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Abstract—Two-tiered direct network topologies such as Drag-
onflies have been proposed for future post-petascale and exascale
machines, since they provide a high-radix, low-diameter, fast
interconnection network. Such topologies call for redesigning
MPI collective communication algorithms in order to attain the
best performance. Yet as increasingly more applications share a
machine, it is not clear how these topology-aware algorithms
will react to interference with concurrent jobs accessing the
same network. In this paper, we study three topology-aware
broadcast algorithms, including one designed by ourselves. We
evaluate their performance through event-driven simulation for
small- and large-sized broadcasts (in terms of both data size and
number of processes). We study the effect of different routing
mechanisms on the topology-aware collective algorithms, as well
as their sensitivity to network contention with other jobs. Our
results show that while topology-aware algorithms dramatically
reduce link utilization, their advantage in terms of latency is
more limited.

I. INTRODUCTION

As the number of cores in petascale and post-petascale
supercomputers increases, traditional low-radix networks such
as torus fail to meet cost and performance requirements of
HPC infrastructures. Consequently, a number of novel, high-
radix topologies such as Dragonflies [1] and variants [2], [3]
have been proposed.

The Dragonfly topology is a two-tiered direct topology
consisting of groups of routers connected to terminals. Routers
belonging to the same group form an all-to-all network, while
groups themselves act as high-radix, virtual routers connected
in an all-to-all manner. This design enables a cost-efficient,
low-diameter network. Indeed, any two terminals in such
a topology are at most five hops away from one another.
Dragonfly topologies have been used in a number of machines,
such as the Cori and Edison supercomputers at NERSC [4],
and will be used by the future Theta machine at ANL [5].

Yet such a topology poses new challenges. High-radix
routers and low network diameter make job isolation more
difficult and force network resources to be shared across inde-
pendent jobs. Communication interference between jobs [6],
[7], [8], one of the main causes of performance variability
in HPC applications [9], becomes increasingly difficult to
avoid. This interference issue is further amplified by the
fact that Dragonfly networks perform best under uniform
random traffic [10], which motivates using random placement
of processes across the network and nonminimal or adaptive
routing strategies [11], [1].

While random placement of processes and appropriate
routing strategies can help mitigate interference, collective

communication provides another opportunity for reducing
interference. Topology-aware algorithms can minimize traffic
between groups, reducing utilization of these key links. These
algorithms must be evaluated not only for jobs spanning the
full network and running individually but also for random
allocations of any size and in the presence of background
traffic.

Broadcast algorithms adapted to the Dragonfly network have
been proposed in the past few years [12], [13]. Xiang and
Liu [12] proposed the group first and router first algorithms,
which we call GLF (global links first) and LLF (local links
first) in this paper. An algorithm similar to LLF was also
proposed for the PERCS topology by Jain et al. [13]. These
works, however, focus on a single job spanning the full
machine.

In this paper, we evaluate three topology-aware broad-
cast algorithms for the Dragonfly topology: LLF, GLF, and
FOREST. FOREST is an algorithm designed by ourselves
that mixes LLF and GLF to try to overcome the limitations
of both. We compare these algorithm to the binomial tree
algorithm (TREE) implemented in MPICH. Using the CODES
framework [14] for discrete-event simulations of the Dragonfly
network, we demonstrate their performance across a range
of allocation sizes, for different types of routing methods,
different data sizes, and with the presence of background
traffic. Our results show that, while topology-aware algorithms
dramatically decrease link utilization, they do not necessar-
ily decrease the execution time. Deeper studies should be
conducted to find out what makes each algorithm perform
particularly well (or particularly poorly) in a given context. For
example, LLF presents a high run time and a large variability
for small allocations, compared with other algorithms.

The rest of this paper is organized as follows. In Section II
we present the background and related work for our study.
Three topology-aware algorithms, LLF, GLF, and FOREST,
are presented in Section III. Section IV evaluates these
algorithms through packet-level network simulations using
the CODES simulation framework. Section V presents our
conclusions and briefly discusses avenues for future work.

II. BACKGROUND AND RELATED WORK

In this section we first describe the Dragonfly topology, in-
cluding common problems related to routing, task placement,
and communication interference. We then describe common
nontopology-aware broadcast algorithms, showing their poten-
tial drawbacks on a Dragonfly network.
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Fig. 1: Illustration of a Dragonfly topology with g = 3, a = 2,
p=2,and h = 1.

