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Abstract—The fast growing expansion of renewable energy
increases the complexities in balancing generation and demand in
the power system. The energy-shifting and fast-ramping
capability of energy storage has led to increasing interests in
batteries to facilitate the integration of renewable resources. In
this paper, we present a two-step framework to evaluate the
potential value of energy storage in power systems with
renewable generation. First, we formulate a stochastic unit
commitment approach with wind power forecast uncertainty and
energy storage. Second, the solution from the stochastic unit
commitment is used to derive a flexible schedule for energy
storage in economic dispatch where the look-ahead horizon is
limited. Analysis is conducted on the IEEE 24-bus system to
demonstrate the benefits of battery storage in systems with
renewable resources and the effectiveness of the proposed battery
operation strategy.

Index Terms—Battery, economic dispatch, energy storage,
flexible resources, integer programming, power system
economics, power system reliability, real-time operation,
renewable resources, stochastic unit commitment.

NOMENCLATURE
Indices and Sets
b: Index of energy storage units.
e: Index of “buckets” wused in stochastic unit
commitment.
g: Index of generators.

Number of look-ahead time periods in the hourly-
dispatch model.

k: Index of transmission lines.

n: Index of buses.

S Index of scenarios.

t: Index of time periods.

t: Current time period in the hourly-dispatch model.
w: Index of wind farms.

5 (n): For any transmission line k with “to” bus n.

6, (n): For any transmission line k with “from” bus n.
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Qgs: Set of slow generators.
v(n): For any generating unit at bus n.
Parameters
By: Susceptance of line k.
Cy(x): Variable cost function for generator g.
chev: Cost for violating the lower bound of the flexible
operating range for energy storage b in time
period t.
et No-load cost for generator g.
eV Startup cost for generator g.
cé’f’: Cost for violating the upper bound of the flexible
operating range for energy storage b in time
period t.
vL. Cost for involuntary load shedding.
vOR. Cost for violating the system operating reserve
(sum of spinning and non-spinning) requirement.
c”R* c"R~: Cost for violating the system up and down

regulation reserve requirement.
¢ Cost for violating the system spinning reserve
requirement.

dpe: Real power demand at node n in time period t.

DTy: Minimum down time for unit g.

EL3™: Lower bound of the flexible operating range for
energy storage b in time period t.

EMin: Minimum energy capacity for energy storage b.

Epox: Maximum energy capacity for energy storage b.

E,i’f: Upper bound of the flexible operating range for
energy storage b in time period t.

pin-max. . Maximum power absorption for energy storage b.

poUEmax: Maximum power output for energy storage b.

ptax: Maximum real power output for generator g.

Pg"’”n: Minimum real power output for generator g.

P Maximum active power capacity for line k.

plind. Generation for wind farm w in time period t and
scenario s.

RS*: Maximum hourly ramp up rate for generator g.

RY™: Maximum hourly ramp down rate for generator g.

R3**: Maximum 10-min ramp up rate for generator g.

Rj*: Maximum 5-min ramp up rate for generator g.

RS‘: Maximum 5-min ramp down rate for generator g.

RgD: Maximum shut down ramp rate for generator g.

RgU: Maximum start up ramp rate for generator g.

Ry: Maximum non-spinning reserve ramp rate for
generator g.

QYE: System operating reserve requirement in time
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period t and scenario s.

Uge: Unit commitment status for generator g (O down,
1 online), which is obtained from the day-ahead
solution.

UT, Minimum up time for unit g.

ak: Minimum duration of time (hour) that the
regulation reserves have to be maintained.

ap: Minimum duration of time (hour) that the
spinning reserves have to be maintained.

ni: Efficiency associated with the absorbing cycle for
energy storage b.

nout: Efficiency associated with the generating cycle
for energy storage b.

T, Probability for scenario s.

Decision Variables (Index s Denotes Scenario and Index t
Denotes Time Period)

Epg:: State of charge for energy storage b.

Pyt Power output for generator g.

pn.. Power absorbed by energy storage b.

pout. Power generated by energy storage b.

Pyt Real power flow on transmission line k.

r;st Spinning reserve provided by generator g.

Toot: Up regulation reserve provided by generator g.

Toet: Down regulation reserve provided by generator g.

ré"si: Non-spinning reserve provided by generator g.

sk, Involuntary load shedding at node n.

N Slack variable to relax the lower bound of the
flexible operating range for energy storage b.

sR+: Slack variable to relax system up regulation
requirement.

sk~ Slack variable to relax system down regulation
requirement n.

sSP Slack variable to relax system spinning reserve
requirement.

sOR Slack variable to relax system operating reserve
requirement.

sé’_f Slack variable to relax the upper bound of the
flexible operating range for energy storage b.

sW. Wind curtailment for wind farm w.

Ugse: Binary unit commitment variable for generator g
(0 down, 1 online).

Vst Startup variable for generator g (1 for startup, O
otherwise).

Wt Shutdown variable for generator g (1 for
shutdown, O otherwise).

Zpst Binary variable for energy storage b (1 for
production, 0 for consumption).

Of e Bus angle for the “from” bus of transmission line
k.

Orst: Bus angle for the “to” bus of transmission line k.

I. INTRODUCTION

ITH increasing concerns about climate change and the
need for a more sustainable grid, power systems have
seen a fast expansion of renewable resources in recent
years. The variability and uncertainty of renewable resources
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have increased the complexities in balancing load with
generation and have introduced new challenges in regards to
maintaining system reliability. As a result, more flexible
resources are needed to meet the increasingly stringent
ramping requirements in the system.

Driven by the need to integrate higher penetration levels of
renewable energy and to reduce the costs for serving peak
demands, recent interests have been focused on energy storage
technologies. Energy storage can shift energy from peak-
demand hours to off-peak-demand hours, or absorb excess
renewable energy to provide it back to the grid when desired.
The fast-ramping capability also makes energy storage a
competitive resource to compensate for the variability and
uncertainty in renewable energy. By using energy storage, the
cycling of thermal units can be reduced, which is an advantage
since many thermal units are not designed to be ramped up
and down frequently [1].

