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Figure 1: An example case of understanding influence of Eurassian Continent to the surface ozone over area around China. According to the
similar behaviors between ensemble members over space and time, the neighbouhood is partitioned into three parts (left thumb nails in the
first three rows): Eastern China, Southwest China, and Northwest China. Our novel graph-based interface provides abstraction to the grouped
regions. Users can therefore navigate and track regions of interests over space and time. The last row shows tracking partitioned over South
Eastern China using graph view and linked spatial view. Users highlight regions for further analysis in detail comparison view, where they
compare values between individual runs, and behavior similarities between ensembles over different sub-regions (Charts in the first three rows).

ABSTRACT

We present a novel visualization framework—EnsembleGraph—
for analyzing ensemble simulation data, in order to help scientists
understand behavior similarities between ensemble members over
space and time. A graph-based representation is used to visual-
ize individual spatiotemporal regions with similar behaviors, which
are extracted by hierarchical clustering algorithms. A user inter-
face with multiple-linked views is provided, which enables users
to explore, locate, and compare regions that have similar behaviors
between and then users can investigate and analyze the selected re-
gions in detail. The driving application of this paper is the stud-
ies on regional emission influences over tropospheric ozone, which
is based on ensemble simulations conducted with different anthro-
pogenic emission absences using the MOZART-4 (model of ozone
and related tracers, version 4) model. We demonstrate the effective-
ness of our method by visualizing the MOZART-4 ensemble simu-
lation data and evaluating the relative regional emission influences

on tropospheric ozone concentrations. Positive feedbacks from do-
main experts and two case studies prove efficiency of our method.
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1 INTRODUCTION

Ensemble simulations become prevalent in various scientific and
engineering domains, such as aerodynamics, climate and weather
research, to name a few. They are usually used to studying model
sensitivities to parameters and initial conditions, quantifying uncer-
tainties, etc. However, the visualization of ensemble datasets is a
grand challenge, because ensemble data are usually multivariate,
multivalued, time-varying, and with large data scales.

Our focus in this paper is the behaviors of ensembles—the simi-
larities between individual runs in space and time. Currently, daily
routine for scientists to analyze such data is merely based on man-
ually selection and spatial temporal aggregation. First, a latitude-
longitude box is arbitrarily defined as the target region to start with,
and then they aggregate values along temporal dimension, e.g. sea-
sonal or monthly average values. Second, they visualize and in-
vestigate spatial patterns of different ensemble members by plot-
ting contour lines or pseudo colored maps. Line charts are plotted



to compare the temporal differences between ensemble members.
Nevertheless, there are a number of critical issues involved in the
routine: First, without an overview, it is difficult to understand the
overall patterns of the dataset by manual queries back and forth;
Second, inappropriately defined regions may lead to information
loss in the spatiotemporal aggregation and statistics, because the
data properties could be highly inhomogeneous in specific regions;
To solve the complexity of spatial-temporal data, visualizing such
kind of data is quite challenging but also rewarding, so that scien-
tists can understand their scientific data more effectively.

In this work, we propose a visual analysis framework based on
behaviors of ensembles. We quantify the behaviors as behavior
vectors, using metrics that describe similarities between ensem-
ble members in spatialtemporal location(detail explanation in Sec-
tion 4). According to close discussion with domain scientists, we
design visual analysis tools to support various tasks. the visual anal-
ysis tasks for such kind of data can be based on . Specifically, the
tasks are

• T1: Partitioning ensemble domain based on ensemble behav-
iors.

• T2: Investigating the spatiotemporal distribution of behavior
patterns.

• T3: Comparing the different behavior patterns.

In order to support the tasks, we design the framework with sev-
eral components. First, we proposed an automatic ensemble do-
main partitioning method, We data partitioning over the ensemble
dataset, in order to extract regions with similar behaviors. We then
define behavior patterns as basic units for spatiotemporal aggre-
gations of locations that have similar behaviors. Second, to sup-
port spatial temporal exploration of all behavior patterns, we use a
graph-based user interface to give an overview of behavior patterns
over space and time. Third, we provide tools to compare the be-
havior patterns, which can be used to validate the findings for the
exploration.

