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Abstract—The fast growing expansion of renewable energy 
increases the complexities in balancing generation and demand in 
the power system. The energy-shifting and fast-ramping 
capability of energy storage has led to increasing interests in 
batteries to facilitate the integration of renewable resources. In 
this paper, we present a two-step framework to evaluate the 
potential value of energy storage in power systems with 
renewable generation. First, we formulate a stochastic unit 
commitment approach with wind power forecast uncertainty and 
energy storage. Second, the solution from the stochastic unit 
commitment is used to derive a flexible schedule for energy 
storage in economic dispatch where the look-ahead horizon is 
limited. Analysis is conducted on the IEEE 24-bus system to 
demonstrate the benefits of battery storage in systems with 
renewable resources and the effectiveness of the proposed battery 
operation strategy. 

 
Index Terms—Battery, economic dispatch, energy storage, 

flexible resources, integer programming, power system 
economics, power system reliability, real-time operation, 
renewable resources, stochastic unit commitment. 

NOMENCLATURE 

Indices and Sets 
b:  Index of energy storage units. 
e: Index of “buckets” used in stochastic unit 

commitment. 
g:  Index of generators. 
i: Number of look-ahead time periods in the hourly-

dispatch model.  
k:  Index of transmission lines. 
n:   Index of buses. 
s:  Index of scenarios. 
t:   Index of time periods. 
t’: Current time period in the hourly-dispatch model. 
w:   Index of wind farms. 
𝛿𝛿𝑘𝑘+(𝑛𝑛):  For any transmission line k with “to” bus n. 
𝛿𝛿𝑘𝑘−(𝑛𝑛):   For any transmission line k with “from” bus n. 
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Ω𝐺𝐺𝐺𝐺:   Set of slow generators. 
∀(𝑛𝑛):   For any generating unit at bus n. 

Parameters 
𝐵𝐵𝑘𝑘:  Susceptance of line k. 
𝐶𝐶𝑔𝑔(𝑥𝑥):  Variable cost function for generator g. 
𝑐𝑐𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿:  Cost for violating the lower bound of the flexible 

operating range for energy storage b in time 
period t. 

𝑐𝑐𝑔𝑔𝑁𝑁𝑁𝑁:   No-load cost for generator g. 
𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆:   Startup cost for generator g. 
𝑐𝑐𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈:  Cost for violating the upper bound of the flexible 

operating range for energy storage b in time 
period t. 

𝑐𝑐𝑣𝑣𝑣𝑣:  Cost for involuntary load shedding. 
𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣:  Cost for violating the system operating reserve 

(sum of spinning and non-spinning) requirement. 
𝑐𝑐𝑣𝑣𝑣𝑣+, 𝑐𝑐𝑣𝑣𝑣𝑣−:  Cost for violating the system up and down 

regulation reserve requirement. 
𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣:  Cost for violating the system spinning reserve 

requirement. 
𝑑𝑑𝑛𝑛𝑛𝑛:   Real power demand at node n in time period t. 
𝐷𝐷𝐷𝐷𝑔𝑔:  Minimum down time for unit g. 
𝐸𝐸𝑏𝑏,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿: Lower bound of the flexible operating range for 

energy storage b in time period t. 
𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀: Minimum energy capacity for energy storage b. 
𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀: Maximum energy capacity for energy storage b. 
𝐸𝐸𝑏𝑏,𝑡𝑡
𝑈𝑈𝑈𝑈: Upper bound of the flexible operating range for 

energy storage b in time period t. 
𝑃𝑃𝑏𝑏
𝐼𝐼𝐼𝐼_𝑚𝑚𝑚𝑚𝑚𝑚:  Maximum power absorption for energy storage b. 

𝑃𝑃𝑏𝑏
𝑂𝑂𝑂𝑂𝑂𝑂_𝑚𝑚𝑚𝑚𝑚𝑚:  Maximum power output for energy storage b. 

𝑃𝑃𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀: Maximum real power output for generator g. 
𝑃𝑃𝑔𝑔𝑀𝑀𝑀𝑀𝑀𝑀: Minimum real power output for generator g. 
𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚:   Maximum active power capacity for line k. 
𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊:   Generation for wind farm w in time period t and 

scenario s. 
𝑅𝑅𝑔𝑔60+:   Maximum hourly ramp up rate for generator g. 
𝑅𝑅𝑔𝑔60−:    Maximum hourly ramp down rate for generator g. 
𝑅𝑅𝑔𝑔10+:   Maximum 10-min ramp up rate for generator g. 
𝑅𝑅𝑔𝑔5+:   Maximum 5-min ramp up rate for generator g. 
𝑅𝑅𝑔𝑔5−:   Maximum 5-min ramp down rate for generator g. 
𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆:   Maximum shut down ramp rate for generator g. 
𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆:    Maximum start up ramp rate for generator g. 
𝑅𝑅𝑔𝑔𝑁𝑁𝑁𝑁:    Maximum non-spinning reserve ramp rate for 

generator g. 
𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂:  System operating reserve requirement in time 
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period t and scenario s. 
𝑢𝑢𝑔𝑔𝑔𝑔:  Unit commitment status for generator g (0 down, 

1 online), which is obtained from the day-ahead 
solution. 

𝑈𝑈𝑈𝑈𝑔𝑔: Minimum up time for unit g. 
𝛼𝛼𝑏𝑏𝑅𝑅:  Minimum duration of time (hour) that the 

regulation reserves have to be maintained. 
𝛼𝛼𝑏𝑏𝑆𝑆:   Minimum duration of time (hour) that the 

spinning reserves have to be maintained. 
𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼:   Efficiency associated with the absorbing cycle for 

energy storage b. 
𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂:   Efficiency associated with the generating cycle 

for energy storage b.  
𝜋𝜋𝑠𝑠: Probability for scenario s. 