Among all existing storage technologies, there is
substantial interest in batteries as an emerging solution to
manage intermittent renewable resources. Compared with
thermal units, batteries do not have a no-load cost and they are
generally considered to not have minimum power input/output
levels for charging/discharging. Compared to other storage
technologies, such as pumped storage hydro and compressed
air energy storage, batteries have higher power density. Even
though the main barrier with battery technologies is their high
capital costs, efforts are being made to reduce the capital costs
and improve the cost-effectiveness of different battery
solutions [2].

Due to growing interests in energy storage, recent literature
analyzes the scheduling problem of energy storage and the
different applications of energy storage in systems with
increased renewable resources [3]-[8]. The application of
battery storage is studied at both the transmission and
distribution system levels. In [9] and [10], the authors studied
the benefits of batteries in transmission systems with
renewable resources using  security-constrained  unit
commitment (UC) models. In [11] and [12], the application of
battery storage at the distribution level is studied. In [11], the
benefits of using battery storage in microgrids with renewable
resources are evaluated using a three-step short-term
generation scheduling approach. In [12], a unit commitment
model is formulated to study the problem of battery optimal
sizing in a microgrid system.

While the study of battery storage in systems with
renewable resources is not new, much of the previous work is
based on day-ahead models or short-term look-ahead
scheduling models [9]-[12]. In such look-ahead scheduling
problems, scheduling for future time periods are optimized
together in one model based on forecast information.
However, with a look-ahead type of scheduling model, the
challenges associated with managing the state of charge
(SOC) of the battery are not properly captured. Different from
thermal units, the dispatch of energy storage is constrained by
their SOC. In real-time operation, as look-ahead functionality
is limited, decisions for time period t have to be made in
advance without having perfect information about future
uncertainties. An inappropriate decision made for battery
storage in the current time period could potentially result in
insufficient capacity to charge or discharge in future time



periods. These challenges are not adequately captured in
independent day-ahead or short-term look-ahead scheduling
models.

In this paper, we study battery storage under the
assumption that it is a system asset operated by the system
operator. We propose a two-step modeling framework to study
the benefit and the operation of battery storage in transmission
systems with renewable generation. The main contributions of
the paper are as follows. Firstly, we propose a flexible
operational strategy for the use of energy storage in real-time
operations. The proposed approach is developed to utilize the
flexibility of battery storage across multiple time periods,
given the limited look-ahead functionality and future
uncertainty in real-time operation. Secondly, we extend the
work in [13] to include energy storage. While the primary
motivation for [13] is to propose an improved stochastic
formulation to enhance the flexibility of the commitment
schedule for thermal generators, we extend the formulation in
[13] and take the advantage of its structure to develop the
proposed battery operational scheme in this paper. Thirdly, we
illustrate the benefits of the proposed algorithms in a case
study of the IEEE RTS system using realistic wind power
uncertainty data.

This paper is different from previous studies as follows.
While stochastic UC models have been used to study battery
storage and other forms of energy storage in [9]-[12], [14]-
[17], the studies in [9]-[12], [14]-[17] are conducted using
day-ahead or short-term look-ahead scheduling models. None
of [9]-[12], [14]-[17] addresses the challenges associated with
the real-time operation of energy storage. In [18]-[20],
different methodologies are used to improve the operational
scheme of the battery in real-time operation. However, the
studies in [18]-[20] are conducted from the viewpoint of the
storage owner, whose objective is to maximize his/her own
profit. In this paper, the study is conducted from the viewpoint
of a system operator, whose objective is to optimally allocate
the resources in the system and minimize the total cost of the
system. In [21], an energy restoration mechanism is proposed
to maintain the SOC of energy storage at their preferred levels.
The approach in [21] is proposed to manage the SOC of
energy storage when energy storage is used to provide
regulation reserve. However, in this paper, the proposed
approach is to improve the overall operational scheme of
battery storage in real-time operation, rather than focusing on
any one type of ancillary services provided by the battery.

The remainder of the paper is organized as follows. In
Section |1, the mathematical model and the methodology are
described. The results are reported and discussed in Section
I11. The conclusion and future work are presented in Section
V.

Il. MATHEMATICAL MODEL AND METHODOLOGY

A two-step framework is implemented to evaluate the
benefits of battery storage in transmission systems with
renewable generation. In the first-step, which is referred to as
the day-ahead scheduling, a two-stage stochastic day-ahead
unit commitment model is formulated. In the second-step,
stochastic simulation is performed to test the day-ahead
solution against wind scenarios that are not included in the
day-ahead stochastic UC. The second-step is later referred to
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as the post-stage analysis. The formulation used in the two-
step framework is described in the following subsections.

A. Day-Ahead Scheduling and Stochastic Unit Commitment

The stochastic UC is formulated as a mixed integer linear
program (MILP) based on the formulation in [13] . In [13], the
scheduling horizon is divided into several time blocks. Within
each time block, wind scenarios are grouped into different
“buckets” based on their average wind forecast value. The
non-anticipativity constraints are then enforced for scenarios
that are in the same bucket in each time block. The advantage
of this formulation is that it can provide a more flexible
schedule for the thermal generators as the commitment
schedule is dependent on each bucket rather than being the
same for all the scenarios in the stochastic UC. It should be
noted that the day-ahead UC model is still solved for the full
24-hour time horizon. The introduction of time blocks is
primarily to introduce flexibility in the solution by allowing
commitment decisions for thermal units to vary between
buckets and time blocks, as a function of the wind power
level.