The driving application in this paper is the impacts of regional
emissions on the tropospheric ozone (O3). Scientists conduct en-
semble simulations under different emission scenarios, in order
to understand and evaluate the regional impacts on ozone forma-
tion [14]. Tropospheric ozone is known as an important green-
house gas, and it is also harmful to human health and agriculture
production. They are formed from chemical reactions of nitrogen
oxides, carbon monoxides, etc., which are mostly caused by hu-
man activities such as industrial and road emissions. These anthro-
pogenic emissions, so called ozone precursors, are different around
the world, due to local industrializations and environmental poli-
cies. Influence from those emissions is transported by wind convec-
tion, bringing a global atmospheric issue. Thus, tropospheric ozone
is a mixed influence affected by all regional anthropogenic pollu-
tant emission, yet the mixing weight from each source regions are
not identical. For example, previous studies have shown that, ozone
concentration over East China is mostly affected by domestic pollu-
tant emissions due to the industrial prosperity. Meanwhile, Western
China, which is less industrialized, has the opposite situation. The
ozone is mostly formed from foreign emissions of upwind neigh-
bors, such as India and Europe [14]. Analyzing and understanding
the regional emissions impacts are important for scientists and de-
cision makers to further expedite emission reductions. The appli-
cation data is ensemble simulation based on Model of Ozone and
Related Tracers, version 4 (MOZART-4). It consists of perturba-
tion runs with different emission sources, and reference runs (detail
explanation in Section 2.1); With such dataset, scientists would like
to investigate the relative importance of different emission sources
to regions in the ensemble domain. In order to support these driven

tasks, we calculate behaviors according to the combination of influ-
ences from difference source emissions, and apply our frame work
for visualization using novel graph-based interface. Two case stud-
ies and feedback from domain scientists shows usefulness of our
methods.

In summary, the contributions of this paper are as follows:

• Visual analysis framework that helps understanding ensemble
simulation data based on behaviors of ensembles.

• A novel visual representation for exploring complex ensemble
data using graph visualization method.

We organize the remainder of this paper as follows. We first
explain background of our driven application in Section 2.1, and
review related work in Section 2.2, Section 3 gives overview to our
approach. Section 4 describes data processing and graph construc-
tion. Section 5 is about visual design and interface. We then demon-
strate cases and feedbacks in Section 6, and finally make conclusion
in Section 7.

2 BACKGROUND

We introduce our ensemble datasets and driving application, and
summarize closely related work on ensemble data visualization,
which has been more and more focused in recent years. In addition,
we also review graph-based visualization techniques for scientific
data sets.

2.1 Driving application

Scientists conduct perturbation experiment for evaluating sensitivi-
ties of ozone concentration to different regional emissions [14]. The
simulation is based on MOZART-4. The input data of the model is
from observation and the emission inventories, and the outputs are
the concentration of a series of chemical species. In this work we
focus on the ozone, the most important substance in the model and
which dominants the chemical reactions.

The experiments include three types of runs, namely the base
run, the globe run and the perturbation runs. The base run is con-
ducted with real input data, and the globe run is conducted by
switching off all anthropogenic emissions. The perturbation runs
alternatively switch off simulate emission source from different re-
gions in the world. Note that natural emissions still exist even if
emission source regions is switched off. As shown in Figure. 2,
seven emission source regions are defined, including: Europe, In-
dia, Mid-East, Southeast-Asia, East-Asia, Mid-Asia, and Siberia.
In our frame work, we define member behaviors by the bias of the
perturbation runs from base and globe runs.

Euro

India

Mid-east

Southeast-Asia

East-Asia

Mid-Asia
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Figure 2: Seven source emission regions. During the ensemble sim-
ulation, emissions from one region are turned of, in order to calculate
the relative importance of its regional emission influence on ozone.

Through the ensemble simulation, the response of tropospheric
ozone concentration to different anthropogenic emission conditions
can be measured. Conditionally, scientists choose a range box as
region of interests to study, e.g., rectangular range over Eastern



China; Next they compare the ozone concentration of “East Asia”
run with base run and global run in this area. Then they conclude
from charts of maps and aggregated values, e.g., the ozone over
Eastern China is mostly influenced by emission from East Asia
area, indicating very high domestic emission in Eastern China (Fig-
ure 3). To make it more flexible for exploring all potential interest-
ing features of regional influences, we compute the ensemble mem-
ber behaviors and partition data domain using this measure. We
deliberate work flow and the algorithms in the following sections.

Monthly Average of BASE - EA

(a)

(c) (d)

(b)

BASE - EA

Base Run East Asia Run

Figure 3: (a): The base run; (b): The run “East Asia”; (c): Their dif-
ference; (d): Monthly ozone average in an chosen area over Eastern
China. This indicates that domestic emission influence over Eastern
China is very high.