Decision Variables (Index s Denotes Scenario and Index t 
Denotes Time Period) 
𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏: State of charge for energy storage b. 
𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔:   Power output for generator g. 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 :   Power absorbed by energy storage b. 
𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂:   Power generated by energy storage b. 
𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘:   Real power flow on transmission line k. 
𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆 :   Spinning reserve provided by generator g. 
𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅+:   Up regulation reserve provided by generator g. 
𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅−:   Down regulation reserve provided by generator g. 
𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑁𝑁𝑁𝑁:   Non-spinning reserve provided by generator g. 
𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿 :  Involuntary load shedding at node n. 
𝑠𝑠𝑏𝑏,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿:  Slack variable to relax the lower bound of the 

flexible operating range for energy storage b. 
𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅+:  Slack variable to relax system up regulation 

requirement. 
𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅−:  Slack variable to relax system down regulation 

requirement n. 
𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆:  Slack variable to relax system spinning reserve 

requirement. 
𝑠𝑠𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂:  Slack variable to relax system operating reserve 

requirement. 
𝑠𝑠𝑏𝑏,𝑡𝑡
𝑈𝑈𝑈𝑈:  Slack variable to relax the upper bound of the 

flexible operating range for energy storage b. 
𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑊𝑊 : Wind curtailment for wind farm w. 
𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔:   Binary unit commitment variable for generator g 

(0 down, 1 online). 
𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔:   Startup variable for generator g (1 for startup, 0 

otherwise). 
𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔:   Shutdown variable for generator g (1 for 

shutdown, 0 otherwise). 
𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏:   Binary variable for energy storage b (1 for 

production, 0 for consumption). 
𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘+ :  Bus angle for the “from” bus of transmission line 

k. 
𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘− :  Bus angle for the “to” bus of transmission line k. 

I.  INTRODUCTION 
ITH increasing concerns about climate change and the 
need for a more sustainable grid, power systems have 
seen a fast expansion of renewable resources in recent 

years. The variability and uncertainty of renewable resources 

have increased the complexities in balancing load with 
generation and have introduced new challenges in regards to 
maintaining system reliability. As a result, more flexible 
resources are needed to meet the increasingly stringent 
ramping requirements in the system. 

Driven by the need to integrate higher penetration levels of 
renewable energy and to reduce the costs for serving peak 
demands, recent interests have been focused on energy storage 
technologies. Energy storage can shift energy from peak-
demand hours to off-peak-demand hours, or absorb excess 
renewable energy to provide it back to the grid when desired. 
The fast-ramping capability also makes energy storage a 
competitive resource to compensate for the variability and 
uncertainty in renewable energy. By using energy storage, the 
cycling of thermal units can be reduced, which is an advantage 
since many thermal units are not designed to be ramped up 
and down frequently [1]. 

Among all existing storage technologies, there is 
substantial interest in batteries as an emerging solution to 
manage intermittent renewable resources. Compared with 
thermal units, batteries do not have a no-load cost and they are 
generally considered to not have minimum power input/output 
levels for charging/discharging. Compared to other storage 
technologies, such as pumped storage hydro and compressed 
air energy storage, batteries have higher power density. Even 
though the main barrier with battery technologies is their high 
capital costs, efforts are being made to reduce the capital costs 
and improve the cost-effectiveness of different battery 
solutions [2].  

Due to growing interests in energy storage, recent literature 
analyzes the scheduling problem of energy storage and the 
different applications of energy storage in systems with 
increased renewable resources [3]-[8]. The application of 
battery storage is studied at both the transmission and 
distribution system levels. In [9] and [10], the authors studied 
the benefits of batteries in transmission systems with 
renewable resources using security-constrained unit 
commitment (UC) models. In [11] and [12], the application of 
battery storage at the distribution level is studied. In [11], the 
benefits of using battery storage in microgrids with renewable 
resources are evaluated using a three-step short-term 
generation scheduling approach. In [12], a unit commitment 
model is formulated to study the problem of battery optimal 
sizing in a microgrid system.  

While the study of battery storage in systems with 
renewable resources is not new, much of the previous work is 
based on day-ahead models or short-term look-ahead 
scheduling models [9]-[12]. In such look-ahead scheduling 
problems, scheduling for future time periods are optimized 
together in one model based on forecast information. 
However, with a look-ahead type of scheduling model, the 
challenges associated with managing the state of charge 
(SOC) of the battery are not properly captured. Different from 
thermal units, the dispatch of energy storage is constrained by 
their SOC. In real-time operation, as look-ahead functionality 
is limited, decisions for time period t have to be made in 
advance without having perfect information about future 
uncertainties. An inappropriate decision made for battery 
storage in the current time period could potentially result in 
insufficient capacity to charge or discharge in future time 
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periods. These challenges are not adequately captured in 
independent day-ahead or short-term look-ahead scheduling 
models. 

In this paper, we study battery storage under the 
assumption that it is a system asset operated by the system 
operator. We propose a two-step modeling framework to study 
the benefit and the operation of battery storage in transmission 
systems with renewable generation. The main contributions of 
the paper are as follows. Firstly, we propose a flexible 
operational strategy for the use of energy storage in real-time 
operations. The proposed approach is developed to utilize the 
flexibility of battery storage across multiple time periods, 
given the limited look-ahead functionality and future 
uncertainty in real-time operation. Secondly, we extend the 
work in [13] to include energy storage. While the primary 
motivation for [13] is to propose an improved stochastic 
formulation to enhance the flexibility of the commitment 
schedule for thermal generators, we extend the formulation in 
[13] and take the advantage of its structure to develop the 
proposed battery operational scheme in this paper. Thirdly, we 
illustrate the benefits of the proposed algorithms in a case 
study of the IEEE RTS system using realistic wind power 
uncertainty data. 