A. Dragonfly networks

1) Overview: The Dragonfly topology is a two-tier network
topology composed of g groups of a routers. Each router is
connected to a number p of terminals through terminal links.
Routers in a given group are all connected to one another
through local links in an all-fo-all topology. Each router in
a given group is also connected through global links to h
routers belonging to other groups. In our study, we consider
a Dragonfly topology in which, for any two groups G' and
G’, there is exactly one router R belonging to G and one
router R’ belonging to G’ such that R shares a global link
with R’. This translates into h = 97_1 and corresponds to the
architecture originally proposed by Kim et al. [1].

2) Routing on a Dragonfly: A message sent from a terminal
Ty to a target terminal 7, connected to the same router R
needs to cross two terminal links (for example, terminals O
and 1 in Figure 1). If T5 is in the same group but connected
to Re # R;, the message has to cross one terminal link
(Ty — Ry), one local link (R — R»), and one terminal
link (Ry — T5). This is the situation of terminals 0 and 2,
for example. If the target terminal is in another group, the
message first needs to be routed from R; to a router R} that
has a global link to a router R} in the target group, then
from R} to R, through a local link, and finally to the target
terminal (note that R} may be equal to R; if R; has a global
link to a router in the destination group, and similarly R}
may be equal to Ry). Hence in this situation the message
crosses two terminal links (17 — R; and Ry, — 15), one
global link (R} — R5), and anywhere from zero to two local
links (R; — R} if Ry # R} and R, — Ry if Ry # R)).
In Figure 1, for example, a message sent from terminal O to
terminal 11 needs to cross two terminal links and one global
link. A message sent from terminal O to terminal 4 needs to
cross one local link in addition to the global link and the two
terminal links. A message sent from terminal O to terminal 7
needs to cross one more local link.

The above routing method is called minimal, or direct.
Nonminimal (or indirect) and adaptive routing strategies using
Valiant’s algorithm [15] and variants [16] have been proposed
in order to randomize the intergroup traffic and avoid conges-
tion [1], [17], [18]. When sending a message from a terminal
to another in different groups, nonminimal routing randomly
selects an intermediate group through which the packet will
transit. This technique has the benefit of making the network
traffic look more like a uniform random traffic pattern, for
which the Dragonfly topology is well suited [10]. Adaptive
routing consists of switching between minimal and nonmini-
mal routing depending on whether congestion is detected.

Although the adaptive routing mechanism proposed by
Kim et al. [1] along with the Dragonfly topology can help
avoid congestion, Prisacari et al. have shown that it still
has limited capabilities to really randomize the traffic [10].
Besides, nonminimal routes increase the number of hops
required to transfer a packet, which increases the latency and
energy consumption. Relying only on routing mechanisms
to address congestion issues is therefore not sufficient; we
need to develop topology-aware communication algorithms
that effectively minimize global and local link utilization.

3) Job and process placement: The intuition to avoid shar-
ing links across jobs would be to isolate jobs on as few routers
as possible [6], [8]. Process placements strategies have been
proposed by Bhatele et al. [18] that depend on the dominant
communication patterns of applications. The authors show that
while topology-aware task placement strategies can achieve
better performance under minimal routing, nonminimal routing
makes such optimization unnecessary, at the cost of higher
latencies.

Jain et al. [19] have shown that random process placement,
along with adaptive or nonminimal routing, helps spread the
traffic across the network and avoid hot spots. Yet randomizing
task placement is still not sufficient to fully randomize the
network traffic, as shown by Prisacari et al. [20].

As a result of random process placement, most of the
messages generated by any non-topology-aware collective
communication algorithms transit through a global link. This
problem is further amplified by nonminimal and adaptive
routing, which select a random intermediate group through
which to route messages, therefore doubling the utilization of
global links. If the goal is to minimize link utilization, a key
focus must be on leveraging topology information to avoid
unnecessary traffic outside groups.

4) Taking advantage of Dragonfly: Several observations
can be made from the design of the Dragonfly topology and
from its routing method. First, sending data to a process in
a different group requires traversing more hops than does
sending data to a process in the same group. In a production
system where multiple applications run concurrently, it may be
desirable to keep intergroup communications and global link
utilization to a minimum in order to avoid network congestion
and performance variability. Doing so will also minimize
the impact of routing decisions on the performance of the
algorithm. Indeed, as fewer intergroup communications are
performed, there will be fewer opportunities for nonminimal or
adaptive routing to increase the latency by making messages
transit through a randomly selected group. Consequently, it
will also minimize the communication volume.