2.2 Related Work

Ensemble Visualization. Ensemble simulation data sets is
usually multivalued, multivariate and time-varying, thus, it is very
challenging to visualize [13]. Ensemble visualization inherited
from uncertain visualization at the beginning, because each loca-
tion has multiple values. Many studies took great efforts on fitting
existing visualization techniques to support these complex data sets.
One way is utilizing operators to convert multiple values to scalar
for visualization, e.g., mean, standard deviation, or peak numbers of
distributions [12,17]. These manipulations therefore made common
visualization techniques applicable [16]: pseudo coloring, stream-
lines, pathlines or isosurfaces, etc. Another way is to visually em-
bed uncertainty information into conventional visualization meth-
ods. For example, by overlaying uncertainty-encoded ribbons and
glyphs over spaghetti plots, Noodles helped users to identify high
uncertainty regions and outliers [27]. Sanyal et al. [31] extended
boxplot by integrating important statistics (e.g., skew, kurtosis and
histogram) to create visual signatures for data distribution. This hy-
brid summary plot largely reduced massive information while also
highlighted salient features of ensemble data sets. Other works use
distribution to describe data property on each location. Parameter-
based or histogram-based approaches largely reduce the total en-
semble data size, while at the same time keep the meaning of data
and its visualization efficiency. For example, Liu et al. [15] used
Gaussian mixture model to fit data distribution on each location,
Hixel [33] stored histograms on each pixel as a novel data represen-
tation.

In order to reduce massive information while at the same time
emphasize feature characteristics in ensemble data, some previous
works utilized clustering in their visualization pipeline. Bordoloi et
al. [2] have conducted clustering algorithm for both locations and
ensemble realizations: Grouping regions with similar distributions
can present overall distribution information, meanwhile grouping

realizations with similar data outcomes can help understanding re-
lationships between members and simulation conditions. Another
example is automatic clustering locations with similar distributions
in Multi-Chart by Demir et al. [4]. By doing so, it detected regions
with similar member distributions. Our work also used clustering.
However, the difference from the aforementioned methods is that
during clustering procedure we consider distance from each mem-
bers, instead of overall distributions. To achieve our goal, we aim to
compare relative importance of each perturbation runs. Only count-
ing overall distributions will cause information loss of the individ-
ual ensemble members.

Many works provide visual analytics for ensemble data sets.
Nocke et al. proposed various visual representations to differ-
ent types of visual comparison tasks for climate simulations [21].
For example, slice-based volume visualization for inner simulation
comparison, pseudo colored isosurfaces for inter simulation com-
parison, and graphical table and pixel based visualization for global
comparison. They integrated them in their SimEnvVis framework.
A recent taxonomy for ensemble data comparison divides existing
approaches as location-oriented comparison and feature-oriented
approaches [22]. The first type, location-oriented method, con-
ducts data comparison by attributes at fixed locations in ensemble
domain. An example is to visually compare statistical measures
on each location (e.g. means and variances) to indicate disagree-
ments between members [17, 29]. Multi-Charts [4] maps 3D field
to 1D using Hilbert space filling curves, and then enables compari-
son for region distributions using line char and bin chart techniques.
Gosink et al. [5] do classification for data on each location point,
according to member distribution and ground truths. For ensemble
flow field, which is not applicable by traditional scalar field based
methods, Lagrangian-based measurements are proposed to evalu-
ate differences between field lines starting at same locations [7].
Individual and joint transport variances are also introduced to vi-
sualize agreements or disagreements in ensemble flow fields [10].
The second type of ensemble data comparison is feature-based ap-
proach. These methods first extract features from individual runs,
and then compare those extracted features. One example is to ren-
der their isosurfaces in a slice-by-slice style to ease visual com-
parison [1]. Sanyal et al. [31] used spaghetti plot to simultane-
ously display multiple isocontours, and they further visualized the
ensemble uncertainty by drawing special-designed glyphs and rib-
bons encoded by uncertainty metrics. Contour boxplot [35] and
curve boxplot [20] generalize functional boxplot to visualize spatial
distribution of contours. They are excellent examples for visualiz-
ing quantitative properties for contour ensembles. In this paper we
calculate the ensemble behaviors at each location for comparison.
So our visual analysis framework tends to belong to the location-
oriented approaches. However one of our differences is that during
the visual analysis workflow, the basic unit for spatiotemporal ex-
ploration is the grouped behavior patterns.