This paper is different from previous studies as follows. 
While stochastic UC models have been used to study battery 
storage and other forms of energy storage in [9]-[12], [14]-
[17], the studies in [9]-[12], [14]-[17] are conducted using 
day-ahead or short-term look-ahead scheduling models. None 
of [9]-[12], [14]-[17] addresses the challenges associated with 
the real-time operation of energy storage. In [18]-[20], 
different methodologies are used to improve the operational 
scheme of the battery in real-time operation. However, the 
studies in [18]-[20] are conducted from the viewpoint of the 
storage owner, whose objective is to maximize his/her own 
profit. In this paper, the study is conducted from the viewpoint 
of a system operator, whose objective is to optimally allocate 
the resources in the system and minimize the total cost of the 
system. In [21], an energy restoration mechanism is proposed 
to maintain the SOC of energy storage at their preferred levels. 
The approach in [21] is proposed to manage the SOC of 
energy storage when energy storage is used to provide 
regulation reserve. However, in this paper, the proposed 
approach is to improve the overall operational scheme of 
battery storage in real-time operation, rather than focusing on 
any one type of ancillary services provided by the battery.  

The remainder of the paper is organized as follows. In 
Section II, the mathematical model and the methodology are 
described. The results are reported and discussed in Section 
III. The conclusion and future work are presented in Section 
IV.  

II.  MATHEMATICAL MODEL AND METHODOLOGY 
A two-step framework is implemented to evaluate the 

benefits of battery storage in transmission systems with 
renewable generation. In the first-step, which is referred to as 
the day-ahead scheduling, a two-stage stochastic day-ahead 
unit commitment model is formulated. In the second-step, 
stochastic simulation is performed to test the day-ahead 
solution against wind scenarios that are not included in the 
day-ahead stochastic UC. The second-step is later referred to 

as the post-stage analysis. The formulation used in the two-
step framework is described in the following subsections. 

A.  Day-Ahead Scheduling and Stochastic Unit Commitment 
The stochastic UC is formulated as a mixed integer linear 

program (MILP) based on the formulation in [13] . In [13], the 
scheduling horizon is divided into several time blocks. Within 
each time block, wind scenarios are grouped into different 
“buckets” based on their average wind forecast value. The 
non-anticipativity constraints are then enforced for scenarios 
that are in the same bucket in each time block. The advantage 
of this formulation is that it can provide a more flexible 
schedule for the thermal generators as the commitment 
schedule is dependent on each bucket rather than being the 
same for all the scenarios in the stochastic UC. It should be 
noted that the day-ahead UC model is still solved for the full 
24-hour time horizon. The introduction of time blocks is 
primarily to introduce flexibility in the solution by allowing 
commitment decisions for thermal units to vary between 
buckets and time blocks, as a function of the wind power 
level. 

The complete formulation of the stochastic UC with energy 
storage is presented in (1) - (29), where the objective (1) is to 
minimize the system total costs and the costs of security 
violations (e.g., the cost of involuntary load shedding and 
violations of the reserve requirements). In the formulation, 
constraint (2) guarantees the power balance at every bus. 
Constraint (3) represents the dc power flow on each line and 
(4) is the line-flow limit constraint. Limits on the power output 
for each generator are presented in (5) and (6). The non-
anticipativity constraints are shown in (7), where e is the index 
for buckets. In constraint (7), 𝑒𝑒 = 𝛽𝛽(𝑠𝑠, 𝑡𝑡)  indicates that 
scenario s is assigned to bucket e in time period t. Note that 
the non-anticipativity constraints are only modeled for the 
slow units and enforced for each individual bucket, i.e. not 
across all the scenarios. The minimum up and down time 
constraints are shown in (8)-(10). Constraints (11)-(14) 
represent the ramp rates for regulation, spinning and non-
spinning reserves for thermal units. In this paper, regulation 
reserve refers to the reserve that is used to follow the 
automatic generation control (AGC) signal. For spinning and 
non-spinning reserves, they are modeled to represent 
contingency reserve, which is used to respond to contingencies 
in the system. The hourly ramp rate constraints are shown in 
(15) and (16). The model for battery is shown in (17)-(24). 
Constraints (17)-(20) represent the limits on regulation and 
spinning reserves provided by batteries. Constraints (18) and 
(20) indicate that a battery should be able to maintain its 
output for duration of 𝛼𝛼𝑏𝑏𝑆𝑆  and 𝛼𝛼𝑏𝑏𝑅𝑅  hours to be qualified to 
provide spinning and regulation reserves respectively. 
Constraint (21) is the power balance constraint for energy 
storage. Regulation reserve variables are included in (21) to 
estimate the change in SOC as a result of the deployment of 
the regulation reserves. We ignore the impact of the wind 
penetration level on the requirement for regulation reserves, 
and assume that 20% of the scheduled regulation reserve 
capacity will be activated regardless of the wind penetration 
levels studied. The limits on consumption and production for 
the battery are presented in (22) and (23). Constraint (24) 
represents the energy capacity for the battery. The constraints 
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for system-wide regulation and spinning reserve requirements 
are presented in (25)-(29). In the paper, the regulation reserve 
requirement is set to be 2% of the load, while the operating 
reserve (sum of spinning and non-spinning reserve) is required 
to be greater or equal to the single largest generator 
contingency. It is also required that half of the system 
operating reserve should come from spinning reserve. The 
reserves needed to compensate renewable uncertainties are 
addressed endogenously by the stochastic UC model. The 
reserve requirement constraints can be violated for a 
predetermined penalty price, as reflected in the objective 
function.  