The second observation is that once a process in a group has
received its data, it can broadcast that data internally within
the group without using global links. Hence the number of
messages traversing global links in a topology-aware broadcast
can be reduced to one per group in which the application runs.

Third, provided that multiple terminals in a group have
received the data, the data can be sent in parallel to terminals
of other groups through distinct global links.

These three observations have driven the design of some
topology-aware collective algorithms [12], [13], which attempt
to minimize the transfer through global links. However, one



consideration that has been left aside in these previous works
is the fact that Dragonfly networks use high-radix routers.
Sending data only across local links, or only across global
links during one step of a broadcast, prevents the router from
leveraging its input and output ports and buffers associated
with unused links. Counterintuitively, minimizing global link
utilization might therefore not be the best way to get the
shortest run time of the collective algorithms on a Dragonfly
network. The evaluation we conduct in this paper precisely
aims to explore this tradeoff.

B. Non-topology-aware broadcast algorithms

1) State of the art: Current implementations of MPI such
as MPICH [21] provide several broadcast methods that are
selected based on the size of the message and the number
of processes involved. For small messages (size < 12,288
bytes), MPICH uses a binomial tree algorithm. For long
messages, MPICH splits the data and performs a scatter
across processes followed by an allgather. The scatter phase
uses a binomial-tree algorithm. The allgather phase uses a
recursive-doubling algorithm [22] for medium-size messages
(size < 524,288) and power-of-2 number of processes. For
long messages and for medium-size messages and non-power-
of-2 number of processes the allgather phase uses a ring
algorithm. OpenMPI also provides a number of broadcast
algorithms, including a binomial tree algorithm [23]. Contrary
to MPICH, which selects the algorithm based on data size
thresholds and number of processes independently of the
machine, OpenMPI’s algorithms are selected based on prior
benchmarking and an encoded decision function [24]. None
of these algorithms, however, take into account the network
topology and job placement.

Zhou et al. [25] evaluated their new broadcast algorithm on
a Dragonfly-based machine (Cray XC40). The algorithm itself
is not topology-aware, however, since it does not take into
account the location of processes in the topology. Topology-
aware broadcast algorithms for topologies other than Dragon-
fly (in particular, torus) have been proposed in the past [26],
[27], [28].

In our study, we chose to compare topology-aware al-
gorithms with the binomial-tree algorithm (from this point
onward, we will refer to it as TREE). The two other algorithms
provided by MPICH are composed of scatter and allgather
phases that could themselves be redesigned for the Dragonfly
network. Such a design is left for future work.

III. BROADCASTING IN A DRAGONFLY NETWORK

In this section, we present three algorithms —LLF, GLF,
and FOREST— specifically designed for the Dragonfly topol-
ogy. These algorithms aim at minimizing the utilization of
global links in order to prevent congestion with other appli-
cations running on the platform. LLF and GLF have been
presented by Xiang et al. [12] under the terms “router first” and
“group first,” respectively. LLF has also been presented by Jain
et al. [13] for the PERCS network topology, another two-tier
direct network topology. FOREST is an algorithm we designed
as a hybrid between GLF and LLF, aiming at overcoming the
limitations of LLF in the context of small allocations or of

small number of routers per group compared with the number
of groups used by the job.

A. Terminology and topology information

1) Notation: In the following we use the term root terminal
to refer to the terminal containing the process from which the
broadcast is initiated. We call the router to which this terminal
is connected the root router. Similarly, we designate root group
the group that contains this router. We call remote groups the
groups that do not contain the root router/terminal.

2) Querying topology and placement information: The
algorithms presented hereafter are based on the assumption
that some information about the topology and the process
placement can be obtained. Each terminal, router, and group is
assigned a unique terminal, router, and group id, respectively.

a) Process placement: Any process can have access to
the terminal id of any other process belonging to the same
application.

b) Topology: From a terminal id, any process can retrieve
the id of the router connected to this terminal and the id of
the group containing this router.

¢) Connectivity: Given two group ids G; and G, any
process (not necessarily part of G; or G2) can retrieve the ids
of the routers R; in G; and Rs in G5 that share a common
global link.

Such information can reasonably be obtained from tools
such as the Portable Network Locality (netloc) [29].

B. Algorithm 1: Local-Links-First (LLF)
The LLF algorithm consists of four steps.

1) The root process sends its data to at least one process in
every router of its group that is involved in the broadcast.
This first broadcast is done by using a binomial tree. The
goal of this step is to have as many routers as possible
having a terminal that holds the data in the root group.
This step uses terminal and local links.