Increasing amount of visual analysis systems support compari-
son and analysis approach for ensemble data sets through visual-
ization interface. Well designed interactions or powerful data min-
ing techniques are used to gain a good understanding to ensemble
data. For example, Ensemble-Vis [29] and ViSUS/CDAT [28] sys-
tem combined multiple linked views for visual analysis to ensem-
ble data sets, in order to take the advantages of each. Piringer et al.
provided an interactive system [24] which combines multiple pre-
views with detailed windows for hundreds of 2D function ensemble
outcomes. SimilarityExplorer [26] enables inter-comparison and
similarity analysis for model structure and model outputs. Another
work from Poco et al. [25] lets users interactively group climate
simulation models using multiple similarity criterias. Ovis [8,9] by
Hölt et al. is a visual analysis framework for ocean simulation data.
It provides interactively spatial temporal exploration for off-shore
structures, and analysis for features of interests. Our work provides



visual analysis for ensemble simulation data by MOZART-4 model
as our driven applciation. The driven application aims at under-
standing regional emissions in MOZART-4 simulation. We support
exploration for all potential interesting regions in the data domain,
based on similarities of behavior between ensemble members.

Graph-based Methods in Scientific Visualization. Graph
visualization applied in scientific data analysis is a new trend [34].
By abstracting features from scientific data to graph models, it
could help users to gain better navigation and understanding over
the complex data. It is usually occlusion-free and more intuitive to
explore graphs in 2D than traditional 3D visualization methods. For
example, TransGraph [6] maps time-varying volumetric data into
2D plane using graph visualization techniques. Sauber et al. [32]
use graph to visualize the relationships between variables of multi-
field datasets. Bremer et al. [3] and Widanagamaachchi et al. [36]
use graph methods to show features evolving in large scale time-
varying simulation datasets. Similar techniques are also used in
flow field data, e.g. FlowGraph [18, 19] and FlowWeb [37] show
relationships of field lines and data blocks, which provide flexible
data navigation and query interface. Janicke and Scheuermann [11]
used graph representation to visualize features in time-varying vol-
ume data and their transitions. Our work develops a novel approach,
which creates a new graph-based method to explore and understand
spatial temporal data,

3 WORKFLOW

In this section we describe our user exploration work flow to our
visual analysis framework, and also the pipeline to our system.

During the exploration work flow, we provided user an overview
to partitioned ensemble domain. It consists three parts: the spa-
tial view, the temporal view, and the detail comparison view. The
spatial view shows how ensemble domain is partitioned into sub-
regions with similar ensemble behaviors. The temporal view shows
the occurrences of each sub-regions over time. The detail compari-
son view lets user highlight and compare partitions.

In the spatial view, we use colored map to show partition re-
sults. User observes spatial distributions of grouped sub-regions,
and chooses the interesting ones for analyzing. This lets user get
initial overview for ensemble behaviors, which cannot be achieved
by manually probing rectangular areas.

In temporal view, our interface which uses graph visualization
techniques gives abstraction to all sub-regions over space and time.
We choose graph as visual representation metaphor because its
powerful data visualization ability in 2D plane. Each node in graph
represents a spatiotemporal behavior pattern in ensemble domain.
Node color encodes the behavior pattern. The graph is plotted in
a streaming style from left to right, so that user could easily track
behavior patterns over time.

We enable linked interactions between the two visual compo-
nents to support spatial temporal navigation for ensemble data.
User tracks regions in the temporal view, and relates counterpart
partitions in spatial view. After interaction, partitions that are not
highlighted will fade out, so that the regions of interests are em-
phasized. The detail comparison view then compares relative im-
portance from source emission regions on these highlighted sub-
regions, including the total anthropogenic influences, the natural
influences, and the individual influences.

In general, a complete user navigation includes, getting overview
using abstraction in temporal view, choosing sub-regions of inter-
ests by relating them in spatial, and further analysis through com-
parison view. The third row in figure 4 illustrates this process.

Pipeline of our system contains two parts: the domain partition-
ing, and the region connection. Figure 4 illustrates the pipeline. We
partition ensemble field based on calculated ensemble behaviors, in
order to summarize all behavior patterns in ensemble domain. In
each location, we calculate the behavior vector, by aggregating all

Figure 4: Overview to our visual analysis framework. The first row
is data preprocessing part: we do partitioning and region tracking for
data domain to provide overall summarization. The second row is
our interface including three main components: The temporal view
shows regions of similar ensemble behavior over time; The spatial
view shows partitioning results as well as spatial patterns of individ-
ual runs; The detail comparison view visualizes emission influences
of highlighted sub-regions for validation. The third row is the explo-
ration flow.

perturbation runs and the base run. Then we assign all behavior vec-
tors into several groups by k-means clustering algorithm, and group
regions together that are assigned with similar behavior vectors. By
doing so, we partition the ensemble field into continuous regions.
Such spatial partitioning method is executed for each single time
steps.

