplication. Because the working data (two

adjacent time steps) is much smaller than the whole sequence,

we can duplicate the working data across processes as much

as possible, so that more data are locally available. Decoupling

the advection into short time intervals also shortens the travel

distances of particles, and thus less communication is required.

In addition, we introduce adaptive refinement over the number

of Monte Carlo runs for each seed location. Experiments

show that computing decoupled SFMs combined with adaptive

refinement is more efficient.

In our software architecture, we adopt a novel hierarchical

parallelization. On the top level, processes are subdivided

into groups, each with a duplication of the working data.

They are embarrassingly parallel over shuffled seed locations.

Within groups, each process has a portion of data blocks, and

MPI/thread hybrid parallelization is used. A dedicated thread

is used to manage nonblocking interprocess communications,

and a pool of threads is employed to process particle tracing

tasks. Lock-free data structures are also used to manage the

tasks queues. All compute cores work concurrently without

any synchronization.

The task model design is also unique. The granularity of a

task is a packet of particles associated with the same block.

The benefits of this approach are avoiding frequent context

switch in MPI/thread parallelization and enabling CPU/GPU

coprocessing when GPUs are available. The philosophy of

coprocessing is to schedule complex and heavy tasks for

GPUs while leaving lighter tasks for CPUs. To the best of

our knowledge, our system is the first such hybrid CPU/GPU

implementation for parallel particle tracing problems.

We demonstrate the scalability of our system on two

leadership computing facilities: Mira in Argonne National

Laboratory and Titan in Oak Ridge National Laboratory. On

Mira, we test the performance up to 1 million Blue Gene/Q

cores over 16,384 nodes. On Titan, we test up to 131,072

AMD Opteron cores cooperating with 8,192 NVIDIA K20X

GPUs. On these supercomputers, our method allows tens of

billions of particles to be traced in seconds. Our system thus

can help scientists analyze uncertain flows in greater detail

with higher performance than previously possible. In summary,

the contributions of this paper are as follows.

• A decoupled scheme that makes it possible to compute

SFMs in a highly parallelized manner.

• An adaptive refinement algorithm to reduce SFM com-

putation cost.

• A fully asynchronous parallel framework for stochastic

parallel tracing based on thread pools, nonblocking com-

munication, and lock-free data structures.

• A parallel CPU/GPU coprocessing particle tracing imple-

mentation based on the asynchronous framework.

The rest of this paper is organized as follows. We introduce

the background and review related work in Section II. The

decoupled and adaptive SFM computation is described in

Section III, followed by the parallel framework design in

Section IV. We demonstrate the application cases in Section V

and then evaluate the performance in Section VI. Conclusions

are drawn in Section VII.

II. BACKGROUND

We formalize the concepts of stochastic flow maps and

review the related work on uncertain flow visualization and

parallel particle tracing.

A. Stochastic Flow Maps

We review the concepts of flow maps in deterministic data

and then describe their generalization in uncertain flows.

Formally, in a deterministic flow field v : Rn+1 → R
n, the

flow map φ maps the (n + 2)-dimensional tuple (x0, t0, t1)
into R

n, where n is the data dimension and t0, t1 are time.

As illustrated in Fig. 1(a), the physical meaning of φt1
t0
(x0)

is the location at time t1 of the massless particle released at

the spatiotemporal location (x0, t0). Assuming v satisfies the

Lipschitz condition, the flow map is defined by the initial value

problem

∂φt1
t0
(x0)

∂t1
= v(φt1

t0
(x0)), and φt0

t0
(x0) = x0. (1)

In analyses such as FTLE, the flow map is usually computed at

the same resolution as that at the data discretization. Particles

are seeded at every grid point (or cell center) and then traced

over time until time t1. Numerical methods, such as Euler or

Runge-Kutta, are usually used in the particle tracing. Based

on the definition, we can derive that

φt2
t0
(x0) = φt2

t1
(φt1

t0
(x0)) = φt2

t1
(x1), (2)

where t0 ≤ t1 ≤ t2.

The uncertain flow field V : R
n+1 → R

n and its flow

map Φ are stochastic. As shown in Fig. 1(b), for a given seed

(x0, t0), the final location of this particle at time t1 is a random

variable denoted as Φt1
t0
(x0). The probability density function

of Φt1
t0
(x0) is defined as

x1=φ01(x0)

x0

t0 t1 t2 t0 t1 t2 t0 t1 t2

x2=φ02(x0)
=φ12(x1)

(a) (b)

x0 X1=Φ00(x0) X2=Φ02(x0)

ρ02(x0)

(c)

x0 x1=x0 X2=Φ12(x1)

ρ12(x1)ρ01(x0)

φφφ
φ
φ
φφ
φφ

ΦΦΦΦ Φ

02

Φ

002

ΦΦ 1=

(x(x(x

1=1= Φ

2

Φ

2

ΦΦΦ

Fig. 1. (a) Flow map computation in a deterministic flow; (b) SFM computation in an uncertain flow; (c) decoupled SFM computation.

ρt1t0(x0;x) = Pr(Φt1
t0
(x0) = x), (3)

where ρ is a (2n+ 2)-dimensional scalar function. The usual

approach is to trace a number of particles in V by Monte Carlo

simulations and then to estimate the densities of particles. For

each particle originated from (x, t), the final location is the

solution of the stochastic differential equation

dΦt1
t0
(x0) = V(Φt1

t0
(x0), t1)dt1 +B(Φt1

t0
(x))dξt1 , (4)

where B and ξ characterize the random disturbance. This

system can be solved by Euler-Maruyama or stochastic Runge-

Kutta methods. The computation of ρ is extremely expensive.

Hence, we propose to alleviate the cost with a novel paral-

lelization strategy. Similar to the property for stochastic flow

maps, we have

Pr(Φt2
t0
(x0) = x2) = Pr(Φt2

t1
(x1) = x2 | Φ

t1
t0
(x0) = x1).

(5)

We will use Eq. 5 to efficiently compute ρt2t0 given that ρt1t0
and ρt2t1 are already known (Section III).

B. Uncertain Flow Visualization and Analysis

Uncertain flows impose a grand challenge in visualization,

because they are based on two core topics—uncertainty vi-

sualization and flow visualization. Comprehensive reviews on

uncertainty visualization can be found in [5], [6], and reviews

on flow visualization are available in [7], [8], [9].

We categorize uncertain flow visualization techniques into

two major types: Eulerian- and Lagrangian-based methods.