2) Processes that have the data (including the root) in the
root group send it to one process in each remote group
involved in the job. The receiving processes are chosen
based on their distance to the sending processes. The
source processes send data in serial to the destination
processes. The goal of this step is to send the data to
one terminal in each remote group. This step is the only
one that uses global links.

3) Processes that have the data in remote groups broadcast
it inside their group. This is done by sending it to
one process in each router by using a binomial tree
broadcast. The goal here is that every router in every
group has at least one terminal holding the data. This
step uses only terminal and local links.

4) Each process that has the data in each router proceeds
with sending it to the rest of the processes connected to
the same router, using a binomial tree broadcast. This
step uses only terminal links.

This algorithm takes advantage of the parallelization across
global links. After the root process has sent its data to other
processes in its group in step 1, these processes can indepen-
dently send their data to remote groups without interfering
with one another.



Degraded placement cases. The worst-case placement for
this algorithm appears when the root group contains a single
process: the root of the broadcast. In this situation, the root
process will have to send its data to one process of each group
in serial by itself. This worst-case scenario can be avoided, for
example, by first sending the data to a process in a group that
has a large number of routers used by the job. This process
will serve as the new root of the LLF broadcast. An alternative
consists of first broadcasting the data across global links by
using a binomial-tree broadcast and then broadcasting only
inside each group. This solution is provided in the next section.

C. Algorithm 2: Global-Links-First (GLF)

The GLF algorithm consists of three steps.

1) The root process broadcasts the data to one process
in each group. This first step is completed by using a
binomial-tree algorithm. This step uses terminal, local,
and global links. The goal is to have the data present in
one process of every group.

2) Each receiving process of the first step, as well as the
root, becomes the root of an intragroup broadcast to
send the data to one process in each router. This step
is performed by using a binomial-tree algorithm. It uses
terminal and local links. The goal is to send the data to
at least one process in every router.

3) Each receiving process in each router becomes the root
of a broadcast across processes connected to the same
router. This last step is also done by using a binomial-
tree broadcast. This step uses only terminal links.

Degraded placement cases. The GLF algorithm does not
suffer from an unbalanced number of processes per group.
For a given number of processes, however, assuming that it
is more costly to send through global links than through local
links, allocations that span fewer total groups will tend to show
higher performance (i.e., lower latency). The worst case occurs
when the largest number of groups is involved (forcing the
deepest tree for the first broadcast). Remaining processes can
be placed in one group spanning the largest number of routers
(for instance by first placing one process per router) to force
the deepest possible tree in the second step as well. By placing
the remaining processes in all the terminals of at least one
router, one can force the deepest tree for the third step as
well.

D. Algorithm 3: FOREST

FOREST is an algorithm we have proposed to overcome
the limitation of LLF in situations where LLF would perform
the worst, that is, when a small number of processes in the
root group have to send their data to comparatively many
destinations in remote groups in step 2. In this worst-case
situation, the fact that source processes send data in serial with
LLF makes the root group become a bottleneck and impacts
performance. Instead, FOREST builds several binomial trees
(hence the name of the algorithm) across the groups, one per
source process in the root group, to perform this step. The
next steps (sending data within each group and within each
router) remain the same.

E. Analytical estimation of link utilization

In this section, we provide an estimation of link utilization
for each algorithm. We start by computing some probabilities
on the number of links required to reach one terminal from
another, assuming minimal routing.

1) Probability of crossing a global link: Given two distinct
terminals 77 and 75, the probability that they belong to the
same group is P = g“fpill. Hence the probability that sending
a message from T} to T5 requires the use of one global link
is

ap—1
gap —1°
2) Probability of crossing local links: A message sent from

Ty to Ty will cross 0, 1, or 2 local links. The probability that
it crosses 0 local links is

P(1 global link) =1 —

p—1 n hp .
gap—1  gap—1
The first term corresponds to the probability that the two ter-
minals belong to the same router. The second term corresponds
to the probability that they belong to different groups but that
the routers to which they are connected share a global link.
The probability that the message has to cross 1 local link is

(a=Dp  hla—1)p (a—1)p
gap—1 = gap—1 gap—1
The first term corresponds to the probability that the terminals
belong to the same group but not the same router. The
second term corresponds to the probability that they belong
to different groups and that one local link is required in one
of the groups but not in the other.

The probability that the message has to cross 2 local links
is

P(0 local link) =

P(1 local link) = = (2h+1)

P(2 local links) = 1 — P(0 local link) — P(1 local link).