We connect the continuous regions over time to obtain spatial
temporal summarization to all behavior patterns. For doing so, we
establish connection between regions in neighboring time steps, by
detecting their spatial overlapping. Regions that appear in close
location are connected together as related regions. This helps to
track the behavior pattern change over time. The summarized data
structure is submitted to the front-end interface, which is discussed
in the next section.

4 DOMAIN PARTITIONING BASED ON ENSEMBLE BEHAV-
IORS

In our visual analysis framework, we first calculate the ensemble
behavior for every spatiotemporal location, and then group sub-
regions by this behavior, over space and time. A graph data struc-
ture is then constructed by the temporal connectivity between them
for further visualization.

4.1 Ensemble Behavior Definition

We quantify the ensemble behavior by behavior vectors, The be-
havior vector v is defined as a n-dimensional vector for each spa-
tiotemporal location x:

v(x) = (d1(x),d2(x), · · · ,dn(x))T ,
where n is number of non-base runs, and di(x) represents be-

havior of i-th ensemble member. For the driven application, our
definition to behavior di(x) is influence to the location from the
i-th emission source region Ri. It is calculated as the difference
between the base run and the i-th run:

di(x) = Ĉ(x)−Ci(x),
where Ĉ(x) and Ci(x) are values of the base run and the i-th

run, respectively. Thus, each spatiotemporal location has a high-
dimension behavior vector. The similarities between behaviors on



two locations are defined by the inversion of the Euclidean distance
between behavior vectors. Therefore, locations having higher sim-
ilarity value indicate ensemble members have similar behaviors. In
our driven application, this means that ozone over two places is in-
fluenced by a similar combination of emission sources. If the v is
similar over a continuous region, we call it a behavior pattern.

4.2 Spatial Domain Partitioning for Ensemble Data

In order to give description to how behavior patterns distributes in
ensemble domain, we do classification for all behavior vectors. k-
means clustering is one of the most commonly used methods for
vector quantization. It assigns high-dimensional data points to sev-
eral groups. The clustering result keeps points in the same groups
close to each other, while points in different groups distinct from
each other. The k-means clustering algorithm starts from k ran-
domly selecting seed points as centers of the groups, and assigns all
data points to the nearest groups. It then finds new centers for each
group, and executes another iteration until the assignment becomes
stable. We execute k-means clustering for behavior pattern vectors,
and use this result to label the location, so that locations with the
same labels have close behavior patterns. Such classification step is
repeated for each single time steps.

Two essential factors influence k-means clustering results: k
value selection, and initial seed selection [23]. Too large k value
will cause over partitioning, while too small k value will blur clas-
sification outcome. In our implementation, we set a initial k and let
user change this value to launch new preprocessing pass for refine-
ment. Since our clustering algorithm does not have a ground truth
for validation, partitioning method is acceptable if the result shows
close member values over same sub-regions. In our future work, we
plan to introduce domain specific algorithms to let the partitioning
method more correlated to application requirements. As for initial
seeds, random selection causes unsatisfying result: too close seeds
make clusters overlap. In order to keep initial seeds far away from
each other, our solution refers labeling result from last time step as
initial input for the current k-means procedure. This makes clusters
more distinct, meanwhile improves the consistency of results for
the neighboring time steps.

We then group locations with same clustering labels to detect
continuous regions with similar behavior vectors. Therefore we ob-
tain partitioned result for ensemble domain. For each partition, we
use the centroid of the behavior vectors in this region as represen-
tative behavior for this region.
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Figure 5: Partitioning ensemble domain according to the behavior
vectors on each location. Firstly it calculates the on each location
using the difference between the base run and the perturbation runs,
and quantifies the behavior pattern of each location using a vector,
then clusters for all behavior vectors, and uses the result for spatial
domain partition.

4.3 Partitioned Region Connection

Regions with similar patterns are summarized for each frame by
classification and region grouping. Those patterns may change their
location and values over time. In order to track those changes,
we correspond regions over time by feature tracking methods.
The algorithms of feature tracking have been well studied over
decades. One effective way for tracking related features is to cor-
respond neighboring features according to their spatial intersection
size [30]. In our approach, connections between two regions are
established as long as they have a certain amount of spatial overlap.
We detect all connections from the beginning time to the end, and
then obtain a graph structure. Regions are regarded as nodes, links
between nodes represent their connectivity. The result is an acyclic
directed graph, direction means time increasing. Following along
nodes in a path means tracking the ensemble behavior of sub-region
over time.