Minimize: 

∑ 𝜋𝜋𝑠𝑠{∑ ∑ �𝐶𝐶𝑔𝑔�𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔� + 𝑐𝑐𝑔𝑔𝑁𝑁𝑁𝑁𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔�𝑡𝑡𝑔𝑔 +𝑠𝑠
∑ ∑ 𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿

𝑡𝑡𝑛𝑛 + ∑ �𝑐𝑐𝑣𝑣𝑣𝑣+𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅+ + 𝑐𝑐𝑣𝑣𝑣𝑣−𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅− + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 +𝑡𝑡
𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂�}   (1) 

Subject to: 

∑ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔∀𝑔𝑔(𝑛𝑛) + ∑ 𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∈𝛿𝛿+(𝑛𝑛) − ∑ 𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘∈𝛿𝛿−(𝑛𝑛) + ∑ (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 −∀𝑏𝑏(𝑛𝑛)

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 ) = 𝑑𝑑𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝐿𝐿 − ∑ (𝑃𝑃𝑤𝑤𝑤𝑤𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 − 𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑊𝑊 )∀𝑤𝑤(𝑛𝑛) ,∀𝑛𝑛, 𝑡𝑡, 𝑠𝑠  (2) 

𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 − 𝐵𝐵𝑘𝑘(𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘+ − 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘− ) = 0,∀𝑘𝑘, 𝑡𝑡, 𝑠𝑠   (3) 

−𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝑃𝑃𝑘𝑘𝑘𝑘𝑘𝑘 ≤ 𝑃𝑃𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 ,∀𝑘𝑘, 𝑡𝑡, 𝑠𝑠   (4) 

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅+ + 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆 ≤ 𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (5) 

𝑃𝑃𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅−,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠  (6) 

 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔 ∈ Ω𝐺𝐺𝐺𝐺 , 𝑡𝑡, 𝑒𝑒 =  𝛽𝛽(𝑠𝑠, 𝑡𝑡), 𝑠𝑠   (7) 

∑ 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡
𝑞𝑞=𝑡𝑡−𝑈𝑈𝑈𝑈𝑔𝑔+1 ≤ 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 , ∀𝑔𝑔, 𝑡𝑡 ∈ �𝑈𝑈𝑈𝑈𝑔𝑔, … ,𝑇𝑇�, 𝑠𝑠   (8) 

 ∑ 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡
𝑞𝑞=𝑡𝑡−𝐷𝐷𝐷𝐷𝑔𝑔+1 ≤ 1 − 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 , ∀𝑔𝑔, 𝑡𝑡 ∈ �𝐷𝐷𝐷𝐷𝑔𝑔, … ,𝑇𝑇�, 𝑠𝑠   (9) 

𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑢𝑢𝑔𝑔,𝑠𝑠,𝑡𝑡−1,   ∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠  (10) 

𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅+ ≤ 𝑅𝑅𝑔𝑔5+𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (11) 

𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅− ≤ 𝑅𝑅𝑔𝑔5−𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠  (12) 

𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆 ≤ 𝑅𝑅𝑔𝑔10+𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (13) 

𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑁𝑁𝑁𝑁 ≤ 𝑅𝑅𝑔𝑔𝑁𝑁𝑁𝑁(1 − 𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔),∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (14) 

𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 − 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡−1 ≤ 𝑅𝑅𝑔𝑔60+𝑢𝑢𝑔𝑔,𝑠𝑠,𝑡𝑡−1 + 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (15) 

𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡−1 − 𝑃𝑃𝑔𝑔,𝑠𝑠,𝑡𝑡 ≤ 𝑅𝑅𝑔𝑔60−𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑅𝑅𝑔𝑔𝑆𝑆𝑆𝑆𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (16) 

𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆 + 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅+ ≤ 𝑃𝑃𝑏𝑏
𝑂𝑂𝑂𝑂𝑂𝑂_𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 ,∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (17) 

𝛼𝛼𝑏𝑏𝑆𝑆𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆 + 𝛼𝛼𝑏𝑏𝑅𝑅𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅+ ≤ 𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂(𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀),∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (18) 

𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅− ≤ 𝑃𝑃𝑏𝑏
𝐼𝐼𝐼𝐼_𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 ,∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (19) 

𝛼𝛼𝑏𝑏𝑅𝑅𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅− ≤ (𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏)/𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼,∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (20) 

𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐸𝐸𝑏𝑏,𝑠𝑠,𝑡𝑡−1 + 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼 − 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂⁄ + 0.2𝛼𝛼𝑏𝑏𝑅𝑅(𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅−𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼 −
𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅+/𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂),∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (21) 

0 ≤ 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 ≤ 𝑃𝑃𝑏𝑏
𝑂𝑂𝑂𝑂𝑂𝑂_𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏 ,∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (22) 

0 ≤ 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 ≤ 𝑃𝑃𝑏𝑏
𝐼𝐼𝐼𝐼_𝑚𝑚𝑚𝑚𝑚𝑚(1 − 𝑧𝑧𝑏𝑏𝑏𝑏𝑏𝑏),∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (23) 

𝐸𝐸𝑏𝑏
𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝐸𝐸𝑏𝑏

𝑀𝑀𝑀𝑀𝑀𝑀 , ∀𝑏𝑏, 𝑡𝑡, 𝑠𝑠   (24) 

∑ 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅+𝑔𝑔 + ∑ 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅+𝑏𝑏 ≥  0.02∑ 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅+,∀𝑡𝑡, 𝑠𝑠   (25) 

∑ 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑅𝑅−𝑔𝑔 + ∑ 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑅𝑅−𝑏𝑏 ≥  0.02∑ 𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅−,∀𝑡𝑡, 𝑠𝑠   (26) 

𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂 ≥ 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆 ,∀𝑔𝑔, 𝑡𝑡, 𝑠𝑠   (27) 

∑ 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆𝑔𝑔 + ∑ 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑏𝑏 + ∑ 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑁𝑁𝑁𝑁𝑔𝑔 ≥  𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂 ,∀𝑡𝑡, 𝑠𝑠   (28) 

∑ 𝑟𝑟𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆𝑔𝑔 + ∑ 𝑟𝑟𝑏𝑏𝑏𝑏𝑏𝑏𝑆𝑆𝑏𝑏 ≥ 0.5𝑄𝑄𝑠𝑠𝑠𝑠𝑂𝑂𝑂𝑂 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑆𝑆𝑆𝑆 ,∀𝑡𝑡, 𝑠𝑠   (29) 