3) Estimating link utilization for TREE: Assuming a ran-
dom job allocation of n terminals, TREE being non-topology-
aware, any message sent from a terminal to another during a
broadcast will have to cross an average number of global links
equal to

-1
E(global links) = P(1 global link) =1 — 2~
gap — 1
Thus the expected total number of global links used is
. ap—1
E(total global links) = (n — 1)(1 — .
(total global links) = (n — 1)( gap—l)

The average number of local links used by a single message
is equal to
E(local links) = P(1 local link) + 2P(2 local links)
5 2+ p(1+2ha+a)
B gap — 1 '
Hence the expected total number messages transiting through
local links is

2+ p(a+ 2ha + a)
gap — 1

E(total local links) = (n —1)(2 ).



4) Estimating link utilization for LLF, GLF, and FOREST:
Topology-aware algorithms attempt to make a minimal use
of links. One need not rely on probabilities to compute their
link utilization, and the following analysis is common to all
of them. All the algorithms will use only one global link per
remote group, leading to a global link utilization bounded by
g — 1. During the step where data is sent to remote groups,
at worst 2(g — 1) messages transit in local links. Once one
terminal in each group has the data, broadcasting within one
group requires sending at worst @ — 1 messages through local
links. The final step does not require any local or global
links. Hence the number of messages crossing global links
is bounded by g — 1, and the number of messages crossing
local links is bounded by 2(g — 1) + g(a — 1).

IV. EVALUATION

In this section we evaluate the four algorithms presented
above.

A. Methodology

1) Preliminary study: To evaluate the algorithms, we first
conduct a preliminary study, looking only at the generated
communication pattern. We determine the number of links
used and the makespan, without taking into account the
particular behavior of routers and the congestion that could
occur between different processes running the algorithm, or
interference with other jobs.

2) Event-driven simulations: We then use the CODES
network simulation framework [14] to simulate the behavior of
the network during the execution of each algorithm at packet-
level detail. CODES is based on the ROSS parallel discrete
event simulator [30]. It has already demonstrated its accuracy
in modeling high-performance networks such as torus [31] and
has been used to evaluate various routing strategies on Drag-
onfly networks [32]. CODES has also been used to evaluate
the performance of MPI collective communications on torus
and Dragonfly networks [33], but the collective algorithms
were modeled simply by using a fan-in/fan-out communication
pattern instead of point-to-point messages generated by the
actual algorithms, as done in our work.

3) Background traffic: After evaluating the network per-
formance with no other traffic than the collective communi-
cation, we observe how the algorithms react to background
traffic in the network (Section IV-D). The background traffic
is generated as follows. Each terminal not participating in
the broadcast has a payload of + MB to send (x being
chosen such that the background traffic lasts at least until the
broadcast has completed). It sends the payload in 1024-byte
messages addressed to another randomly selected terminal
not participating in the broadcast. The interarrival time of
such send operations follows an exponential distribution of
mean 750 nanoseconds. Given that uniform random traffic
enables peak performance on a Dragonfly network and that
jobs are consequently allocated randomly, such a traffic pattern
is representative of background traffic observed in Dragonfly
networks. This methodology for generating random traffic is
the same as that employed by Besta and Hoefler for the
simulation of Slimfly networks [34] and by Kim et al. for
the Dragonfly topology [1].
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Fig. 2: Makespan of the broadcast algorithms (average over
20 random allocations, error bars representing maximum and
minimum).

4) Parameter space: In our CODES-based simulations, we
consider Dragonfly networks of 5,256 and 16,512 terminals,
using minimal, nonminimal, and adaptive routing. We evaluate
the broadcast of small messages (1 KB) and large messages
(1 MB) using the TREE, LLF, GLF, and FOREST algorithms,
with and without background traffic. Each simulation yields
the total run time of the algorithm (difference between the
time at which the last process receives the data and the time
at which the root issues its first send), the average number of
hops encountered by packets, and the average and maximum
latency of packets from source to destination processes.

B. Preliminary study

We consider a Dragonfly network composed of g = 129
groups of a = 16 routers each (allowing the 16 routers in a
group to share equally the connections to 128 remote groups).
Each router is connected to p = 8 terminals, for a total of
16,512 terminals in the network. Each router is connected to
all other routers in its group and to h = 8 routers in remote
groups.