We run these procedures by server side. A control panel inter-
face provides parameter setting access for user at front-end. Ad-
justable parameters include: k value for k-means clustering, the re-
gion size threshold Rr and the overlap size threshold Ro. Regions
with rather small sizes less than Rr are skipped so as to avoid un-
interesting noisy regions. We set initial Rr as S/k, S is the size of
spatial domain. Users can tune it down to tell server side to include
more smaller regions. The overlap size threshold Ro is for region
connectivity, and is initialized as min(Ra,Rb)/2. Lower down this
value will get more connectivity between neighboring partitions.
The server process keeps running in the background, updates the
new data structure and replies requests from the frond-end inter-
faces, which we discuss in the next section.

5 VISUALIZATION AND INTERACTION DESIGN

The interface of our work has three main components: temporal
view, spatial view, and comparison view. The temporal view pro-
vides a visual summarization of all regions with similar behaviors
over time of ensemble members. The spatial view shows the do-
main paritioning results. The comparison view contains detail vi-
sualization for highlighted sub-regions. The design of these com-
ponents are introduced in the following subsections.

5.1 Temporal View

In temporal view, a graph-based interface (EnsembleGraph) pro-
vides overview of behavior patterns of ensemble members. In the
EnsembleGraph, the vertices indicate the behavior patterns in each
time frame, and the edges are the temporal connectivity of differ-
ence behavior patterns. In order to show information of counterpart
behavior patterns, we use special graph layout and color appear-
ances for this graph interface.

The layout of the graph follows several principles. First, the
nodes are aligned with their time of occurrence, thus the layout
is in a “streaming” style. Second, edge crossings are reduced
through computation as much as possible, in order to enhance read-
ability. Third, the paths should be as straight as possible, if they
have no branches. In our implementation, we use dot algorithm to
achieve above goals. As the input graph structure for dot interface,
nodes occurring at the same time are set with same rank values, so
that they are horizontally aligned. Edges on non-branch paths are
marked by higher weights. The non-branch paths are straight. We
also wrap these non-branch paths, in order to emphasize linked sub-
regions, for easier tracking. Sizes of the nodes are proportional to
the counterpart region sizes. Node colors are assigned according to
their behavior patterns.

By clicking on nodes, users can highlight counterpart sub-
regions. Dashboard on the right side shows all highlighted nodes
in star glyph, depicting behavior of each ensemble member over
this sub-region. In this application case we use seven axes to repre-
sent influences of emission from corresponding number of sources.



Each highlighted node is related to a polygon. The position on each
axis represents how much influence introduced by the source emis-
sion. In this case, user can easily compare influence differences
among the highlighted nodes.

The temporal view not only displays behavior patterns and their
connections, but also can serve as an entrance for exploring ensem-
ble of sub-regions of interests. Once being highlighted, the corre-
sponding sub-regions will also displayed in other views, showing
their location, origin ozone concentration and detail comparison.

5.2 Spatial View

Spatial view (Figure 6) provides visualization for original values
and the domain partitioning results. We provide data mode, parti-
tion mode, and selection mode in this view. Data mode shows actual
ozone concentration for all ensemble members. Users choose en-
semble members, and explores their origin values (in blue-yellow-
red color map), or influence values (in blue-white-red color map,
representing difference between each individual run with the base
run). Users drag the slider bar to change current time step in dis-
play, and effectivey obtain animation of maps change over time.
Partition mode shows sub-regions with colored segments. Selection
mode enables editing and submitting regions of interests. Users cre-
ate sub-region by double-clicking a region on map, and then submit
to the server side. The targeted sub-region will also be broadcasted
to graph views and comparison views, updating the current explo-
ration status.

In a typical analysis process, scientists select rectangular regions
by hands. Our automatically partitioned sub-regions provide region
selections not limited to rectangle shapes. Such partitioning method
is more flexible and informative from the view of behavior. Besides,
it is more efficient than manually choosing destination regions if not
knowing where to start observing.

5.3 Comparison View

In our visualization, we design a view for detail values of ensem-
ble members over highlighted sub-regions (showing in the upper
left in Figure 6). It is desirable to provide capability of compari-
son of both inside one region, and among different regions. This
comparison view is designed in list style, with each list item con-
taining an element for one highlighted sub-region. User can extract
detailed information from each item, and make conclusion through
exploration and comparison.