B.  Post-Stage Analysis and Hourly-Dispatch Problem 
In the second-step, which is referred to as the post-stage 

analysis, stochastic simulation is performed to test the day-
ahead solution against wind scenarios that are not included in 
the day-ahead UC. In the post-stage analysis, only the 
uncertainty in renewable generation is considered; load 
forecast uncertainty and generator outages are not included. 
The post-stage analysis is formulated using an hourly-dispatch 
model. The complete formulation for the hourly-dispatch 
model is presented in (30)-(33). A deterministic formulation is 
used and only one scenario is included in each dispatch 
problem. In (30)-(33), index t’ represents the current time 
period and i represents the number of look-ahead time periods 
included. Each dispatch run solves for the current hour and 
looks i hours ahead (i=1 as default assumption), for which a 
persistence wind power forecast is assumed. The objective is 
to minimize the total cost in the current hour and the look-
ahead period, as shown in (30). The hourly dispatch problem 
is solved sequentially for 24 hours using a rolling window. 
The hourly-dispatch model is formulated to approximate the 
real-time operation, but with a lower time resolution than what 
is typically used in U.S. energy markets. The commitment 
schedule for slow (slow-start) units is given by the day-ahead 
UC, as shown in (31). Parameter 𝑢𝑢𝑔𝑔𝑔𝑔 is the commitment status 
obtained from day-ahead UC. Fast (fast-start) units are 
allowed to change commitment status in the hourly-dispatch 
problem. In the paper, slow units are defined as the generators 
that have minimum up and down time greater than one hour. 
Fast units are defined as the generators that have minimum up 
and down time smaller or equal to one hour. A persistence 
wind power forecast is assumed for the look-ahead period, as 
shown in (33). The other constraints for the hourly-dispatch 
model are similar to those used in the day-ahead UC.  

Minimize: 

∑ ∑ �𝐶𝐶𝑔𝑔�𝑃𝑃𝑔𝑔𝑔𝑔� + 𝑐𝑐𝑔𝑔𝑁𝑁𝑁𝑁𝑢𝑢𝑔𝑔𝑔𝑔 + 𝑐𝑐𝑔𝑔𝑆𝑆𝑆𝑆𝑣𝑣𝑔𝑔𝑔𝑔�𝑡𝑡′+𝑖𝑖
𝑡𝑡=𝑡𝑡′𝑔𝑔 + ∑ ∑ 𝑐𝑐𝑣𝑣𝑣𝑣𝑠𝑠𝑛𝑛𝑛𝑛𝐿𝐿𝑡𝑡′+𝑖𝑖

𝑡𝑡=𝑡𝑡′𝑛𝑛 +
∑ �𝑐𝑐𝑣𝑣𝑣𝑣+𝑠𝑠𝑡𝑡𝑅𝑅+ + 𝑐𝑐𝑣𝑣𝑣𝑣−𝑠𝑠𝑡𝑡𝑅𝑅− + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡𝑆𝑆𝑆𝑆 + 𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑠𝑠𝑡𝑡𝑂𝑂𝑂𝑂�𝑡𝑡′+𝑖𝑖
𝑡𝑡=𝑡𝑡′    (30) 

Subject to: 

𝑢𝑢𝑔𝑔𝑔𝑔 = 𝑢𝑢𝑔𝑔𝑔𝑔 ,∀𝑔𝑔 ∈ Ω𝐺𝐺𝐺𝐺, 𝑡𝑡 ∈ {𝑡𝑡′, … , 𝑡𝑡′ + 𝑖𝑖}  (31) 

Constraints (2)-(6), (11)-(29) , 𝑡𝑡 ∈ {𝑡𝑡′, … , 𝑡𝑡′ + 𝑖𝑖}  (32) 

𝑃𝑃𝑤𝑤𝑤𝑤𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑃𝑃𝑤𝑤,𝑡𝑡−1
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ,∀𝑤𝑤, 𝑡𝑡 ∈ {𝑡𝑡′ + 1, … , 𝑡𝑡′ + 𝑖𝑖}  (33) 

C.  Battery Operation with a Fixed Operating Schedule 
To address the limited look-ahead functionality in real-time 

operation, one approach is to use the solution obtained through 
a look-ahead scheduling stage. However, as the SOC is a 
second-stage decision in the day-ahead stochastic UC, one 
battery schedule is obtained for each scenario. Therefore, in 
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the post-stage analysis, for each wind scenario to be tested, the 
most appropriate battery schedule should be selected from the 
day-ahead solution. In this paper, the battery schedule is 
selected based on the similarity between the post-stage wind 
scenario and the day-ahead wind scenario. The similarity 
between the two wind scenarios is measured by the Euclidean 
distance. Therefore, for each post-stage wind scenario, 𝑠𝑠, the 
day-ahead wind scenario 𝑠̅𝑠0  that is closest to it is identified. 
Then the battery schedule that corresponds to scenario 𝑠̅𝑠0  is 
used in the post-stage scenario 𝑠𝑠. Denote this battery schedule 
as 𝑬𝑬𝒔𝒔�𝟎𝟎, where 𝑬𝑬𝒔𝒔�𝟎𝟎 is a vector with each element representing a 
target SOC in each time period. 

For each post-stage scenario, the corresponding battery 
schedule has to be determined before the first time period is 
solved. To reflect the fact that wind generation cannot be 
perfectly forecasted while not over-complicating the 
simulation process, the wind generation profiles in the first six 
hours of each post-stage scenario are used to determine the 
closest day-ahead wind scenario. The underlying assumption 
is that the wind forecast for the first six hours has relatively 
low forecast errors and can be used as an acceptable 
approximation to determine which day-ahead schedule should 
be used. The battery schedule obtained using the above 
method is later referred to as the “fixed schedule” and will be 
used as a benchmark approach to be compared with our 
proposed method.  

D.  Battery Operation with a Flexible Operating Range  
Next, we propose an approach that aims at flexibly 

operating battery storage in real-time operation while taking 
into account future uncertainties. Two goals are to be achieved 
by using the proposed method. First, the approach should be 
able to provide instructions to the battery of when to charge, 
discharge, and provide reserves, so that the battery will have 
enough capability in current as well as future time periods. 
Second, the proposed method should provide enough room for 
adjustment in real-time operation, such that the fast-ramping 
capability of the battery can be utilized when renewable 
generation deviates away from its planned production. The 
proposed method is referred to as the flexible operating range 
approach, and constitutes an improvement to the fixed-
schedule approach. In the proposed method, an operating 
range is determined for the battery in each time period. The 
fundamental idea of the proposed method is to use the day-
ahead UC solution to generate an operating range around the 
fixed schedule for the battery in real-time operation. The 
detailed procedure for determining the flexible operating range 
is described as follows.  