The makespan is here measured by the number of links. We
assume that (1) any send operation lasts as many time units
as the number of links the message has to traverse to reach its
destination (no matter the nature of the links traversed) and
(2) a sending process has to wait for the message to reach its
destination before being able to send another message. Hence,
for example, sending a message from a terminal to another
through two routers requires 3 time units (terminal 1 — router
1 — router 2 — terminal 2). This constitutes a worst-case
scenario. In practice, a send would complete as soon as the
message has fully crossed the first link and is buffered in the
first router.

For all these experiments, we run the algorithms 20 times on
randomly generated allocations of given sizes. We distinguish
small job allocations (spanning up to 1,024 terminals) from
large job allocations (2048 and more).

1) Makespan: Figure 2 shows the makespan of the four al-
gorithms. For small allocations, LLF requires a long makespan
to complete. This makespan is also highly variable. This is
because the root terminal is more likely to be isolated in
its group and will send its data to representatives of other
groups one by one in series. This problem was not highlighted
in previous work where LLF was presented, because it was
evaluated in full-machine allocations, a situation that allows
maximum parallelism in step 2. This problem does not appear
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Fig. 3: Total number of messages transiting through global
(a,b) and local (c,d) links during the broadcast.

with GLF, FOREST, and TREE. In larger allocations, the root
group contains more processes belonging to the job, allowing
better parallelism when sending from the root group to other
groups. Hence, LLF becomes better than GLF and TREE.
FOREST goes one step further by replacing step 2 of LLF
by parallel tree-based broadcasts, which further decreases the
makespan.

2) Link utilization: Figure 3 shows the total number of
messages transiting through global and local links. Because
of their design, LLF, GLF, and FOREST never use global
links more than once per remote group involved in the job
(128 here), since each group receives the data only once. The
global link utilization is therefore bounded to 128 regardless
of the allocation size with topology-aware algorithms. The
TREE algorithm has a global link utilization proportional to
the allocation size, as expected by the formulas provided in
Section III-E. We also observe that like global link utilization,
the local link usage remains small and bounded for topology-
aware algorithms, while increasing proportionally to the allo-
cation size with the TREE algorithm.

Note that the numbers of terminal links used for all the
algorithms are the same, since each process has to receive
the data once, an operation that requires always crossing two
terminal links.

According to the formulas provided in Section III-E, the
number of local links used by TREE for a 10240-terminal
allocation is 19,122, and the number of global links is 10,160.
Those numbers match our experimental results. The upper
bounds for topology-aware algorithms are 128 global links
and 2,191 local links. These upper bounds are respected in
our experiments.

3) Visual analysis: Figure 4 displays the traffic generated
during one of the runs for each algorithm (each figure has
been generated for a different random allocation, and the
root of the broadcast changes in each figure) for a broadcast
across 1,024 processes on a 16K network. Terminals are placed
on a circle, organized by router and by group. This figure

(a) TREE (b) LLF

(c) GLF

(d) FOREST

Fig. 4: Visualization of the network traffic through global
links when broadcasting data from 1024 terminals on a 16K-
terminal Dragonfly network. Note that LLF, GLF, and FOR-
EST all use the same number of global links (128).

shows that as predicted in Section IV-B2, the TREE algorithm
generates a lot of traffic across global links. When executing
LLF, all global-link traffic originates from the root group. This
unbalanced traffic pattern may, however, become a problem
in the presence of background traffic. The tree formed by
representative terminals of each participating group in the
GLF algorithm appears clearly in Figure 4c. Trees executed
in parallel and originating from the root group are also clear
in Figure 4d.

4) Preliminary observations: The above study seems to
indicate that for allocations of up to 1024 terminals, the non-
topology-aware algorithm has the lowest makespan, despite
using several orders of magnitude more links. For larger
terminal counts, FOREST presents the lowest makespan. LLF
presents a very high and variable makespan for small alloca-
tions, suggesting that contrary to what is stated in papers that
have introduced it [12], [13], this algorithm has limitations
that deserve further considerations.

5) Shortcomings of the preliminary study: The evaluation
conducted in the previous subsections gives a rough idea of the
behavior of each algorithm but may be far from the reality. It
assumes that a send completes when the receiving terminal has
received all the data, which corresponds to an upper bound on
the transfer time for large data sizes. In practice, an MPI_Send
is allowed to return when the data has been pushed to a local
buffer on the network interface, allowing the terminal to issue
other send operations to other destinations without waiting.
The preliminary evaluation did not take into consideration
the contention for links or buffers in routers, nor the routing



strategy employed by the network, the fact that messages are
further divided into packets (that may take different routes
in case of nonminimal or adaptive routing), or the potential
presence of other jobs contending for network resources. The
next sections address these shortcomings by using the CODES
network simulator to evaluate the algorithms at packet level
and accurately reproduce the behavior of all network entities.