This classification based on fluid dynamics considers flow

fields at specific spatiotemporal locations and at individual

moving parcels, respectively. Eulerian uncertain flow visual-

izations usually directly encode data into visual channel, such

as colors, glyphs [10], and textures [11]. Our focus instead in

this paper is on the Lagrangian-based methods that analyze

transport behaviors in uncertain unsteady flows.

Lagrangian uncertain flow visualization includes topology

analysis for stationary data and FTLE-based analysis for time-

varying data. Otto et al. [12] extend vector field topology to

2D static uncertain flow. Monte Carlo approaches are used to

trace streamlines that lead to topological segmentation. The

same technique is applied to 3D uncertain flows in a later

work [2]. For 3D unsteady flows, vector field topologies are no

Process 1 Process 2

(a) (b) (c)

Fig. 2. Parallel particle tracing paradigms: (a) parallel-over-data; (b) parallel-
over-seeds; (c) parallel-over-tasks used in this paper. The task granularity in
(c) is a pack of particles associated with the same block.

longer feasible because they are unstable and overwhelmingly

complicated. FTLE and LCS are alternatives for analyzing

unsteady flows. One use of FTLE in uncertain unsteady flows

is FTVA [13], which is based on the variance of particles

advected from the same locations over a time interval of

interest. Recently, Guo et al. [1] proposed two metrics to

generalize FTLE in uncertain unsteady flows: D-FTLE and

FTLE-D. The former is the distribution of FTLE values that

can lead to uncertain LCS extraction; the latter measures the

divergence of particle distributions and has showed better

results than variance-based methods. In this paper, we address

the common problem of these methods: the high computational

cost of Monte Carlo particle tracing.

C. Parallel Particle Tracing

Parallel particle tracing is a challenging problem in both the

HPC and visualization communities. A comprehensive review

of this topic can be found in [14]. Parallel particle tracing

algorithms can be categorized into two basic types—parallel-

over-data and parallel-over-seeds, as illustrated in Fig. 2. The

two paradigms can also be combined for better scalability.

Parallel-over-data algorithms rely on data partitioning for

load balancing. A common practice of data partitioning is to

subdivide the domain into regular blocks. Peterka et al. [15]

show that static round-robin block assignments with fine

block partitioning can lead to good load balancing in tracing

streamlines in 3D vector fields. The static load balancing can

be further improved by assigning blocks based on estimated

workloads [16]. Nouanesengsy et al. [3] further partition the

data over time in FTLE computation. In addition to regular

blocks, irregular partitioning schemes are used to improve

the load balancing. For eample, Yu et al. [17] propose a

hierarchical representation of flows, which defines irregular

partitions for parallel particle tracing. Similarly, mesh repar-

titioning algorithms are used to balance the workload across

processes [18]. Our method follows the regular decomposition

and round-robin assignments for intragroup parallelism.

In parallel-over-seeds algorithms, seeds are distributed over

processes. Pugmire et al. [19] explore this strategy to load data

blocks on demand; thus there is no communication between

processes to exchange particles. Guo et al. [20] present a

framework to manage the on-demand data access based on

the key-value store. Fine-grained block partitioning and data

prefetching are employed to improve the parallel efficiency.

The parallel-over-seeds paradigm shows better performance

in applications such as 3D stream surface computation [21],

but it often suffers from load-balancing issues because flow

behaviors are complicated and unpredictable. Work stealing

has been used to improve the load balancing in 3D stream

surfaces computation [22]. Mueller et al. [23] propose a work

requesting approach that uses a master process to dynamically

schedule the computations. In this work, we dynamically

schedule the tasks between worker threads within single pro-

cesses.

Hybrid methods combine both parallelization paradigms.

For example, a hybrid master/worker model can be used to

dynamically schedule both particles and blocks [19]. DStep [4]

employs multitiered task scheduling combined with static data

distribution. The framework is further extended to handle

a large number of pathline tracing tasks for ensemble flow

analysis [24]. In this work we must handle even larger scales

of particles adaptively. Camp et al. [25] develop a hybrid

implementation based on an MPI/threads programming model,

which is also used in a distributed GPU-accelerated particle

tracing implementation [26].

We regard our system as a hybrid method. We parallelize

over data within process groups while parallelizing over seed

locations across the groups. The MPI/threads model is also

used with a unique task design, which is a packet of particles

instead of single particles that are used by Camp et al. [25].

This model also enables us to trace massive particles on all

available CPU and GPU resources simultaneously. We further

compare our work with previous studies in the following

sections.

Our work is also related to adaptive refinements in FTLE

computation. Barakat and Tricoche [27] show that the FTLE

field can be estimated by sparse samples instead of tracing

densely seeded particles. An alternative approach is to sacrifice

accuracy by hierarchical particle tracing [28]. These methods,

however, are difficult to scale in distributed parallel environ-

ments. Our algorithm instead adapts the number of Monte

Carlo runs in a full-resolution SFM computation.

III. DECOUPLED AND ADAPTIVE SFM COMPUTATION

In this section, we introduce the decoupled scheme and the

adaptive refinement algorithm to compute SFMs. The work

flows of our methods are shown in Fig. 3. We first compute

Uncertain
Unsteady
Flows

Decoupled
SFMs

Arbitrary

Interval

SFMs

Vis &

Analysis

Fig. 3. The workflow of our methods.

decoupled SFMs and then compose them to SFMs of arbitrary

time intervals. The SFMs are further used for visualization and

analysis.

A. Decoupled Computation of SFMs

Decoupling the particle advection of successive time steps is

the key to achieving high scalability in SFM computation. De-

coupling removes the time dependencies, so that we can first

compute SFMs for adjacent time steps in independent runs and

then compose them for arbitrary time intervals. Decoupling

has two benefits. First, for adjacent time steps, the lifetimes

and travel distances of particles are less than in long time

periods, reducing the communication cost and the memory

footprint. Second, the working datasets in independent runs

are much smaller and hence easier to handle the entire data at

once, leaving more memory to duplicate the working dataset

across processes. Thus, data locality is improved, and less

communication is required in order to exchange tasks between

processes.

We illustrate the SFM decoupling in Fig. 1(c). Formally, we

decouple the computation of ρ
tj
ti

, given arbitrary i and j that

satisfy 0 ≤ i < j ≤ nt − 1, where nt is the number of time

steps of the data. We first independently compute SFMs for

adjacent time steps ρ
t(k+1)

tk
, 0 ≤ k < nt − 2, and then derive

ρ
tj
ti

based on ρ
t(k+1)

tk
.