Firstly, obtain a fixed schedule for the battery for each 
post-stage scenario s using the procedure described in the 
previous subsection. This is done prior to the beginning of the 
simulation for each post-stage scenario. Denote this fixed 
schedule as 𝑬𝑬𝒔𝒔�𝟎𝟎. Secondly, prior to solving the hourly-dispatch 
problem for each time period, find the day-ahead scenarios 
that are in the same bucket as the post-stage scenario s and 
denote the corresponding day-ahead battery schedules as 
𝑬𝑬𝒔𝒔�𝟏𝟏 , … ,𝑬𝑬𝒔𝒔�𝒎𝒎 . Then the upper and lower limit of the flexible 
operating range are determined as  

𝐸𝐸𝑏𝑏,𝑡𝑡
𝑈𝑈𝑈𝑈 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐸𝐸𝑠̅𝑠0,𝑡𝑡 ,𝐸𝐸𝑠̅𝑠1,𝑡𝑡 , … ,𝐸𝐸𝑠̅𝑠𝑚𝑚,𝑡𝑡} ,∀𝑏𝑏, 𝑡𝑡   (34) 

𝐸𝐸𝑏𝑏,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑚𝑚 {𝐸𝐸𝑠̅𝑠0,𝑡𝑡 ,𝐸𝐸𝑠̅𝑠1,𝑡𝑡 , … ,𝐸𝐸𝑠̅𝑠𝑚𝑚,𝑡𝑡},∀𝑏𝑏, 𝑡𝑡   (35) 

𝐸𝐸𝑏𝑏,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑠𝑠𝑏𝑏,𝑡𝑡

𝐿𝐿𝐿𝐿𝐿𝐿 ≤ 𝐸𝐸𝑏𝑏,𝑡𝑡 ≤ 𝐸𝐸𝑏𝑏,𝑡𝑡
𝑈𝑈𝑈𝑈 + 𝑠𝑠𝑏𝑏,𝑡𝑡

𝑈𝑈𝑈𝑈,∀𝑏𝑏, 𝑡𝑡     (36) 

where 𝐸𝐸𝑏𝑏,𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿  and 𝐸𝐸𝑏𝑏,𝑡𝑡

𝑈𝑈𝑈𝑈  are the lower and upper bound for the 
flexible operating range in time period t for the battery. The 
flexible operating range is formulated as a pair of limits on 
SOC. Variables 𝑠𝑠𝑏𝑏,𝑡𝑡

𝐿𝐿𝐿𝐿𝐿𝐿 and 𝑠𝑠𝑏𝑏,𝑡𝑡
𝑈𝑈𝑈𝑈 are slack variables used to relax 

the flexible operating range when necessary by incurring a 
penalty cost. The penalty cost is computed as 

∑ ∑ (𝑐𝑐𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝑠𝑠𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 + 𝑐𝑐𝑏𝑏𝑏𝑏
𝑈𝑈𝑈𝑈𝑠𝑠𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈/𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼)𝑡𝑡𝑏𝑏 .  (37) 

For the proposed flexible operating range approach, the 
penalty cost term shown in (37) is added to the objective 
function of the hourly-dispatch problem (30). In this paper, 
𝑐𝑐𝑏𝑏𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿  and 𝑐𝑐𝑏𝑏𝑏𝑏

𝑈𝑈𝑈𝑈  are both assumed to be the highest marginal 
costs of all the online slow units. The reason for using such a 
penalty price is that constraint (36) should be relaxed if it can 
avoid the commitment of an additional fast unit, which 
typically happens when all the slow units are fully dispatched. 
As turning on an additional fast unit will incur not only 
marginal fuel cost but also no-load cost and start-up cost, the 
commitment of an additional fast unit is expected to be more 
expensive than using the energy stored in the battery. The 
procedure to implement the proposed approach in the post-
stage analysis is summarized in Fig. 1.  

E.  Renewable Scenario Generation 
Wind power forecasts are affected by several sources of 

uncertainty that include data and physics modeling. In this 
study the wind scenarios account for the errors in the 
numerical weather predictions (NWP) and are generated using 
Gaussian process (GP) regression [23]. The GP is built to 
estimate the differences between a state-of-the-art NWP 
forecasts, WRF v3.6 [24], and observations (corresponding to 
NOAA Surfrad network). The NWP forecasts are initialized 
using North American Regional Reanalysis fields. Simulations 
are started every day during August 2012 and cover the 
continental U.S. on a grid of 25x25 Km. A GP is calibrated to 
reproduce the discrepancy between forecasts and observations 
at 10m height (mean and variance). Samples from this 
distribution are extrapolated from 10m to 100m hub height 
and passed through a standard power curve to obtain the wind 
scenarios for representative locations [25]. In the paper, only 
wind generation is considered. Other renewable resources, 
such as solar generation, are not considered in the study, but 
could also be represented in the model. 

F.  Experimental Setup 
Firstly, wind scenarios are generated based on the approach 

outlined above. The scenario reduction approach in [26] is 
applied to select a predetermined number of scenarios to be 
used in the day-ahead UC. Secondly, the stochastic UC is 
solved with the reduced scenario set. The day-ahead solution 
is then tested against wind scenarios that are not included in 
the day-ahead UC (i.e. out-of-sample) in the post-stage 
analysis. In the post-stage, the scenarios have equal 
probabilities. Lastly, the performance of the proposed flexible 
operating range approach is compared with other benchmark 
methods.  
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Scenario s=1

Determine a fixed schedule for current 
scenario s using the approach described in 

Section II. C

Solve the hourly-dispatch 
problem

t=T? No

Calculate the metrics 

Yes

s=S?