The complete formulation of the stochastic UC with energy
storage is presented in (1) - (29), where the objective (1) is to
minimize the system total costs and the costs of security
violations (e.g., the cost of involuntary load shedding and
violations of the reserve requirements). In the formulation,
constraint (2) guarantees the power balance at every bus.
Constraint (3) represents the dc power flow on each line and
(4) is the line-flow limit constraint. Limits on the power output
for each generator are presented in (5) and (6). The non-
anticipativity constraints are shown in (7), where e is the index
for buckets. In constraint (7), e = B(s,t) indicates that
scenario s is assigned to bucket e in time period t. Note that
the non-anticipativity constraints are only modeled for the
slow units and enforced for each individual bucket, i.e. not
across all the scenarios. The minimum up and down time
constraints are shown in (8)-(10). Constraints (11)-(14)
represent the ramp rates for regulation, spinning and non-
spinning reserves for thermal units. In this paper, regulation
reserve refers to the reserve that is used to follow the
automatic generation control (AGC) signal. For spinning and
non-spinning reserves, they are modeled to represent
contingency reserve, which is used to respond to contingencies
in the system. The hourly ramp rate constraints are shown in
(15) and (16). The model for battery is shown in (17)-(24).
Constraints (17)-(20) represent the limits on regulation and
spinning reserves provided by batteries. Constraints (18) and
(20) indicate that a battery should be able to maintain its
output for duration of aj and af hours to be qualified to
provide spinning and regulation reserves respectively.
Constraint (21) is the power balance constraint for energy
storage. Regulation reserve variables are included in (21) to
estimate the change in SOC as a result of the deployment of
the regulation reserves. We ignore the impact of the wind
penetration level on the requirement for regulation reserves,
and assume that 20% of the scheduled regulation reserve
capacity will be activated regardless of the wind penetration
levels studied. The limits on consumption and production for
the battery are presented in (22) and (23). Constraint (24)
represents the energy capacity for the battery. The constraints



for system-wide regulation and spinning reserve requirements
are presented in (25)-(29). In the paper, the regulation reserve
requirement is set to be 2% of the load, while the operating
reserve (sum of spinning and non-spinning reserve) is required
to be greater or equal to the single largest generator
contingency. It is also required that half of the system
operating reserve should come from spinning reserve. The
reserves needed to compensate renewable uncertainties are
addressed endogenously by the stochastic UC model. The
reserve requirement constraints can be violated for a
predetermined penalty price, as reflected in the objective
function.

Minimize:

Zs TCS{Zg Zt[Cg(Pgst) + CgIJVLugst + Cguvgst] +
TnXec spse + Zt(CVR+S§t+ +cRsE 4+ Cvspsgtp +

CVORS;)tR)} 1)
Subject to:

Yvgm) Post + Zkes+m) Pest — Skes—) Pest + Loy (Post: —
Pé?t =dy — S;’ist - ZVW(n)(leitnd - SVVlI//St) ,vn,t,s 2)
Pust = Bi(8ise — Oicse) = 0, VK, t,s 3)
—P"** < Py < P, VE s 4
Pyse + g5t + 155 < P g, Vg, t, s (5)
P ugye < Pyge — TR, Vg, t, s (6)
Ugse = Uger, Vg € Qgs, t,e = B(s,t),s (7
ng:t—urgu Vgsq < Ugst» VG, t € {UT ,...,T},s 8)
E(t]:t—DTg+1 Wosq S 1 —ugs, Vg, t € {DT,, ..., T},s 9
Vgst = Wgst = Ugst — Ugse-1, VGt S (10)
TRt < Rt ugs, Vg, t,s (11)
TRt < Ry Ugs, Vg, t, s (12)
ot < Rg%tuge, Vg, t,s (13)
rost S RFS(1 —ugse), Vg, t,s (14)
Pyot—Pysi-1 S RS ugge1 + RV vy, Vg, t, s (15)
Pyst-1—Pyst < RSO ugse + R3Pwye, Vg, t,s (16)
Thse + Thst < Pbout_max — Pystt + Pjg,, Vb, t,s 17)
ApTise + afrpet < N5 (Epse — E[I)Vlin)’ vb,t,s (18)
TRy < BMOY — pln 4 pOM b, t, s (19)
ayTpse < (Ep'™ = Epse) /My, VD, b, (20)
Epst = Epst-1t+ Pty — Postt /np™t + 0.2af (rseny® —
Thst /Mp5), Vb, t, s (21)
0 < POUt < pO¥-M% g, Vb, t,s (22)
0 < P < B (1 = 2,5,), Vb, t, s (23)
EY'™ < Epye < EJ™, Vb, t,s (24)

YoTat + XpTiet = 0.02%,dy — s&F,Vt,s (25)
YoTast + XpTier = 0.02%,dy —s&, Ve, s (26)

R = Pyse + 1550, VG, L, S 27)
Zg r;st + X rlfst + Zg T'é\g 2 QsOtR - SgtR' vt,s (28)
Zg r;st + X rlfst 2 O-SQgtR - SégtP'Vt' N (29)

B. Post-Stage Analysis and Hourly-Dispatch Problem

In the second-step, which is referred to as the post-stage
analysis, stochastic simulation is performed to test the day-
ahead solution against wind scenarios that are not included in
the day-ahead UC. In the post-stage analysis, only the
uncertainty in renewable generation is considered; load
forecast uncertainty and generator outages are not included.
The post-stage analysis is formulated using an hourly-dispatch
model. The complete formulation for the hourly-dispatch
model is presented in (30)-(33). A deterministic formulation is
used and only one scenario is included in each dispatch
problem. In (30)-(33), index t’ represents the current time
period and i represents the number of look-ahead time periods
included. Each dispatch run solves for the current hour and
looks i hours ahead (i=1 as default assumption), for which a
persistence wind power forecast is assumed. The objective is
to minimize the total cost in the current hour and the look-
ahead period, as shown in (30). The hourly dispatch problem
is solved sequentially for 24 hours using a rolling window.
The hourly-dispatch model is formulated to approximate the
real-time operation, but with a lower time resolution than what
is typically used in U.S. energy markets. The commitment
schedule for slow (slow-start) units is given by the day-ahead
UC, as shown in (31). Parameter ug, is the commitment status
obtained from day-ahead UC. Fast (fast-start) units are
allowed to change commitment status in the hourly-dispatch
problem. In the paper, slow units are defined as the generators
that have minimum up and down time greater than one hour.
Fast units are defined as the generators that have minimum up
and down time smaller or equal to one hour. A persistence
wind power forecast is assumed for the look-ahead period, as
shown in (33). The other constraints for the hourly-dispatch
model are similar to those used in the day-ahead UC.