The theoretic foundation of our algorithm is based on Eqs. 3

and 5. Without loss of generality, we wish to compute ρt2t0
given ρt1t0 and ρt2t1 . The scalar function ρt2t0 can be written as

ρt2t0(x0;x2)
(3)
= Pr(Φt2

t0
(x0) = x2)

(∗)
=

∫
D

ρt1t0(x0;x1)Pr(Φt2
t1
(x1) = x2 | Φ

t1
t0
(x0) = x1)dx1

(∗∗)
=

∫
D

ρt1t0(x0;x1)Pr(Φt1
t0
(x0) = x1 | Φ

t1
t0
(x0) = x1)

Pr(Φt2
t1
(x1) = x2 | Φ

t1
t0
(x0) = x1)dx1

(5)
=

∫
D

ρt1t0(x0;x1)× 1× Pr(Φt2
t1
(x1) = x2)dx1,

(3)
=

∫
D

ρt1t0(x0;x1)ρ
t2
t1
(x1;x2)dx1,

(6)

where D is the domain of the uncertain vector field V. The

rationale of (*) is the law of total probability, and (**) is based

on that Φt1
t0
(x0) and Φt2

t1
(x1) are independent.

We discretize ρ over the same mesh as the input data mesh

and store ρ
tj
ti

in the square matrix P
j
i . The density of traced

particles is estimated and stored in P. P
j
i is usually sparse, and

its dimension is m×m, where m is the number of cells in the

Seed

End Locations

Initial Samples
Adaptive

Re!nement

N

SFM

Stable?
Done

Y

Fig. 4. Adaptive refinement.

mesh. P
j
i (p, q) is the transition probability of the transport

from the pth to the qth cell between the ith and jth time

steps. The generalized discrete form of Eq. 6 is simply matrix

multiplication:

P
j
i =

∏
i≤k<j

P
k+1
k . (7)

In the matrix multiplication, we further reduce the computation

and storage cost by pruning small elements in the matricies. In

our implementation, we use the PETSc library [29] for sparse

matrix multiplication.

B. Adaptive Refinement of SFMs

We dynamically control the number of Monte Carlo runs for

each seed location in order to improve precision and reduce

computational cost. Adaptive refinement is based on the obser-

vation that transport behaviors in flows are usually coherent.

Barakat and Tricoche [27] propose an adaptive refinement

of deterministic flow maps based on reconstruction of sparse

samples. Denser seeds are needed in regions with rich flow

features, and fewer samples are necessary in less complicated

parts. However, the technique is hard to scale in parallel. We

instead use densely seeded particles and adaptively control the

number of stochastic runs for each seed.

The adaptive refinement for each seed is illustrated in Fig. 4.

In the kth iteration, a batch of particles is traced from the

seed x0, and the density of these particles is estimated as

Dk(x0;x). The loop exits if Dk−1(x0;x) and Dk(x0;x) are

statistically identical, otherwise enters the next iteration. Our

criterion to stop iteration is the difference of information en-

tropies between Dk−1(x0;x) and Dk(x0;x). The information

entropy of a random variable X is defined as

H(X) = −
m∑
l=0

P (xl) log(P (xl)), (8)

where m is the number of probabilistic states (number of

cells in this case) and P (xl) is the probability of state xl.

We then evaluate H(Dk−1(x0;x)) and H(Dk(x0;x)). If

|H(Dk) − H(Dk−1)| is greater than a preset threshold, we

add more samples; otherwise we stop the iteration and store

Dk(x0;x) in the sparse matrix. Fig. 5(a-d) show a comparison

of adaptive refinement with fixed numbers of Monte Carlo

runs in the uncertain Isabel dataset. More particles are traced

in the hurricane eye regions, while fewer are sampled in other

regions. Comparing (b) with (c) and (d), we can see that

the entropy field generated by adaptive refinement is more

similar to the results generated with large numbers of samples.

Based on this result, we conclude that adaptive refinement can

achieve better precision with fewer of particles.

IV. SOFTWARE ARCHITECTURE DESIGN

Our parallel particle tracing framework exploits hierarchi-

cal parallelization. At the top level, upon initialization, the

processes are divided into groups. In the intergroup level,

we parallelize over seed locations. Each group duplicates the

working data and traces a different set of seeds. Inside each

group, we parallelize over data. Each process has a portion

of data blocks. A novel task model based on MPI/thread

hybrid parallelization is used. The rationale for our hierarchy

is based on decoupled and adaptive SFM computation. First,

the decoupling makes it possible to have higher degrees of data

duplication for better scalability because the working data of

two adjacent time steps are smaller than that of the whole

dataset. Second, the adaptive refinement allows asynchronous

processing, which also boosts the scalability of parallel particle

tracing.

We further implement a novel design of task model—

packets of particles—to achieve high parallel efficiency in the

MPI/thread model. Within each process, the tasks are sched-

uled and processed by a pool of threads in parallel. The inter-

process task exchange is managed by a dedicated thread, which

handles nonblocking MPI communication. Lock-free data

structures are used to exchange data between threads. In gen-

eral, this design is fully asynchronous—communication and

computation are overlapped, and threads are synchronization-

free. This design improves data locality and enables CPU/GPU

coprocessing.

A. Initialization

Because the decoupled SFM computation yields smaller

working data, typically two adjacent time steps, it is possible

to duplicate data in order to improve data locality. We first

partition the data into blocks and then determine how many

processes to assign to each group for the given memory limit.

For example, given 4 processes, the total number of blocks

is 64, and the maximum number of blocks per process is 32.

Then we create 2 process groups.

Within groups, the blocks are distributed across processes.

As in Peterka et al. [15], we statically assign blocks to

processes by a round-robin scheme. Each process is in charge

of one or more blocks. In addition, threads and lock-free

data structures for task exchanging are also created upon the

initialization.

B. Task Model

Fig. 6 illustrates the task model. We define a task as a

tuple (blkID, type, particles[]), where particles[] is a packet

of particles associated with only on block (blkID). Notice that

each task is associated with one block (blkID). The granularity

of a task is one or more particles, up to a given limit. Each

(a) (b) (c) (d) (e) (f)

0 1600800 0 7.43.7 0 7.43.7 0 7.43.7

Fig. 5. Experiment results of the uncertain Isabel data: (a) the number of Monte Carlo runs with adaptive refinement; (b) the entropy of SFMs computed
with adaptive refinement; (c) and (d) the entropy of SFMs computed with 256 and 2,048 runs, respectively; (e) uncertain LCSs; (f) the FTLE-D. (a)-(d) are
slice rendering and (e)-(f) are volume renderings.