C. Packet-level simulations using CODES

We consider the same network of 16,512 terminals as in
the previous section. The bandwidth for the global, local, and
terminal links in the Dragonfly are respectively 4.7 GB/s,
5.25 GB/s, and 5.25 GB/s, inspired by the CrayXC30 archi-
tecture [14], [35]. The virtual channel capacity is 16 KB for
terminal links and local links and 32 KB for global links so
that 32, 32, and 64 full-sized packet can fit into the terminal,
local, and global virtual channels, respectively. Each MPI
message gets split into 512-byte packets for transportation
over the network. For MPI messages that are smaller than 512
bytes, the exact message size is transported over the network as
a data packet. The application broadcasting runs alone on the
network on a randomly generated allocation of terminals. Five
runs (each with a different random allocation) are executed for
each allocation size. We report the median execution time of
these runs, as well as the minimum and maximum as error
bars.

Figure 5 presents the results for the broadcast of 1 KB
of data, in terms of run time (a,d,g), average number of
hops per packet (b,e,h), and average and maximum latency of
each packet (c,f,i). Experiments are performed with the three
different types of routing mechanisms: minimal, nonminimal,
and adaptive. These results show that both GLF and FOREST
exhibit a lower run time than does TREE. As expected, LFF
exhibits a larger run time and larger variability at small scale
but becomes the best algorithm starting from 1,024 terminals.
The results also show that as the allocation size grows,
topology-aware algorithms take advantage of the topology and
reduce the average number of hops. We can see that LLF
and GLF both minimize the global link utilization by the fact
that regardless of the routing strategy, the average hop count
converges toward 1, while the average hop count of TREE
remains at 4, 6, and 5, for minimal, nonminimal, and adaptive
routing, respectively.

Figure 6 presents the results for a broadcast of 1 MB of
data. The picture here diffs significantly from that of a 1 KB
broadcast. The TREE algorithm performs better than topology-
aware algorithms for allocations of up to 2048 terminals.
FOREST then becomes the best algorithm. LLF presents a
much higher and more variable run time for small allocations.
It then outperforms TREE for allocations of 10,240 terminals
and more but remains worse than GLF and FOREST.

Going from minimal to nonminimal routing has a positive
effect on LLF. Note that because of the change of scale from
Figure 6a to 6¢c, the runtime of GLF, TREE, and FOREST
may seem to have increased. This is not the case. They
have in fact remain very similar. The reason why nonminimal
routing boosts the performance of LLF is that the packets
that constitute messages can take different routes in parallel.
This comes at the price of increased link utilization. Still,
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Fig. 6: Run time when broadcasting 1 MB on a 16K terminal
Dragonfly network with different routing mechanisms. The
job runs alone on the machine. Figures show the median,
minimum, and maximum across 5 executions for each job size.

LLF remains relatively inefficient under adaptive routing. In
general, our results here show no advantage of topology
awareness in terms of run time. In particular, all the algorithms
have similar performance for allocations of more than 2,048
terminals under nonminimal routing.

While TREE remains better (or at least competitive) in most
cases for broadcasting large amounts of data, we note that
in current implementations of MPI, such data sizes are not
handled by a tree-based broadcast but by a scatter followed
by an all-gather, which breaks the data into chunks that can
be sent in parallel to multiple destinations and recomposed
later. Such a strategy, particularly interesting in the context
of a Dragonfly topology, could be applied with topology
awareness to develop better algorithms for large data sizes.
Such algorithms are left for future work.

D. Impact of background traffic

The low diameter of Dragonfly networks, along with the
random allocation strategy, makes multiple jobs running on
the platform share the same links and contend for the same
network resources. In this context, therefore, one must evaluate
how topology-aware algorithms perform in the presence of
background traffic. Because of the long run times and high
memory footprint of packet-level simulations involving back-
ground traffic (up to 10 hours), we use a smaller network
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Fig. 5: Run time, average packet hops, and average and maximum packet latency when broadcasting 1 KB on a 16K terminal
Dragonfly network with different routing strategies. The job runs alone on the network. Figures show the median, minimum,

and maximum across 5 executions for each job size.

topology and, for broadcasts of 1 MB, execute only one run for
each allocation size.! The network is composed of 73 groups
of 12 routers. Each router is connected to 6 routers of remote
groups and to 11 routers in its group, and to 6 terminals, for
a total number of terminals of 5,256 (a = 12, p =6, h = 6,
g="13).