Minimize:

"+i I,
Zg g;ft[cg(Pgt)"‘CgLugt+c§”vgt] +3, t'+i WL L

t=t1C Spt T

g';;f(c”“sf’f + C"R_sf_ + CVSPSES'P + CUORS?R) (30)
Subject to:
Uge = gy, Vg € Qgg t € {t', ., t' + i} (31)
Constraints (2)-(6), (11)-(29), ¢t € {t', ..., t' + i} (32)
PWind = pWind ¢ € {t' + 1, ..., t" + i} (33)

C. Battery Operation with a Fixed Operating Schedule

To address the limited look-ahead functionality in real-time
operation, one approach is to use the solution obtained through
a look-ahead scheduling stage. However, as the SOC is a
second-stage decision in the day-ahead stochastic UC, one
battery schedule is obtained for each scenario. Therefore, in



the post-stage analysis, for each wind scenario to be tested, the
most appropriate battery schedule should be selected from the
day-ahead solution. In this paper, the battery schedule is
selected based on the similarity between the post-stage wind
scenario and the day-ahead wind scenario. The similarity
between the two wind scenarios is measured by the Euclidean
distance. Therefore, for each post-stage wind scenario, s, the
day-ahead wind scenario 5, that is closest to it is identified.
Then the battery schedule that corresponds to scenario 5, is
used in the post-stage scenario s. Denote this battery schedule
as E5,, where Eg, is a vector with each element representing a
target SOC in each time period.

For each post-stage scenario, the corresponding battery
schedule has to be determined before the first time period is
solved. To reflect the fact that wind generation cannot be
perfectly forecasted while not over-complicating the
simulation process, the wind generation profiles in the first six
hours of each post-stage scenario are used to determine the
closest day-ahead wind scenario. The underlying assumption
is that the wind forecast for the first six hours has relatively
low forecast errors and can be used as an acceptable
approximation to determine which day-ahead schedule should
be used. The battery schedule obtained using the above
method is later referred to as the “fixed schedule” and will be
used as a benchmark approach to be compared with our
proposed method.

D. Battery Operation with a Flexible Operating Range

Next, we propose an approach that aims at flexibly
operating battery storage in real-time operation while taking
into account future uncertainties. Two goals are to be achieved
by using the proposed method. First, the approach should be
able to provide instructions to the battery of when to charge,
discharge, and provide reserves, so that the battery will have
enough capability in current as well as future time periods.
Second, the proposed method should provide enough room for
adjustment in real-time operation, such that the fast-ramping
capability of the battery can be utilized when renewable
generation deviates away from its planned production. The
proposed method is referred to as the flexible operating range
approach, and constitutes an improvement to the fixed-
schedule approach. In the proposed method, an operating
range is determined for the battery in each time period. The
fundamental idea of the proposed method is to use the day-
ahead UC solution to generate an operating range around the
fixed schedule for the battery in real-time operation. The
detailed procedure for determining the flexible operating range
is described as follows.

Firstly, obtain a fixed schedule for the battery for each
post-stage scenario s using the procedure described in the
previous subsection. This is done prior to the beginning of the
simulation for each post-stage scenario. Denote this fixed
schedule as Es,. Secondly, prior to solving the hourly-dispatch
problem for each time period, find the day-ahead scenarios
that are in the same bucket as the post-stage scenario s and
denote the corresponding day-ahead battery schedules as
Eg,, .., E5, . Then the upper and lower limit of the flexible
operating range are determined as

Up _
E,, =max {E§0,t’

Es, v Es, ) Vbt (34)

Low _ ;
Eyi” =min {Eg,,

Es
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 Es,, 1 Vb, t (35)

Low Low Up Up
Eb,t - Sb,t < Eb,t < Eb,t‘ + Sb,t’Vb’t

(36)

where E;$¥ and Eé’f are the lower and upper bound for the
flexible operating range in time period t for the battery. The
flexible operating range is formulated as a pair of limits on
SOC. Variables s;9" and s,i’_’t’ are slack variables used to relax

the flexible operating range when necessary by incurring a
penalty cost. The penalty cost is computed as

T Te(ck sk T + ¢, PspF /nim). (37)

For the proposed flexible operating range approach, the
penalty cost term shown in (37) is added to the objective
function of the hourly-dispatch problem (30). In this paper,

ko™ and c,? are both assumed to be the highest marginal
costs of all the online slow units. The reason for using such a
penalty price is that constraint (36) should be relaxed if it can
avoid the commitment of an additional fast unit, which
typically happens when all the slow units are fully dispatched.
As turning on an additional fast unit will incur not only
marginal fuel cost but also no-load cost and start-up cost, the
commitment of an additional fast unit is expected to be more
expensive than using the energy stored in the battery. The
procedure to implement the proposed approach in the post-
stage analysis is summarized in Fig. 1.

E. Renewable Scenario Generation

Wind power forecasts are affected by several sources of
uncertainty that include data and physics modeling. In this
study the wind scenarios account for the errors in the
numerical weather predictions (NWP) and are generated using
Gaussian process (GP) regression [23]. The GP is built to
estimate the differences between a state-of-the-art NWP
forecasts, WRF v3.6 [24], and observations (corresponding to
NOAA Surfrad network). The NWP forecasts are initialized
using North American Regional Reanalysis fields. Simulations
are started every day during August 2012 and cover the
continental U.S. on a grid of 25x25 Km. A GP is calibrated to
reproduce the discrepancy between forecasts and observations
at 10m height (mean and variance). Samples from this
distribution are extrapolated from 10m to 100m hub height
and passed through a standard power curve to obtain the wind
scenarios for representative locations [25]. In the paper, only
wind generation is considered. Other renewable resources,
such as solar generation, are not considered in the study, but
could also be represented in the model.

F. Experimental Setup

Firstly, wind scenarios are generated based on the approach
outlined above. The scenario reduction approach in [26] is
applied to select a predetermined number of scenarios to be
used in the day-ahead UC. Secondly, the stochastic UC is
solved with the reduced scenario set. The day-ahead solution
is then tested against wind scenarios that are not included in
the day-ahead UC (i.e. out-of-sample) in the post-stage
analysis. In the post-stage, the scenarios have equal
probabilities. Lastly, the performance of the proposed flexible
operating range approach is compared with other benchmark
methods.