INIT TRACE RETURN CHECK

initialize seeds

for tracing

send particles back

to home block

continue particles

in another block

initialize more particles for the seeds if necessary

check if all particles with

the same seed are !nished

Fig. 6. Task model.

particle is a tuple (x0, x) consisting of its initial and current

spatiotemporal locations, respectively.

Four types of tasks are depicted in the model: initialization

(INIT), tracing (TRACE), return (RETURN), and checking

(CHECK).

• INIT tasks are used to initialize particles for a list of seed

locations in the given block. Particles are created either

by the system for bootstrapping or by the CHECK tasks

when more particles are necessary to refine the SFMs.

• TRACE tasks start or continue to trace a pack of particles

that are not finished yet. If particles are moving out of

the current block, new TRACE tasks associated with the

target blocks are created.

• RETURN tasks are created by TRACE tasks to send

finished particles to their home blocks.

• CHECK task checks termination for particles released at

the same location x0. The density is written to the output

sparse matrix if it is converged; otherwise new INIT

tasks are created to refine the density.

C. Thread Model

We use multithreading for parallelism within a single pro-

cess. Fig. 7 illustrates the thread model in our design. Two

types of threads exist: the communication threads and the

worker threads. Because each process is assigned only a subset

of blocks, the worker threads can handle only messages that

are associated with the blocks they have. Several lock-free

producer-consumer queues are used to schedule and exchange

tasks between threads. There are two groups of queues: the

Qsend
p0 p1 ... pm-1INIT blk_id=32

INIT blk_id=3

TRACE

TRACE

TRACE

CHECK

CHECK

TRACE

Qwork (CPU)

TRACE

TRACE

...

...

...

... ...

...

Qwork (GPU) Comm

Thread R
e

m
o

te
 P

ro
ce

sse
s

C0

Worker

Threads

(GPU)

C1G0

C2G1

Worker

Threads

(CPU)

C3 C4

C5 C6

C7 C8

C9 ...

enqueue()

Fig. 7. Thread model.

Algorithm 1 Worker thread loop. The process task() function

processes a input task and returns a list of new tasks to

continue the computation.

while !all done do

if Qwork.pop(task) then

new tasks[] = process task(task)

for all task in new tasks[] do

comm.enqueue(task.blkID, task)

work queues and the send queues that keep the pending tasks

for the local and remote processes, respectively.

Algorithm 1 shows the pseudo code of the worker thread

main loop. The worker threads function as both producers and

consumers. Worker threads consume tasks and also produce

new tasks to deliver particles to their next or final destinations.

The new task is enqueued to the work queue if the current

process owns the destination block; otherwise the task is

appended to the send queues. The enqueue() function

(Algorithm 2) simplifies the task routing.

The maximum number of particles for each task

(max_size_CPU), which defines the granularity of a TRACE

task, is the most important parameter that determines the

scalability of the thread pool. Larger task granularity leads to

load imbalance because there are fewer concurrent tasks and

some threads are starving. On the contrary, a smaller task size

can result in more context switches and more contention for

the task queues. Fig. 8(a) shows a scalability benchmark using

different max_size_CPU values. In this experiment, 64 is

Algorithm 2 Enqueue task

function ENQUEUE(blkID, task)

i←blkID to rank(blkID)

if i=comm.rank then

if task.size≥max_size_GPU then

split tasks[]=task.split(max_size_GPU)

enqueue all(split tasks[])

else if task.size≥min_size_GPU then

Q
(GPU)
work .push(task)

else if task.size≥max_size_CPU then

split tasks[]=task.split(max_size_CPU)

enqueue all(split tasks[])

else

Q
(CPU)
work .push(task)

else

Qi
send.push(task)

the optimal selection. A similar parameter (max_size_GPU)

needs to be configured when a GPU is available for copro-

cessing with CPUs. The principle to set max_size_GPU is

to have approximately equivalent processing time on GPUs

as that on CPUs, so max_size_GPU is usually larger than

max_size_CPU. More details on the parameter setting in

CPU/GPU coprocessing are in Section IV-E.

The communication thread consumes tasks in the send

queues by sending them to the destination process and en-

queues tasks that are received from remote processes to

work queues. Our thread model uses a dedicated thread for

communication, a common practice in MPI/thread hybrid

parallelization, such as that in Charm++ [31]. The communica-

tion thread in Charm++, however, handles communication on

behalf of worker threads, but the worker threads in our design

do not involve any communication operations. In addition, our

communication thread schedules tasks for load balancing and

CPU/GPU coprocessing.

D. Two-Tiered Asynchronous Communication

We adopt a two-tiered asynchronous design. First, the

interprocess communication overlaps the computation by using

a dedicated communication thread. Second, the communica-

tion thread uses MPI nonblocking communications to further

reduce the delays. Specifically, tasks are exchanged between

blocks across processes by the two-tiered asynchronous com-

munication in to overlap the computation. Each process has a

dedicated communication thread to send and receive messages

from remote processes. The communication thread executes

and manages nonblocking MPI requests without any waits.

The pseudo code of the communication thread main loop is

listed in Algorithm 3. Each process maintains a list of lock-

free send queues {Qi
send}m, where i is the destination rank

and m is the number of processes. The tasks in the send

queues are pushed by the worker threads via enqueue()

calls. In every iteration of the loop, the communication thread

tries to dequeue a bulk of tasks from each Qi
send. The list of

tasks is then serialized and sent to the destination process by

Algorithm 3 Communication thread loop

while !all done do

for all i in comm.world do ⊲ outgoing tasks

if Qi
send.pop bulk(tasks, max_size_send) then

comm.isend(i, serialize(tasks))

while comm.iprobe() do ⊲ incoming tasks

tasks = unserialize(comm.recv())

for all task in tasks do

enqueue(task.blkID, task)

comm.iexchange(all done) ⊲ exchange status

Running time
(a)

(b)

CPU1

CPU2

...
...

...

...

...

...

CPUn-3

CPUn-2

CPUn-1

GPU0

GPU1

CPU0 ...

Running time

CPU1

CPU2

...
...

...

...