Figure 6 shows the interface. Thumbnails on the left side indicate
corresponding sub-regions. The same color scheme is used as that
in the temporal view and spatial view. The behavior patterns from
seven regions is are encoded by a small horizontal bar chart encoded
and shown on the right side of the view. Those bare charts in the
middle show original data values or aggregated values in this high-
lighted sub-region. Following the basic analysis process of domain
scientists, Our visualization system provides three viewing modes
in this part: Natural-anthropogenic mode compares natural influ-
ence and anthropogenic influence; Domestic-foreign mode com-
pares emission influences from one area with ones from other ar-
eas; The individual influence mode compares individual influences
through a pixel based visualization. The natural-anthropogenic
mode takes the base run as the background chart, and plot the an-
thropogenic influence (defined by difference of the base run and
the globe run) as the foreground. This lets users gain knowledge
about overall ozone concentration and the influence fraction by hu-
man activities. User could also switch the foreground chart to globe
run, to focus his/her interests over the natural influence. We apply
a white-to-blue color scale for globe run values to indicate ozone
concentration without any anthropogenic influences. The domestic-
foreign mode visualize the domain-foreign ratio of emission in-
fluences, which is calcualted by dividing domain emission influ-
ences (differences between base run and individula runs) by foerign

emission influences (differences between individual runs and globe
runs). We use red-to-blue color map for this ratio as foreground,
and white-to-gray color map for total anthropofenic influences in
the background. The individual influence mode visualizes tempo-
ral distribution of influence from all source regions. In the pixel
based table style visual representation, each row is one chart for
corresponding source region, while each column represents corre-
sponding time step. Color of red encoding positive values and blue
encoding negative values.

Our system is implemented in C++ with OpenGL and Qt li-
braries. We separately run graph interface remotely on a work sta-
tion, and run server side on a cluster machine which is handling
data storage with more powerful computation capabilities.

6 RESULTS

This section demonstrates two case studies with EnsembleGraph,
identifying emission influences of tropospheric ozone over China
in Case I, and investigating spatial patterns in Southern Hemisphere
in Case II. Both case studies use daily output from nine simulation
runs from MOZART-4 model, in year 2000 (366 timesteps in to-
tal). We use surface ozone concentration, with spatial resolution at
192×96.

6.1 Case I: Observing and Comparing Relative Regional
Emission Influences of Tropospheric Ozone over
China

Scientists would like to analyze how ozone over China is influenced
by anthropogenic emissions from the Eurasian Continent. Specifi-
cally, they intend to find out which places are more influenced by
domestic emissions, and which places are influenced by foreign re-
gions, and how influence changed over time.

Instead of manually probing a lat-lon box as target range for
analysis, our tool enables user to directly observe how this area is
partitioned into continuous regions with similar member behaviors.
With EnsembleGraph, scientists explore the spatial view with pan-
ning and zoom into the area around China and review the partition-
ing results. The partition map (in Figure 1 and Figure 6) shows that,
area around China is divided into three parts according to member
behaviors. The first one is the East China (the first row in Figure 1),
which also includes neighboring regions such as Japan and Korean
Peninsula. The second one is the Southwest China (the second row
in Figure 1), being connected to India. The last one is the Northwest
China (the third row in Figure 1), connecting to Middle Asia and
Russia. Such partitioning result agrees with the geographical terrain
of China: Southwest China is Qinghai-Tibet Plateau, and North-
west China is separated from Eastern China by mountains. The
automatic results are similar to the manually chosen areas in pre-
vious research work [14], in which the researchers chose Xinjiang
Province and Qinghai-Tibet Plateau as two lat-lon boxes (40◦N-
45◦N, 84◦E-90◦E over Xinjiang and 29◦N-34◦N, 86◦E-92◦E over
Tibet). EnsembleGraph successfully helps scientists to choose des-
tination area for analyze, based on automatic partitioning method.

We choose one node for each region, and observe relative emis-
sion influences in comparison view. From the results (Figure 1) we
find that in Northwest China, most anthropogenic influences appear
in spring and summer, but in Southwest China the anthropogenic
influences almost lasts for the whole year. Meanwhile in Eastern
China, influences happen mostly in summer and almost disappear
in winter. Switching to individual influence mode (Figure 1) allows
comparison for temporal distribution of each regional emission. In
Northwest China (second row), Europe is the dominant emission
source region in spring and summer, followed by East Asia. Emis-
sion influences over Southwest China (the third row) appear totally
differently: It is largely affected by India throughout the whole year,
and occasionally affected by Middle East during Spring, while the



Figure 6: The visual analysis framework includes interface: Bottom left: Temporal view. Bottom right: Control panel for parameter settings.
Upper right: Spatial View. Upper left: Comparison view. In this case, we focus on ozone over China and neighboring regions.