’ Scenario s=1 ‘

Determine a fixed schedule for current
—>| scenario s using the approach described in
Section II. C
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’ Time period t=1 ‘

|

Determine which bucket does the current
scenario s belong to

]

Read in the day-ahead UC schedule for
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]
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the same bucket as the current scenario s

l

Use equations (34)-(36) to determine the
flexible operating range for the battery

l

Solve the hourly-dispatch
problem

Yes

’ Calculate the metrics ‘

Fig. 1. Flowchart for the implementation of the proposed approach in post-
stage analysis.

I1l. CASE STUDY

The case study is conducted on the IEEE RTS 24-bus
system [27], [28]. The RTS 24-bus system has 35 branches, 32
generators, and 21 loads. The load in the system is decreased
such that the peak load is 2565 MW. Similar to [29], the
capacity of line (14-16) is reduced to 350 MW to create
congestion in the system. One 50MW/150MWh battery unit is
placed at bus 13, i.e. at the location of one of the two wind
farms in the system (the second is at bus 22). Placing the
battery at a wind farm location is an existing practice [30]-
[32]. By installing battery storage at a wind farm location, the
battery could be used to moderate the output of the wind farm.
Moreover, co-location of storage and a wind farm oftentimes
reduce interconnection and investment costs. The parameters
used for the battery are summarized in Table 1. Note that the
capacity of the battery is only about 2% of the system peak
load. In the day-ahead UC, an initial SOC of 90 MWh is
assumed for the battery. It is required in the day-ahead UC
that at the end of the day, the SOC of the battery should be the
same as the initial SOC. Parameters a; and af are assumed to
be 0.5, which indicates that battery storage should have
enough energy to maintain its output for half an hour in order
to be qualified to provide spinning and regulation reserves.

TABLE |. SUMMARY OF THE PARAMETERS USED FOR BATTERY STORAGE

nm nOut Pbln_max, PbOut_max Eé/lin Eé/lax
b1 (MW) (MWh) (MWh)
0.9 50 30 150

Two hundred wind scenarios are generated for day 236 in
2012 and 40 scenarios are selected for the day-ahead UC for
two locations in the Western United States. In the post-stage
analysis, 150 scenarios are used to test the day-ahead solution.
The simulation is conducted for wind penetration levels from
15% to 30%, with an increment of 5%. The wind penetration
level is defined as the ratio of daily total wind generation to
the daily total demand. Wind curtailment is allowed when the
system cannot accommodate all of the available wind
production. The cost of involuntary load shedding is assumed
to be 9000 $/MWh, and the cost for violations of reserve
requirements is assumed to be 3300 $/MWh. In the stochastic
UC, the planning horizon is divided into four time blocks,
with each to be six hours. In each time block, two buckets are
modeled. Wind scenarios are assigned to each bucket based on
their average wind generation in the corresponding time block.

A. Evaluation of the Benefits of Battery Storage

1) Day-Ahead Scheduling

In the day-ahead scheduling stage, the stochastic UC is
solved. Four metrics are used to evaluate the operational
benefits of battery storage, which are expected involuntary
load shedding, expected wind curtailment, expected reserve
requirement violations and expected total generator
commitment hours (ETCH). The metric “expected reserve
requirement violations” is the sum of violations of regulation
and operating reserves. The metric “expected total generator
commitment hours” is computed as

ETCH = ¥ 54 sMsUgst (38)

which is the weighted average of the sum of the
commitment hours for all the generators in a day. If this metric
is low, it means that thermal units are committed less
frequently in the system. The metric ETCH is shown for slow
units and fast units separately. As shown in Table II, with
battery storage in the system, the ETCH for the slow units is
much lower than that in the cases without battery storage.
With battery storage in the system, fewer slow units are
needed to address the variability in renewable resources. At
the same time, the need for fast units to compensate the
uncertainty in renewable generation is also slightly reduced.
Meanwhile, more wind generation is dispatched in general
when battery storage is included in the system due to reduced
wind curtailment. The expected system total costs for the
cases with and without battery storage are presented in Table
I11. 1t is shown in Table Ill that the system total costs are
significantly reduced when battery storage is included. The
day-ahead result shows that the battery is a valuable resource
in helping integrate high levels of renewable resources,
especially when considering that the battery in the system is
relatively small compared to the system load and wind
generation. As renewable penetration levels increase, the value
of the flexibility that battery storage provides also increases.



TABLE Il. EXPECTED SYSTEM RESULTS FOR DAY-AHEAD UNIT COMMITMENT

Involuntary - ETCH ETCH
Wind Load Wl_nd Resetve for for
% Shedding Curtailment | Violations Slo_w Fa;t
(MWh) (MWh) (MWh) Units Units
(h) (h)
With Battery
15% 0.0 4 0.0 297 144
20% 0.0 99 0.4 282 140
25% 0.0 221 0.2 271 137
30% 0.0 1036 0.1 278 135
No Battery
15% 0.0 5 0.3 369 144
20% 0.0 56 5.4 345 147
25% 0.0 468 4.1 331 147
30% 0.0 1460 2.9 311 146

TABLE IIl. EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR DAY-
AHEAD UNIT COMMITMENT

Wind | Total Cost with | Total Cost without S;i/?rswtgs Saf\;/(i);tgs
% Battery ($) Battery ($) ) %)
15% 806,287 930,440 124,154 13.3%
20% 765,307 887,480 122,173 13.8%
25% 733,779 849,963 116,184 13.7%
30% 712,808 827,570 114,762 13.9%

2) Post-Stage Analysis with the Fixed Operating Schedule

In the post-stage analysis, we first test the fixed-schedule
approach, where the battery is not allowed to deviate from the
schedule. The same metrics used in the day-ahead scheduling
stage are used in the post-stage analysis. The results for post-
stage analysis are reported in Table IV and Table V. From
Table IV and Table V, the same trend as in the day-ahead
scheduling stage can be seen, as battery storage can help
dispatch more wind generation; it decreases the total number
of hours that slow and fast units are committed and reduces
the system total costs. The security violations are also reduced,
in general, for the cases with the battery. The results in Table
V indicate that the cost savings are similar for the three lowest
wind penetration levels, but lower for the 30% wind scenario.
At 30% wind penetration level, the increase in the violation
cost offsets the reduction in operating cost, which causes the
system total cost for the 30% wind scenario to be higher than
that of the 25% wind scenario. This is also a result due to out-
of-sample testing, i.e., the stochastic program takes into
consideration a subset of potential scenarios whereas the post-
stage analysis tests the proposed solution against a wider range
of potential scenarios.