CPUn-1

CPU0

Blk2 Blk2 Blk8 Blk3 Blk1

Blk6 Blk4 Blk3 Blk1 Blk5 Blk1Blk1

Blk2 Blk2 Blk7 Blk7 Blk3 Blk4

Blk0 Blk3 Blk2 Blk4 Blk6 Blk6

Blk8 Blk8 Blk0 Blk2 Blk1 Blk8 Blk2

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk2

Blk(n-1)

Blk0

Blk1

Blk(n-1)

Blk1

Blk2

Blk(n-1)

...

COMM INIT TRACE RETURN CHECK

Fig. 9. Gantt chart of (a) our task model and (b) the bulk synchronous parallel
model. Each row represents a thread.

nonblocking send (MPI_Isend). The incoming messages are

received by MPI_Recv if they are probed by MPI_Iprobe.

The loop exits when all tasks across all processes are finished.

A nonblocking version of Francez’s algorithm [32] is imple-

mented for distributed termination, as in a previous parallel

particle tracing study [22].

We use m − 1 send queues for better performance. In our

design, a set of tasks with the same destination rank is obtained

with the pop_bulk() function in the lock-free queue. Thus,

we can send a larger message that contains multiple tasks,

instead of multiple smaller messages each contains one single

task. We do so because larger message size usually yields

better performance.

The two-tiered asynchronous design enables the full overlap

between computation and communication. As illustrated in

Fig. 9(a), the communication thread (CPU0) and the worker

threads (other CPUs) and the communication thread work

concurrently without any explicit synchronization. In Sec-

tion VI-C we compare our design with communication models

in previous parallel particle tracing studies.

E. CPU/GPU Coprocessing

The thread pool model enables hybrid CPU/GPU paral-

lelization, which fully utilizes the computation power of both

102

101

100

10-1

1 2 4 8 16 32 63

max_CPU_size=2048

max_CPU_size=256

max_CPU_size=64 (optimal)

max_CPU_size=1

ideal scaling

Worker threads per process

Strong Scalability
T

im
e

 (
se

co
n

d
s)

optimal

32.0

31.1

1.3

0.8
0.9

Bulk synchronous (Peterka et al.)

max_CPU_size=64 (our method)

max_CPU_size=1 (Camp et al., modi�ed)

ideal scaling

102

101

100

10-1

103

Processes

Strong scalability

T
im

e
 (

se
co

n
d

s)

261.9

189.5

195.1

24.0

1.5

1.0

1 2 4 8 16 32 64 128 256

num_particles_CPU

num_particles_GPU

0 5 10 15 20 25 30 35

3M

2M

1M

0

7M

6M

5M

4M

Running time (seconds)

N
u

m
b

e
rs

 o
f

P
a

rt
ic

le
s

Numbers of Particles Traced in Running Time

(a) (b) (c)

Fig. 8. (a) Benchmark of the flow map computation in tornado simulation data (32K particles) with different max_size_CPU and different numbers of
worker threads per process on 32 Blue Gene/Q nodes. A proper selection of max_size_CPU leads to better performance and scalability. (b) Performance
comparison with two existing parallel particle tracing methods ([30] and [25]). (c) Number of particles traced in running time with GPU/GPU coprocessing.

CPUs and GPUs in compute nodes. We design strategies to

schedule tasks on CPUs and GPUs.

Our task-scheduling strategy is to fill GPUs with larger

tasks and assign complex or small tasks for CPUs. GPUs

can be seen as SIMD processors, which are suitable for

handling a batch of tasks simultaneously. However, the data

movement cost between the CPU and GPU is significant.

Specifically, the particles must be transferred to the GPU

memory before they are traced, and they have to be copied

back to the main memory for further processing. The clock

speed of GPUs is also slower than that of CPUs. Thus, the

overall performance drops if there are too few particles for a

batch. This phenomenon was observed by Camp et al. [26] in

distributed and parallel environments.

We associate a GPU worker thread (running on the CPU)

with each GPU. The data blocks in the main memory are

copied into GPU in the initialization stage. A designated

GPU task queue is also set up for task scheduling. In the

enqueue() function, larger tasks and smaller tasks are

pushed into the GPU and CPU queues, respectively.

Similar to the rationale of max_size_CPU for CPU work-

ers, we also need to limit the task size for the GPU, that

is, min_size_GPU. In principle, the running time cannot

be too long, in order to keep load balanced. We usually set

max_size_CPU ≤ min_size_GPU < max_size_GPU.

Although we have two different work queues for CPUs

and GPUs, the tasks do not have to be processed by their

designated processors. A CPU worker thread can dequeue a

task from the GPU queue when the thread is starving, and

vice versa for GPU worker threads. When a task T in the

GPU queue is processed by a CPU worker thread, T may be

split before further processing. Because the task size is usually

greater than max_size_CPU, the incoming task is cut into

two subtasks T1 and T2. Task T1 has size max_size_CPU,

and task T2 is the rest. T1 is processed with the current CPU

worker thread, and T2 is enqueued to worker queues for further

processing. Notice that T2 may or may not qualify as a GPU

task depending on its size.

When a task T in the CPU queue is obtained by a GPU

worker thread, it may or may not be processed with the

associated GPU. First, if the size of the TRACE task T is

smaller than min_size_GPU, it is still handled by a CPU.

Second, the INIT or RETURN are also processed on a CPU.

F. Implementation

We implemented the prototype system with C++11. MPI

is used for interprocess communication. For each process, the

worker threads are created with Pthreads, and the parent thread

plays the role of the communication thread. We use a lock-

free concurrent queue implementation [33] to exchange tasks

between threads. Because only one thread makes MPI calls,

we use the MPI_THREAD_FUNNELED mode on initialization.

DIY [30] is used for domain decomposition. The Block I/O

Layer (BIL) library [34] is used to efficiently load disjoint

block data across different files and processes collectively. We

also implemented a thread-specific random number generator

for stochastic particle tracing, because the random number

generator in the C++ standard library does not scale multiple

threads in our experiments. The GPU code is written in

CUDA. Upon initialization, the data blocks are copied to the

GPU memory, and then a buffer that can fit max_size_GPU

particles is created. Particles in the TRACE task are copied

to the GPU and then copied back after they are traced. After

the computation, we store the SFMs in a sparse matrix that is

managed by the PETSc library [29].

V. APPLICATION RESULTS

We applied our method to two weather simulation datasets

with uncertainties: uncertain Hurricane Isabel data and ensem-

ble Weather Research and Forecasting (WRF) data.