East China is almost only influenced by East Asia. The findings
above agree with the ones in the previous studies [14].

6.2 Case II: Observing Spatial Patterns in Southern
Hemisphere Based on Different Regional Emission
Patterns

This case shows how scientists use EnsembleGraph to study spatial
patterns over the Southern Hemisphere by different regional emis-
sion patterns. Firstly, by exploring the temporal view using panning
and zooming, scientists could discover an obvious node chain that
stays throughout the whole year. According to the size, it seems re-
lated to a very large region. Partition map in the spatial view shows
that it exactly belongs to the largest segment covering the whole
Southern Hemisphere. It explains that majority parts of southern
hemisphere have similar ensemble behaviors. By double clicking
on the Southern Hemisphere partition, and submiting this selected
to server side, they can filter out all other unrelated regions, and
only left a trunk with several branches in the graph, which indi-
cates that the Southern Hemisphere could be separated into a whole
regions or separate into two or three regions according to the dif-
ferent member behaviors. The counterpart subregions are shown in
the partitioning map in Figure 7 (thumbnails in the left side).

If we watch them closely in the comparison view, we can find
their temporal member behavior differences: Most southern and
most northern areas of these three subregions have higher ozone
concentration in January and December. However, through the
natural-anthropogenic comparison mode (Figure 1) we found that,
ozone over the most southern subregion is caused by natural emis-
sions, while ozone over the latter subregion is affected by an-
thropogenic emissions (see Figure ??. The most northern strip,
although appears to have lower total ozone concentration, keeps
suffering from a relative higher anthropogenic emission influences
during the whole year. The individual influence comparison mode
shows relative importance: for the most northern sub-region, South
Asia emission has been the dominant source throughout the year,
followed by East Asia and Middle East during Summer in Northern

Hemisphere. The other two sub-regions in the south are similarly
more affected by South Asia, East Asia and Siberia during the Sum-
mer time.

Figure 7: User track regions with similar ensemble behaviors in
Southern Hemisphere. In the last row, unrelated nodes fade out, user
highlight region by clicking on nodes, and compare them in detail
comparison view. Here shows when Southern Hemisphere is divided
into three regions according to ensemble behaviors (thumbnails on
the left side). User observe differences using individual comparison
mode and domestic-foreign comparison mode in interface (third row).

6.3 Domain Scientists Review

We discussed with our domain scientists and data provider on our
results and got feedbacks from them . The scientists showed highly
interests in the partitioning results, and explained the discovered
member behaviors according to their knowledge. For the first case,
they confirmed our findings, Eastern China is significantly influ-
enced by its domain emission, while Northwestern and Southwest-
ern China are isolated from those emissions due to mountains and
plateaus, thus is more affected by the upwind areas. For the second
case, the partitioning result is explained as follows: The middle



part is located in the westerly of Southern Hemisphere, which al-
most has no land as obstacles, thus exists strong wind convection.
This leads similar air around this latitude, and also isolates the air
above the Antarctic Continent, which is exactly the southernmost
region in the partitioning results. To confirm the influence mecha-
nism from the Eurasian Continent to the Southern Hemisphere, we
need more simulation data to apply into our framework. In gen-
eral, the scientists stated that the partitioning method gives reason-
able results, and it is effective to analyze by automatically dividing
regions. At last, the scientists suggested us to provide more spe-
cific operators and flexible manipulators for controlling measure-
ment during the partitioning procedure. We plan to include this in
our future work.

7 CONCLUSIONS AND FUTURE WORK

EnsembleGraph presented in this paper provides a visual analysis
framework for ensemble data. The goal of this work is to provide
interactive exploration for behavior patterns in spatiotemporal en-
semble domain. Particularly, with emission simulation data, En-
sembleGraph supports scientists to evaluate and compare regional
anthropogenic emission impacts on global tropospheric ozone. The
new approach develops the impact-based method, which automat-
ically does data partition to whole domain, so that the impact
patterns are concluded. A seamless design of graph based inter-
face with linked interaction enables spatio-temporal explration effi-
ciently for all impact patterns, and further allows users to compare
them. Case studies shows EnsembleGraph is capable of facilitating
scientists to understand the spatio-temporal distribution, as well as
compare emission impacts efficiently. In the future, we plan to de-
velop more domain specific algorithms and customized interface
for ensemble domain partitioning, in order to support more appli-
cation requirements to understand ensemble data. With futher im-
provements, this new visual analysis framework is envisioned to
be adopted into a wider range of spatialtemporal data in different
domains.
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