Figure 7 presents the run time of each algorithm for a 1 KB
broadcast. It shows that even in presence of background traffic,
FOREST, LLF, and GLF perform better than TREE, with LLF
outperforming the other algorithms in nearly all situations.
Note that while the execution time increases with the allo-
cation size when no traffic is added, it decreases when adding
traffic. The reason is that as the allocation size increases, the
number of terminals generating background traffic decreases;
thus the effect of background traffic diminishes.

Figure 8 shows the run time for a 1 MB broadcast. Without
traffic, the same conclusions can be made from the 5K
terminal network as from the 16K terminal network: LLF

A subset of the experiments was run at larger scale, and results are similar
to those observed at this scale.

performs poorly, especially at small scale, and TREE performs
systematically the best when using nonminimal and adaptive
routing. When adding background traffic, the TREE algorithm
exhibits a lower latency in most cases again, regardless of the
routing strategy employed.

V. CONCLUSION

In this paper, we have evaluated three topology-aware
algorithms and one non-topology-aware algorithm for broad-
casting on a Dragonfly network. Our experimental campaign
conducted through event-driven simulations using the CODES
framework explored the effect of varying the allocation size,
the data size, and the routing strategy. Additionally, we stud-
ied the performance of these algorithms in the presence of
background traffic.

1) Lessons learned: The advantage of topology awareness
in collective algorithms in terms of link utilization is clear. Our
study shows that topology-aware broadcasts have a number of
messages crossing global links that is bounded by the number
of groups involved, while this number increases proportionally
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Fig. 7: Run time of a 1 KB broadcast on a 5K terminal
Dragonfly network, with and without background traffic and
with different routing mechanisms.

to the allocation size for a non-topology-aware broadcast.
However, the fact that an algorithm is topology-aware does not
necessarily makes it perform better in terms of latency than
non-topology-aware ones. This is the main lesson we learned
from our study with topology-aware broadcasts. Other lessons
include the following.

1) The size of the job allocation has an impact on the
performance of topology-aware broadcasts. Because of
the random task placement employed on Dragonfly
networks to randomize traffic, small jobs end up spread
across a large number of groups. In this context, trying
to improve the parallelism across global links, as done
with LLF, may lead to larger execution time than with
state-of-the-art algorithms such as binomial trees.

2) For broadcasts of large data sizes, the non-topology-
aware algorithm performs better than (for small jobs) or
as well as (for large jobs) topology-aware algorithms.
This performance is explained by the fact that non-
topology-aware algorithms have a better chance at ran-
domizing the traffic across more links.

3) The routing strategy plays an important role in the per-
formance of broadcast algorithms. For example, when
broadcasting 1 MB on a 16K terminal network, non-
minimal routing mitigates the high overhead of LLF for
small locations by randomizing the traffic across links
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Fig. 8: Run time of a 1 MB broadcast on a 5K terminal
Dragonfly network, with and without background traffic and
with different routing mechanisms.

connected to the root router (although the run time of
LLF remains much higher than that of other algorithms).
4) Interference with background traffic is not mitigated by
the use of topology-aware algorithms. On the contrary,
some topology-aware algorithms such as LLF present
hot spots that could be more subject to interference.

We hope that our study will motivate further research in
practical, topology-aware collective algorithms. In particular,
a promising direction consists of considering more carefully
the high radix offered by routers and taking into account their
resources (such as buffers capacity). We think that higher-radix
tree algorithms could be an important direction for further
optimization.

2) Future work: Our work opens several directions. Other
algorithms based on a scatter+allgather strategy are usually
employed for large-sized broadcasts. These algorithms have
not been evaluated in our study. They could benefit from
topology-aware versions of scatter and allgather.

A second aspect that is worth investigating is energy con-
sumption. While topology-aware algorithms do not necessarily
perform better than non-topology-aware ones, they greatly
minimize the network utilization, which in turn decreases the
energy consumption of the supercomputer. Since DARPA set
a 20 MW limit for exascale machines [36], such performance
vs. energy tradeoff becomes worth considering.



With respect to interference between jobs, we have stud-
ied how the algorithms react to background traffic, but we
have not studied how another job would react to one that
executes a broadcast. If all jobs were to use topology-aware
communication, this would greatly reduce the overall traffic
and consequently decrease interference. Such a study could
motivate a broad utilization of topology-aware algorithms to
reduce link utilization at the level of the entire machine.
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