A. Input Data

Uncertainty arises in the Hurricane Isabel data from tem-

poral down-sampling. In climate and weather simulations, a

common practice is to dump average data hourly or daily

instead of every time step. Such data down-sampling reduces

the I/O cost but sacrifices accuracy. We follow Chen et al. [35]

who use quadratic Bezier curves to quantify the uncertainty

of the original Hurricane Isabel data which is from the IEEE

TODO: generate another FTLE-D

(a) (b) (c)

TODO: generate another U-LCS

0h

6h

10h

4h

8h

Fig. 10. Experiment results of the WRF ensemble simulation data: (a) uncertain source-destination queries; (b) uncertain LCSs; (c) FTLE-D.

Visualization Contest 2004. The spatial resolution of the

original data is 500 × 500 × 100. The down-sampled dataset

we use in the experiment keeps the full spatial resolution but

aggregates every 12 time steps into one. The parameters of

the quadratic Bezier curves and the Gaussian error are used

to reconstruct the uncertain flow field for SFM computation.

The uncertainty of the ensemble WRF data arises from

averaging the ensemble members. The input data, courtesy

of the National Weather Service, is simulated with the High

Resolution Rapid Refresh (HRRR) model [36]. The model is

based on the WRF model and assimilates observations from

National Oceanic and Atmospheric Administration (NOAA)

and other sources. The spatial resolution of the model is

1799× 1059× 40, and we use 10 ensemble members with 15

hourly averaged outputs for our experiment. The uncertainty

is modeled as Gaussian—the mean and covarances of the

ensemble members are computed for every grid point location.

B. Uncertain Source-Destination Queries

Fig. 10(a) shows the uncertain source-destination query

results. We create particles along a line in the domain and

visualize the distributions of these particles after every hour

by volume rendering. The visualization results show that the

uncertainties of SFMs grow as the advection time increases.

We can also see that the uncertainty of transport behavior

in the mountain areas is greater than in the plains. This

phenomenon matches the fact that numerical weather forecasts

are more unstable in mountains.

C. Uncertain FTLE and LCS Visualization

FTLE and LCS are the most important tools for analyzing

deterministic unsteady flow. The FTLE was proposed by

Haller [37], and it measures the convergence or divergence

for the time interval of interest. Recently, Guo et al. [1] gen-

eralized FTLE and LCS to analyze uncertain unsteady flows

based on SFMs. Three new concepts were introduced: D-FTLE

(distributions of FTLE), FTLE-D (FTLE of distributions), and

U-LCS (uncertain LCS). We compute FTLE-D and U-LCS

from the uncertain Isabel data and the WRF ensembles in

Fig. 5 and Fig. 10, respectively.

The FTLE-D and U-LCS in Fig. 5(e) and (f) show connec-

tive bands of the uncertain Isabel data. The spiral arm that

extends to the east coast separates two different motions: the

flow going upwards and the flow keeping their original levels.

Because there is more uncertainty in updraft and downdraft

flows, the boundary of the two features is fuzzy, as shown in

the U-LCS and the FTLE-D.

In the WRF ensembles, we can also observe that the upward

and downward air flows lead to uncertainties in U-LCS and

FTLE-D. These are due mainly to the land surface variability.

We can see four distinct regions in Fig. 10(b) and (c): the on-

shore flow from the Pacific Ocean to the Cascade mountains,

a cold front from Oklahoma to Dakotas, and two unstable

troughs in the Midwest and the East. The visualization results

of FTLE-D and U-LCS, which are confirmed by meteorolo-

gists, highlight these unstable zones.

VI. PERFORMANCE EVALUATION

We study the scalability of our methods on two supercom-

puters: Mira and Titan. We also compare our parallel particle

tracing scheme with previous studies.

A. Scalability Study on the Blue Gene/Q Systems

We conducted scalability study on Mira, an IBM Blue

Gene/Q system at Argonne National Laboratory. The theoret-

ical peak performance of Mira is 10 petaflops. Each compute

node has 16 1.6 GHz PowerPC A2 cores, which support 64

hardware threads in total. The memory on each node is 16

GB, and the interconnect is a proprietary 5D torus network.

To maximize the utilization of computation nodes, we run

one MPI process on each node, with one communication

thread and 63 worker threads for computation. These choices

are based on the experiments in Section IV-C. We limit the

memory for data blocks to 1 GB per process, so we have 4

and 16 processes per group for the uncertain Isabel data and

the ensemble WRF data, respectively. For the uncertain Isabel

data, we use both fixed numbers of Monte Carlo runs and

adaptive refinements for comparison. For the fixed sampling,

the number of runs is 256; thus, the total number of particles

is about 6.5 billion.

Fig. 11(a) and (c) show the timings of SFM computation

on both datasets with different numbers of processes on Mira.

Ideal scaling curves based on linear speedup are shown for

reference. From the benchmark we can see that the speedup

is nearly linear. The parallel efficiency of 4K, 8K, and 16K

processes are 92%, 85%, and 72%, respectively. The main

reason for this scalability is the decoupled SFM computation

that removes the time dependency. Because we need to load

mira_�xed

mira_adaptive

ideal scaling

102

101

100

103

Processes

T
im

e
 (

se
co

n
d

s)
Strong Scalability

485.8

744.5

10.8

8.1

64 128 256 512 1K 2K 4K 8K 16K

titan_�xed_hybrid

titan_�xed_cpu_only

titan_�xed_gpu_only

titan_adaptive_hybrid

ideal scaling

102

101

100

103

T
im

e
 (

se
co

n
d

s)

Processes

Strong Scalability
816.4

612.4
250.6

184.7

8.3

19.8

3.1

1.9

64 128 256 512 1K 2K 4K 8K 256 512 1K

mira_ xed

ideal scaling

103

102

104

T
im

e
 (

se
co

n
d

s)

Processes

Strong Scalability

273.3

1020.0

(a) (b) (c)

Fig. 11. Strong scalability studies of our method: (a) uncertain Isabel data on Mira; (b) uncertain Isabel data on Titan; (c) ensemble WRF data on Mira.

only two adjacent time steps at once, we can duplicate

more working data for less communication. Fig. 11(a) also

shows that adaptive refinement reduces the computation time,

compared with fixed sampling.

B. Scalability Study on CPU/GPU Hybrid Architectures

We benchmarked the CPU/GPU coprocessing on Titan,

which is a Cray XK7 supercomputer at Oak Ridge National

Laboratory. Titan has 18,688 compute nodes, each equipped

with an AMD Opteron 6274 16-core CPU that operates at 2.2

GHz with 32 GB of main memory. In addition to the CPU,

each node also contains an NVIDIA Tesla K20X GPU with 6

GB memory. The number of CUDA cores on a single GPU is

2,688, running at 732 MHz.