Fig. 2 presents a boxplot of the total system costs for each
case in the post-stage analysis. The edges of the box are the
25th and 75th percentiles and the whiskers represent the
maximum and minimum without considering outliers. The
horizontal red lines represent median values and outliers are
shown in red “+”. The plot shows the median value as well as
the variation in samples of system’s total costs for each case.
The cases labeled “With x%” are the cases with the battery for
“x%” wind penetration level; the rest are the cases without the
battery. From Fig. 2, it can be noted that with the battery in the
system, both the maximum and minimum value of the total
system costs are reduced. Also, for wind penetration levels of
15%, 20% and 25%, the boxes for the cases with battery
storage span much shorter ranges than those of the cases

without battery storage. This result indicates the variations of
the total system costs are also lower for the cases with battery
storage than those of the cases without battery storage if not
considering the outliers (the red “+”). Though not shown, an
ANOVA test was also conducted to confirm that the expected
costs are significantly different between the two cases with
and without battery storage.

TABLE IV. EXPECTED SYSTEM RESULTS FOR POST-STAGE ANALYSIS

ETCH ETCH
Wind InvEI(;J;dtary Wi_nd Resewe for for
% Shedding Curtailment | Violations Slo_w Fa_st
(MWh) (MWh) (MWh) Units Units
(h) (h)
With Battery
15% 0.0 0 4.0 297 145
20% 0.0 7 9.0 282 145
25% 0.4 130 9.9 272 140
30% 2.0 741 30.4 279 138
No Battery
15% 0.0 0 5.1 367 146
20% 0.0 8 16.1 339 147
25% 0.0 124 22.4 321 147
30% 1.3 1009 31.0 313 147

TABLE V. EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR POST-
STAGE ANALYSIS

Wind Total Cost with Total Cost without S;\:/?rs]t S S;\:/c;rs]t s
% Battery ($) Battery ($) $) 9 % )g
15% 847,874 971,823 123,948 12.8%
20% 827,291 943,955 116,664 12.4%
25% 808,768 936,378 127,610 13.6%
30% 876,424 957,140 80,715 8.4%
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Fig. 2. Boxplot of total system costs for each case in the post-stage analysis.
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Comparing the results for day-ahead scheduling to those for
post-stage analysis, it can be observed that the cost savings by
having battery storage in the system are lower in the post-
stage analysis than those in the day-ahead scheduling. The
reason is as follows. The post-stage analysis is formulated to
approximate the real-time operation, where each dispatch
problem is solved with limited foresight of future information
(i.e. one hour look-ahead forecast) using a rolling horizon.
When the realized wind generation deviates from the day-
ahead forecast, the day-ahead battery schedule may not be
able to address the unexpected deviation. Therefore, as shown
in Table IV, the system reserve violations are higher in the



post-stage analysis than those in the day-ahead scheduling,
especially at higher wind penetration levels. As the flexibility
of the battery cannot be fully utilized with a fixed-schedule
approach, reserve requirements are violated to ensure the
feasibility of the problem. Therefore, as renewable penetration
level increases, a more flexible operating approach is needed
for battery storage.

It should be noted that this work simplifies the generation
scheduling process adopted in industry today, where a short-
term unit commitment is usually solved between the day-
ahead scheduling stage and the real-time economic dispatch
stage [36]. This is also one of the reasons that the benefit
provided by the battery is lower in the post-stage analysis than
that in the day-ahead scheduling. During such an intermediate
stage, the day-ahead schedule for the battery could be updated
based on the short-term wind forecast. Even though such a
short-term unit commitment stage is not formulated in this
paper, the two-step framework still captures the main
challenges in scheduling battery storage in a system with
increased uncertainties: 1) real-time operation has limited
look-ahead functionalities and 2) the schedule obtained from a
look-ahead scheduling process may not be able to fully utilize
the flexibility of battery storage when uncertainties increase.

3) Cost-Benefit Analysis of the Battery

In this subsection, a cost-benefit analysis is performed to
study if the cost savings achieved by using the battery can
offset the investment cost of the battery. The cost-benefit
analysis is performed using the results from the day-ahead
stage for the 20% wind penetration level. The same cost-
benefit analysis could also be done based on the real-time
results from the post-stage analysis.

The day-ahead cost savings from six representative days
are summarized in Table VI. The yearly total cost saving is
computed using the cost savings from the six representative
days. In Table VI, “D219” represents representative day 219
and similarly for the other representative days.

TABLE V1. SUMMARY OF DAY-AHEAD COST SAVINGS ($K)

D219 | D225 | D230 | D232 | D236 | Doas | 8D | Yearly
Sum Sum
103 | 110 | 124 | 122 | 122 | 102 | 684 | 41619

As battery storage suffers from degradation effects, the
impact of cycling on the life time of the battery should be
taken into account. The expected daily and yearly discharging
cycles are computed for the battery and summarized in Table
VII. The daily expected discharging cycle is computed using
(39). The maximum depth of discharge (DOD) of the battery
is assumed to be 80%, since the battery has a minimum energy
level of 30 MWh and a maximum energy capacity of 150
MWh. As shown in (39), the daily expected discharging cycle
is calculated on an aggregated base. It is assumed in the cost-
benefit analysis that the life time of the battery is sensitive
only to the total number of equivalent full discharging cycles,
i.e. the DOD of each discharging cycle has little to no effect
on the life time of the battery. This is a reasonable assumption
for some battery technologies [17], [34]. Since the initial SOC
is required to be the same as the final SOC in the day-ahead
UC, the number of daily equivalent full discharging cycles
will be the same as the daily equivalent full charging cycles in
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each scenario. Note that the energy used for deployment of
spinning and regulation reserves is not counted in (39).