Yes

t=t+1

No

s=s+1

Determine which bucket does the current 
scenario s belong to

Time period t=1

Find the day-ahead scenarios that are in 
the same bucket as the current scenario s

Use equations (34)-(36) to determine the 
flexible operating range for the battery

Read in the day-ahead UC schedule for 
slow units from the corresponding bucket 

 
Fig. 1. Flowchart for the implementation of the proposed approach in post-
stage analysis.  

III.  CASE STUDY 
The case study is conducted on the IEEE RTS 24-bus 

system [27], [28]. The RTS 24-bus system has 35 branches, 32 
generators, and 21 loads. The load in the system is decreased 
such that the peak load is 2565 MW. Similar to [29], the 
capacity of line (14-16) is reduced to 350 MW to create 
congestion in the system. One 50MW/150MWh battery unit is 
placed at bus 13, i.e. at the location of one of the two wind 
farms in the system (the second is at bus 22). Placing the 
battery at a wind farm location is an existing practice [30]-
[32]. By installing battery storage at a wind farm location, the 
battery could be used to moderate the output of the wind farm. 
Moreover, co-location of storage and a wind farm oftentimes 
reduce interconnection and investment costs. The parameters 
used for the battery are summarized in Table I. Note that the 
capacity of the battery is only about 2% of the system peak 
load. In the day-ahead UC, an initial SOC of 90 MWh is 
assumed for the battery. It is required in the day-ahead UC 
that at the end of the day, the SOC of the battery should be the 
same as the initial SOC. Parameters 𝛼𝛼𝑏𝑏𝑆𝑆 and 𝛼𝛼𝑏𝑏𝑅𝑅 are assumed to 
be 0.5, which indicates that battery storage should have 
enough energy to maintain its output for half an hour in order 
to be qualified to provide spinning and regulation reserves.  

TABLE I. SUMMARY OF THE PARAMETERS USED FOR BATTERY STORAGE 
 

𝜂𝜂𝑏𝑏𝐼𝐼𝐼𝐼, 𝜂𝜂𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 
𝑃𝑃𝑏𝑏
𝐼𝐼𝐼𝐼_𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑃𝑃𝑏𝑏

𝑂𝑂𝑂𝑂𝑂𝑂_𝑚𝑚𝑚𝑚𝑚𝑚   
(MW) 

𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀  
(MWh) 

𝐸𝐸𝑏𝑏𝑀𝑀𝑀𝑀𝑀𝑀 
(MWh) 

0.9 50 30 150 
 
Two hundred wind scenarios are generated for day 236 in 

2012 and 40 scenarios are selected for the day-ahead UC for 
two locations in the Western United States. In the post-stage 
analysis, 150 scenarios are used to test the day-ahead solution. 
The simulation is conducted for wind penetration levels from 
15% to 30%, with an increment of 5%. The wind penetration 
level is defined as the ratio of daily total wind generation to 
the daily total demand. Wind curtailment is allowed when the 
system cannot accommodate all of the available wind 
production. The cost of involuntary load shedding is assumed 
to be 9000 $/MWh, and the cost for violations of reserve 
requirements is assumed to be 3300 $/MWh. In the stochastic 
UC, the planning horizon is divided into four time blocks, 
with each to be six hours. In each time block, two buckets are 
modeled. Wind scenarios are assigned to each bucket based on 
their average wind generation in the corresponding time block. 

A.  Evaluation of the Benefits of Battery Storage 
    1)  Day-Ahead Scheduling 

In the day-ahead scheduling stage, the stochastic UC is 
solved. Four metrics are used to evaluate the operational 
benefits of battery storage, which are expected involuntary 
load shedding, expected wind curtailment, expected reserve 
requirement violations and expected total generator 
commitment hours (ETCH). The metric “expected reserve 
requirement violations” is the sum of violations of regulation 
and operating reserves. The metric “expected total generator 
commitment hours” is computed as 

 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ 𝜋𝜋𝑠𝑠𝑢𝑢𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡,𝑠𝑠    (38) 

which is the weighted average of the sum of the 
commitment hours for all the generators in a day. If this metric 
is low, it means that thermal units are committed less 
frequently in the system. The metric ETCH is shown for slow 
units and fast units separately. As shown in Table II, with 
battery storage in the system, the ETCH for the slow units is 
much lower than that in the cases without battery storage. 
With battery storage in the system, fewer slow units are 
needed to address the variability in renewable resources. At 
the same time, the need for fast units to compensate the 
uncertainty in renewable generation is also slightly reduced. 
Meanwhile, more wind generation is dispatched in general 
when battery storage is included in the system due to reduced 
wind curtailment. The expected system total costs for the 
cases with and without battery storage are presented in Table 
III. It is shown in Table III that the system total costs are 
significantly reduced when battery storage is included. The 
day-ahead result shows that the battery is a valuable resource 
in helping integrate high levels of renewable resources, 
especially when considering that the battery in the system is 
relatively small compared to the system load and wind 
generation. As renewable penetration levels increase, the value 
of the flexibility that battery storage provides also increases.  
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TABLE II. EXPECTED SYSTEM RESULTS FOR DAY-AHEAD UNIT COMMITMENT 
 

Wind 
% 

Involuntary 
Load 

Shedding 
(MWh) 

Wind 
Curtailment 

(MWh) 

Reserve 
Violations 

(MWh) 

ETCH 
for 

Slow 
Units 
(h) 

ETCH 
for 

Fast 
Units 
(h) 

With Battery 
15% 0.0 4 0.0 297 144 
20% 0.0 99 0.4 282 140 
25% 0.0 221 0.2 271 137 
30% 0.0 1036 0.1 278 135 

No Battery 
15% 0.0 5 0.3 369 144 
20% 0.0 56 5.4 345 147 
25% 0.0 468 4.1 331 147 
30% 0.0 1460 2.9 311 146 
 

TABLE III. EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR DAY-
AHEAD UNIT COMMITMENT 

 