Fig. 11(b) shows the strong scalability benchmark on the

uncertain Isabel dataset. The problem size is the same as that

on Mira, namely 6.5 billion particles. In the experiments, we

fully used the CPU resources by running 15 worker threads

and one communication thread per process on each node. In

the CPU/GPU coprocessing mode, one of the worker threads

managed the GPU. We conducted three runs to study the

effectiveness of CPU/GPU hybrid parallelization: the pure

CPU mode, the pure GPU mode, and the hybrid mode. The

pure GPU mode is used for comparison only. In this mode,

only one worker thread is used, and all tasks are conducted

on the GPU regardless of task size; that is, min_GPU_size

is zero.

Results show that the computation time of the hybrid mode

is about 2.5× faster than the pure CPU mode. We refer to

Camp et al. [26] who report a speedup of 1× to 10.5× on

a distributed-memory GPU particle tracer compared with a

CPU-only code on 8 nodes. Based on the previous studies,

we believe that our 2.5× speedup is promising. Our hybrid

parallelization design enables the full use of available hard-

ware resources on compute nodes, including all CPU and GPU

cores. The scheduling of CPUs and GPUs is also adaptive,

capable of balancing working time between CPU and GPU

workers. Moreover, the hybrid implementation is scalable up

to 131,072 Opteron cores with 8,192 NVidia K20 GPUs in

our test. At this scale, tracing billions of particles only spends

less than 10 seconds.

C. Comparison with Existing Parallel Particle Tracing Algo-

rithms

We compared our method with existing parallel particle trac-

ing algorithms. The baseline approaches are these of Peterka

et al. [30] and Camp et al. [25]. Both algorithms partition

data into blocks for parallel processing and use MPI/thread

hybrid parallelization. We implemented these algorithms and

compared their performance on the same dataset and problem

size. In the experiment, we used the deterministic tornado

dataset and 32 threads per process for computation. Only one

process group was used, so there is no data duplication for the

comparison. The timings with respect to different numbers

processes are shown in Fig. 8(b), and we can see that our

method outperforms the others.

The parallel model used by Peterka et al. [30] is bulk

synchronous (Fig. 9(b)). In this model, each block of data

is associated with a thread in one single process. The particles

are traced in the current block until they cross the block

bounds, and then they are exchanged between neighbor blocks

collectively. Compared with the bulk synchronous parallel

model, our model does not associate blocks with threads. We

also fully overlap the communication and computation in our

framework.

The thread pool pattern is used in Camp et al. [25], but

the major difference in our design is the task model and

the software design. In Section IV-C, we showed that our

task model yields fewer context switches and enables the

CPU/GPU coprocessing. In addition, we use lock-free data

structures and two-tiered asynchronous communication for

intra and interprocess task exchange.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a scalable SFM computation

method for uncertain flow visualization and analysis. The keys

to achieving high scalability are the decoupled and adaptive al-

gorithms, the MPI/thread hybrid parallelization, and the unique

task design that assembles packets of particles. The decoupling

allows us to compute SFMs of adjacent time steps and then

compose them together. The number of stochastic runs can be

adaptively configured for better efficiency and precision. We

parallelize over tasks, which are packets of particles, to achieve

high efficiencies in the MPI/thread hybrid programming. Our

parallelization design also enables CPU/GPU coprocessing

when GPUs are available. Results show that our method can

help scientists analyze uncertain flows in greater detail with

higher performance than previously possible.

We would like to extend our work to support more many-

core architectures, such as the Intel Xeon Phi. The data

localities can be also improved in NUMA architectures. We

would also like to incorporate more uncertain flow analysis

tools, such as uncertain topology analysis. Our algorithms

could also be used in in situ flow analysis frameworks in the

future.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.

Department of Energy, Office of Science, under contract

number DE-AC02-06CH11357. This work is also supported by

the U.S. Department of Energy, Office of Advanced Scientific

Computing Research, Scientific Discovery through Advanced

Computing (SciDAC) program.

REFERENCES

[1] H. Guo, W. He, T. Peterka, H.-W. Shen, S. M. Collis, and J. J. Helmus,
“Finite-time Lyapunov exponents and Lagrangian coherent structures in
uncertain unsteady flows,” IEEE Trans. Vis. Comput. Graph., vol. 22,
2016, to appear.

[2] M. Otto, T. Germer, and H. Theisel, “Uncertain topology of 3D vector
fields,” in Proceedings of IEEE Pacific Visualization Symposium 2011,
2011, pp. 67–74.

[3] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka, “Parallel
particle advection and FTLE computation for time-varying flow fields,”
in SC12: Proc. ACM/IEEE Conference on Supercomputing, 2012, pp.
61:1–61:11.

[4] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson,
“Simplified parallel domain traversal,” in SC11: Proceedings of the

ACM/IEEE Conference on Supercomputing, 2011, pp. 10:1–10:11.

[5] C. R. Johnson and A. R. Sanderson, “A next step: Visualizing errors
and uncertainty,” IEEE Comput. Graph. Appl., vol. 23, no. 5, pp. 6–10,
2003.

[6] K. Brodlie, R. AllendesOsorio, and A. Lopes, “A review of uncertainty
in data visualization,” in Expanding the Frontiers of Visual Analytics

and Visualization, J. Dill, R. Earnshaw, D. Kasik, J. Vince, and P. C.
Wong, Eds. Springer London, 2012, pp. 81–109.

[7] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf, “The state of the art in flow visualization: Dense and
texture-based techniques,” Comput. Graph. Forum, vol. 23, no. 2, pp.
203–222, 2004.

[8] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch, “The
state of the art in flow visualization: Feature extraction and tracking,”
Comput. Graph. Forum, vol. 22, no. 4, pp. 1–17, 2003.

[9] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser, “The state of the art in topology-based
visualization of unsteady flow,” Comput. Graph. Forum, vol. 30, no. 6,
pp. 1789–1811, 2011.

[10] C. M. Wittenbrink, A. Pang, and S. K. Lodha, “Glyphs for visualizing
uncertainty in vector fields,” IEEE Trans. Vis. Comput. Graph., vol. 2,
no. 3, pp. 266–279, 1996.

[11] R. P. Botchen, D. Weiskopf, and T. Ertl, “Texture-based visualization of
uncertainty in flow fields,” in Proceedings of IEEE Visualization 2005,
2005, pp. 647–654.