Out , Out
prbst /nbu

Daily_Discharge_Cycle = m; st (39)
b Eb
TABLE VII. EXPECTED DISCHARGING CYCLES FOR THE BATTERY
6-Day | Yearly
D219 | D225 | D230 | D232 | D236 | D243 sum sum
2.1 3.0 2.9 3.0 2.3 2.8 16.2 988.2

Assume the battery used in the study is a lithium-ion (Li-
ion) battery. The cycle life for the battery is obtained from the
DOE/EPRI energy storage handbook [33]. In [33], such
batteries are assumed to last 15 years with a daily cycle, i.e.
the total number of cycles is assumed to be 365 x 15 = 5475
cycles. Assuming the battery can be fully discharged at most
5475 cycles, the expected life time (number of years) in our
analysis can be calculated using the expected yearly
discharging cycles obtained from Table VII. Hence, the
expected life time for the battery is calculated as

ExpLifeTime = 3475 ~ 5.5 Years.

988.2

(40)

This result indicates that the battery is expected to last for
about five and half years for the duty cycle in our case study.
Assume the yearly cost saving obtained by using the battery is
the same for the five and half years and that the discount
factor is 6% per year. The present value, PV, of the system
cost saving over this period is computed as

yearly_cost_saving
(1+ig)t

PV =3, = 191,387,407(%$). (42)
A wide range of cost estimates exist for Li-ion batteries
[33]-[35]. In [33]-[35], the capital costs for batteries are
calculated with the assumption of a specific battery
technology and a specific configuration of the battery (power
rating and energy capacity). In the paper, we assumed a capital
cost, CC, of 3,000 $/kW for the battery. This number is
estimated based on the capital costs for Li-ion batteries with
similar power ratings and energy capacities that reported in
[33]-[35]. With a capital cost of 3,000 $/kW, the net present
value, NPV, of the battery is calculated as shown in (42):

NPV =PV —(CC = 191,387,407 — 150,000,000 =
41,387,407 ($) (42)

We also calculate the breakeven cost for the battery, i.e. the
capital cost that would give a zero NPV. The breakeven cost is
found to be 3,828 $/kW. The breakeven cost of the battery is
plotted versus different values of discount factors in Fig. 3: it
ranges from about 3,943 $/kW to 3,612 $/kW when the value
of discount factor is selected in the range of 0.05 to 0.08.

The results of the cost-benefit analysis indicate that battery
storage is beneficial to this system when current capital cost
estimates, the degradation effect and its impact on the lifetime
of the battery, are considered. However, it should be noted that
as the costs for batteries vary depending on the battery
configuration and technology, the conclusion may not apply to
all battery storage technologies. Moreover, the estimated
benefits only apply to the specific test power system, which is
small and has high fuel costs. Larger systems with lower fuel
costs are likely to see lower benefits of energy storage.



However, with that being said, the study in this section
provides an adequate analysis to demonstrate the benefits and
the cost-effectiveness of battery storage in systems with
renewable resources. As the cost of battery storage is expected
to be further reduced in the next five to ten years [2], the
benefits of battery storage will be more prominent in the
future.
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Fig. 3. Battery breakeven costs versus discount factor used in the cost-benefit
analysis.
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B. Evaluation of the Proposed Flexible Operating Range

To better utilize the flexibility of battery storage in systems
with increased renewable resources, the flexible operating
range approach is proposed. In this subsection, the
performance of the proposed method is compared with the
other three benchmark methods. The first benchmark
compared is the fixed-schedule approach, presented in Section
I. C. The second benchmark is referred to as the no-schedule
approach. In the no-schedule approach, no predetermined
schedule is provided for the battery. The dispatch of the
battery in each time period is only based on the system
condition in time period t and t+1. The decisions made in time
period t do not take into account any forecast information
beyond time period t+1. The third benchmark is referred to as
the 3-hour look-ahead benchmark. In this benchmark, similar
to the no-schedule benchmark, no schedule is provided for the
battery. However, different from the no-schedule benchmark,
the 3-hour look-ahead benchmark includes a look-ahead
horizon of three hours, instead of the one hour modeled in the
other benchmarks. A persistence wind power forecast is
assumed, i.e. the wind generation in the look-ahead hours is
the same as the wind generation in the current hour. For the
no-schedule benchmark and the 3-hour look-ahead
benchmark, the model described in Section I1. B is used.

The performance of the four approaches is evaluated using
wind scenarios for six days in 2012. For each representative
day, the day-ahead stochastic UC is solved and the hourly-
dispatch problem is solved with 150 different wind scenarios.
The generator commitment schedules for slow units used in
the three approaches are the same. The expected cost savings
in percentage for the proposed approach to the benchmark
methods are presented in Fig. 4 to Fig. 6 respectively.

As shown in Fig. 4, compared to the fixed-schedule
benchmark, the proposed approach can provide about 1% to
3% cost savings for most of the cases. The cost savings tend to
be larger at higher wind penetration levels than those for the
15% penetration level. This is because as wind penetration
level increases, the intermittency in wind generation increases
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in terms of MWs. Therefore, at higher wind levels, with the
proposed approach, the battery can be used to compensate for
the deviation in wind generation and provide more cost
savings. In Fig. 4, there is only one case (D225, 15%) in
which the performance of the proposed method is worse than
the fixed-schedule case; and the cost difference is about 1%.
The cause of the cost degradation in the case of (D225, 15%)
is explained as follows. For day 225, at the day-ahead stage,
the battery is scheduled to provide a large amount of spinning
reserves in some time periods when wind generation suddenly
decreases. As wind generation in the post-stage scenarios also
has a large decrease in the same time periods as that in the
day-ahead stage, no reserve violation occurs in the cases
where the fixed-schedule approach is used; since the fixed-
schedule approach implements the schedule determined at the
day-ahead stage and can hence “anticipate” the sudden drop in
wind generation. However, for the proposed approach, as it
cannot fully *anticipate” the occurrence of large wind
generation deviations, the battery may have been over utilized
during prior time periods and thus does not have enough
capability to provide the required amount of spinning reserves
in those time periods. To further evaluate the performance of
the proposed approach, in Table VIII, the six-day cost savings
of the proposed approach compared to the fixed-schedule
approach for the 15% wind penetration level is presented. As
shown in Table VIII, the proposed approach can provide a six-
day total cost saving of 34,273 dollars, or 1.1%. This result
indicates that even though the proposed approach may be out-
performed by the fixed-schedule approach in some cases, the
proposed approach is more effective than the fixed-schedule
approach overall.