[12] M. Otto, T. Germer, H.-C. Hege, and H. Theisel, “Uncertain 2D vector
field topology,” Comput. Graph. Forum, vol. 29, no. 2, pp. 347–356,
2010.

[13] D. Schneider, J. Fuhrmann, W. Reich, and G. Scheuermann, “A variance
based FTLE-like method for unsteady uncertain vector fields,” in Topo-

logical Methods in Data Analysis and Visualization II, ser. Mathematics
and Visualization, R. Peikert, H. Hauser, H. Carr, and R. Fuchs, Eds.
Springer, 2011, pp. 255–268.

[14] E. W. Bethel, H. Childs, and C. Hansen, High Performance Visualiza-

tion: Enabling Extreme-Scale Scientific Insight. CRC Press, 2012.

[15] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,
W. Kendall, and J. Huang, “A study of parallel particle tracing for steady-
state and time-varying flow fields,” in IPDPS11: Proceedings of IEEE

International Symposium on Parallel and Distributed Processing, 2011,
pp. 580–591.

[16] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen, “Load-balanced parallel
streamline generation on large scale vector fields,” IEEE Trans. Vis.

Comput. Graph., vol. 17, no. 12, pp. 1785–1794, 2011.

[17] H. Yu, C. Wang, and K.-L. Ma, “Parallel hierarchical visualization
of large time-varying 3D vector fields,” in SC07: Proceedings of the

ACM/IEEE Conference on Supercomputing, 2007, pp. 24:1–24:12.

[18] L. Chen and I. Fujishiro, “Optimizing parallel performance of streamline
visualization for large distributed flow datasets,” in Proceedings of IEEE

Pacific Visualization Symposium 2008, 2008, pp. 87–94.

[19] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber, “Scalable
computation of streamlines on very large datasets,” in SC09: Proceed-

ings of the ACM/IEEE Conference on Supercomputing, 2009, pp. 16:1–
16:12.

[20] H. Guo, J. Zhang, R. Liu, L. Liu, X. Yuan, J. Huang, X. Meng,
and J. Pan, “Advection-based sparse data management for visualizing
unsteady flow,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12, pp.
2555–2564, 2014.

[21] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Parallel stream
surface computation for large data sets,” in LDAV12: Proceedings IEEE

Symposium on Large Data Analysis and Visualization, 2012, pp. 39–47.

[22] K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream surfaces
on large scale vector fields,” in SC14: Proceedings of the ACM/IEEE

Conference on Supercomputing, 2014, pp. 1008–1019.

[23] C. Mueller, D. Camp, B. Hentschel, and C. Garth, “Distributed parallel
particle advection using work requesting,” in LDAV13: Proceedings

IEEE Symposium on Large Data Analysis and Visualization, 2013, pp.
109–112.

[24] H. Guo, X. Yuan, J. Huang, and X. Zhu, “Coupled ensemble flow line
advection and analysis,” IEEE Trans. Vis. Comput. Graph., vol. 19,
no. 12, pp. 2733–2742, 2013.

[25] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy, “Streamline
integration using MPI-hybrid parallelism on a large multicore architec-
ture,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 11, pp. 1702–1713,
2011.

[26] D. Camp, H. Krishnan, D. Pugmire, C. Garth, I. Johnson, E. W. Bethel,
K. I. Joy, and H. Childs, “GPU acceleration of particle advection
workloads in a parallel, distributed memory setting,” in EGPGV13:

Proceedings of Eurographics Parallel Graphics and Visualization Sym-

posium, 2013, pp. 1–8.

[27] S. S. Barakat and X. Tricoche, “Adaptive refinement of the flow map
using sparse samples,” IEEE Trans. Vis. Comput. Graph., vol. 19, no. 12,
pp. 2753–2762, 2013.

[28] M. Hlawatsch, F. Sadlo, and D. Weiskopf, “Hierarchical line integration,”
IEEE Trans. Vis. Comput. Graph., vol. 17, no. 8, pp. 1148–1163, 2011.

[29] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient
management of parallelism in object oriented numerical software li-
braries,” in Modern Software Tools in Scientific Computing, E. Arge,
A. M. Bruaset, and H. P. Langtangen, Eds. Birkhäuser Press, 1997,
pp. 163–202.

[30] T. Peterka, R. B. Ross, W. Kendall, A. Gyulassy, V. Pascucci, H.-W.
Shen, T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building blocks
for custom data analysis,” in LDAV11: Proceedings IEEE Symposium

on Large Data Analysis and Visualization, 2011, pp. 105–112.

[31] L. V. Kale and S. Krishnan, “Charm++: Parallel programming with
message-driven objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175–213.

[32] N. Francez, “Distributed termination,” ACM Trans. Program. Lang. Syst.,
vol. 2, no. 1, pp. 42–55, 1980.

[33] C. Desrochers, “A fast multi-producer, multi-consumer lock-free concur-
rent queue for C++11,” https://github.com/cameron314/concurrentqueue.

[34] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross, “Toward a
general I/O layer for parallel-visualization applications,” IEEE Computer

Graphics and Applications, vol. 31, no. 6, pp. 6–10, 2011.
[35] C.-M. Chen, A. Biswas, and H.-W. Shen, “Uncertainty modeling and

error reduction for pathline computation in time-varying flow fields,” in
Proceedings of IEEE Pacific Visualization Symposium 2015, 2015, pp.
215–222.

[36] C. Alexander, S. S. Weygandt, D. C. D. S. Benjamin, T. G. Smirnova,
E. P. James, M. H. P. Hofmann, J. Olson, and J. M. Brown, “The high-
resolution rapid refresh: Recent model and data assimilation develop-
ment towards an operational implementation in 2014,” in Proceedings of

26th Conference on Weather Analysis and Forecasting / 22nd Conference

on Numerical Weather Prediction. American Meterological Society,
2014.

[37] G. Haller, “Distinguished material surfaces and coherent structures in
three-dimensional fluid flows,” Physica D: Nonlinear Phenomena, vol.
149, no. 4, pp. 248–277, 2001.

The submitted manuscript has been created by UChicago

Argonne, LLC, Operator of Argonne National Laboratory

(“Argonne”). Argonne, a U.S. Department of Energy Office

of Science laboratory, is operated under Contract No. DE-

AC02-06CH11357. The U.S. Government retains for itself,

and others acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of the

Government.