Compared with the no-schedule method, the costs savings
provided by the proposed method are higher than those of the
fixed-schedule. This is in consistence with our intuition, since
the no-schedule method does not account for future
uncertainties when making decisions for the battery in each
time period. The high cost saving shown in Fig. 5 is a result of
the high security violations in the no-schedule case and the
high penalty prices used in the simulation, since again, the
decisions in the no-schedule benchmark are made based on
only the current operating condition. In Fig. 6, the cost savings
compared to the 3-hour look-ahead benchmark is presented. It
can be seen from Fig. 6 that except for two cases, the proposed
approach have better performance than the 3-hour look-ahead
approach. Of course, the look-ahead approach would yield
better results if a better forecast was used than persistence. But
still, the result has demonstrated the effectiveness of the
proposed approach in utilizing the flexibility of battery
storage. In fact, the proposed approach could also be improved
by utilizing a longer look-ahead horizon.

In Fig. 7, the result for day 236, scenario 3 with 30% wind
penetration level is presented. The dashed lines in Fig. 7
represent the operating range determined by the proposed
method, which is modeled as a pair of limits on the SOC of
the battery. The red solid line (with square markers) shows the
schedule obtained by the proposed approach. The blue solid
line (with triangle markers) represents the schedule obtained
by the fixed-schedule method. In Fig. 7, for the time periods in
which the SOC of the battery is outside the limits, such as
hour 20, 21 and 22, the SOC limits are relaxed by incurring



the penalty cost. For most of the time periods, the battery is
operated within the range provided by the proposed method.
As the flexible operating range is obtained using the day-
ahead schedules, it provides a policy for the battery of when to
discharge and charge. As shown in Fig. 7, the battery is forced
by the limits to increase its SOC level during hours 10 to 13,
and to decrease its SOC level during hours 14 to 15.
Compared with the fixed-schedule approach, the proposed
method can provide an operating range for the battery in each
time period rather than a fixed operating point. As renewable
generation deviates from forecasts, the battery is allowed to be
operated within the operating range, and even possibly exceed
the range, to compensate for the uncertainties in renewable
generation. By using the proposed approach, the flexibility of
the battery storage can be better utilized to address the
intermittency in renewable resources.
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Fig. 4. Cost savings in percentage of the proposed method to the fixed-
schedule method.

TABLE VIII. SIX-DAY COST SAVINGS OF THE PROPOSED METHOD COMPARED
TO THE FIXED-SCHEDULE METHOD FOR 15% WIND PENETRATION

6-Day | 6-Day
D219 D225 D230 | D232 | D236 | D243 Sum Sum
®) (%)
4,584 | -8,000 | 12,024 | 11,054 | 4,277 | 10,333 | 34273 | 1.1%
m D243
30%
m D232
25% = D236
2 = D230
9 20%
= m D225
= 15% mD219
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Cost Saving%

Fig. 5. Cost savings in percentage of the proposed method to the no-schedule

method.

Fig. 6. Cost savings in percentage of the proposed method to the 3-hour look-
ahead method.
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Fig. 7. Illustration of the proposed flexible operating range approach (Day
236, scenario 3, 30% wind level).

In Fig. 8, the energy and ancillary services scheduled for
the battery for day 236, scenario 3 with 30% wind level are
presented. The blue solid bars in Fig. 8 represent the power
output of the battery, where positive value indicates
discharging and negative value indicates charging. From Fig.
8, it can be seen that the battery is scheduled mainly to provide
ancillary services, which is because of its fast-ramping
capability. Also, it can be noted from Fig. 8 that the ancillary
services provided by the battery are sometimes larger than its
maximum power rating of 50 MW. This result occurs because
the battery requires a short transition time between charging
and discharging mode. In charging mode, a battery can stop
charging and transition to discharging mode to provide up
reserves. The maximum up reserve that the battery can
provide in this case is P/%, + PI““"%* This result suggests
that the flexibility of battery storage will be more valuable
when providing ancillary services.
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Fig. 8. Schedule for the battery using the proposed method (Day 236, scenario
3, 30% wind level).



IV. CONCLUSION

With its energy shifting and fast-ramping capabilities,
battery storage has a great potential to facilitate the integration
of high levels of renewable resources. In this paper, a two-step
framework is used to evaluate the benefits of battery storage in
power system operation with renewable resources. In the day-
ahead scheduling stage, it is shown that battery storage can
decrease the curtailment of wind generation, reduce load and
reserve shortfalls as well as the commitment of thermal units,
and lower the total system costs. Moreover, the cost-benefit
analysis indicates that battery storage is a cost-effective
solution. In the post-stage analysis, the challenge with
operating a battery in real-time with limited look-ahead
functionality is illustrated. The result in the post-stage analysis
shows that using a fixed-schedule approach cannot make full
use of the flexibility of the battery in real-time operation. To
address this problem, we propose a flexible operating range
approach for battery storage. The case study demonstrates that
the proposed approach is more effective in operating battery
storage in real-time dispatch compared to the fixed-schedule,
no-schedule, and look-ahead benchmark methods. The
proposed flexible operating range method is able to take
advantage of the flexibility of energy storage to provide more
cost savings compared with the other benchmark methods.

Directions for future work include the investigation of a
wider set of strategies for real-time battery storage operations,
possibly based on the marginal value or opportunity cost of
using the battery for a given SOC. Moreover, we plan to
develop a more detailed representation of the electro-
chemistry characteristic in battery storage, e.g. to capture how
power limits and losses may depend on the SOC, and also a
more detailed representation of degradation and life-time
impacts of the battery under different operational schemes.
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