Wind 
% 

Total Cost with 
Battery ($) 

Total Cost without 
Battery ($) 

Cost 
Savings 

($) 

Cost 
Savings 

(%) 
15% 806,287 930,440 124,154 13.3% 
20% 765,307 887,480 122,173 13.8% 
25% 733,779 849,963 116,184 13.7% 
30% 712,808 827,570 114,762 13.9% 
 

    2)  Post-Stage Analysis with the Fixed Operating Schedule 
In the post-stage analysis, we first test the fixed-schedule 

approach, where the battery is not allowed to deviate from the 
schedule. The same metrics used in the day-ahead scheduling 
stage are used in the post-stage analysis. The results for post-
stage analysis are reported in Table IV and Table V. From 
Table IV and Table V, the same trend as in the day-ahead 
scheduling stage can be seen, as battery storage can help 
dispatch more wind generation; it decreases the total number 
of hours that slow and fast units are committed and reduces 
the system total costs. The security violations are also reduced, 
in general, for the cases with the battery. The results in Table 
V indicate that the cost savings are similar for the three lowest 
wind penetration levels, but lower for the 30% wind scenario. 
At 30% wind penetration level, the increase in the violation 
cost offsets the reduction in operating cost, which causes the 
system total cost for the 30% wind scenario to be higher than 
that of the 25% wind scenario. This is also a result due to out-
of-sample testing, i.e., the stochastic program takes into 
consideration a subset of potential scenarios whereas the post-
stage analysis tests the proposed solution against a wider range 
of potential scenarios. 

Fig. 2 presents a boxplot of the total system costs for each 
case in the post-stage analysis. The edges of the box are the 
25th and 75th percentiles and the whiskers represent the 
maximum and minimum without considering outliers. The 
horizontal red lines represent median values and outliers are 
shown in red “+”. The plot shows the median value as well as 
the variation in samples of system’s total costs for each case. 
The cases labeled “With x%” are the cases with the battery for 
“x%” wind penetration level; the rest are the cases without the 
battery. From Fig. 2, it can be noted that with the battery in the 
system, both the maximum and minimum value of the total 
system costs are reduced. Also, for wind penetration levels of 
15%, 20% and 25%, the boxes for the cases with battery 
storage span much shorter ranges than those of the cases 

without battery storage. This result indicates the variations of 
the total system costs are also lower for the cases with battery 
storage than those of the cases without battery storage if not 
considering the outliers (the red “+”). Though not shown, an 
ANOVA test was also conducted to confirm that the expected 
costs are significantly different between the two cases with 
and without battery storage. 

 
TABLE IV. EXPECTED SYSTEM RESULTS FOR POST-STAGE ANALYSIS 

 

Wind 
% 

Involuntary 
Load 

Shedding 
(MWh) 

Wind 
Curtailment 

(MWh) 

Reserve 
Violations 

(MWh) 

ETCH 
for 

Slow 
Units 

(h) 

ETCH 
for 

Fast 
Units 
(h) 

With Battery 
15% 0.0 0 4.0 297 145 
20% 0.0 7 9.0 282 145 
25% 0.4 130 9.9 272 140 
30% 2.0 741 30.4 279 138 

No Battery 
15% 0.0 0 5.1 367 146 
20% 0.0 8 16.1 339 147 
25% 0.0 124 22.4 321 147 
30% 1.3 1009 31.0 313 147 

 
TABLE V. EXPECTED SYSTEM TOTAL COSTS AND COST SAVINGS FOR POST-

STAGE ANALYSIS 
 

Wind 
% 

Total Cost with 
Battery ($) 

Total Cost without 
Battery ($) 

Cost 
Savings 

($) 

Cost 
Savings 

(%) 
15% 847,874 971,823 123,948 12.8% 
20% 827,291 943,955 116,664 12.4% 
25% 808,768 936,378 127,610 13.6% 
30% 876,424 957,140 80,715 8.4% 
 

 
Fig. 2. Boxplot of total system costs for each case in the post-stage analysis. 

 
Comparing the results for day-ahead scheduling to those for 

post-stage analysis, it can be observed that the cost savings by 
having battery storage in the system are lower in the post-
stage analysis than those in the day-ahead scheduling. The 
reason is as follows. The post-stage analysis is formulated to 
approximate the real-time operation, where each dispatch 
problem is solved with limited foresight of future information 
(i.e. one hour look-ahead forecast) using a rolling horizon. 
When the realized wind generation deviates from the day-
ahead forecast, the day-ahead battery schedule may not be 
able to address the unexpected deviation. Therefore, as shown 
in Table IV, the system reserve violations are higher in the 
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post-stage analysis than those in the day-ahead scheduling, 
especially at higher wind penetration levels. As the flexibility 
of the battery cannot be fully utilized with a fixed-schedule 
approach, reserve requirements are violated to ensure the 
feasibility of the problem. Therefore, as renewable penetration 
level increases, a more flexible operating approach is needed 
for battery storage. 

It should be noted that this work simplifies the generation 
scheduling process adopted in industry today, where a short-
term unit commitment is usually solved between the day-
ahead scheduling stage and the real-time economic dispatch 
stage [36]. This is also one of the reasons that the benefit 
provided by the battery is lower in the post-stage analysis than 
that in the day-ahead scheduling. During such an intermediate 
stage, the day-ahead schedule for the battery could be updated 
based on the short-term wind forecast. Even though such a 
short-term unit commitment stage is not formulated in this 
paper, the two-step framework still captures the main 
challenges in scheduling battery storage in a system with 
increased uncertainties: 1) real-time operation has limited 
look-ahead functionalities and 2) the schedule obtained from a 
look-ahead scheduling process may not be able to fully utilize 
the flexibility of battery storage when uncertainties increase. 
    3)  Cost-Benefit Analysis of the Battery 

In this subsection, a cost-benefit analysis is performed to 
study if the cost savings achieved by using the battery can 
offset the investment cost of the battery. The cost-benefit 
analysis is performed using the results from the day-ahead 
stage for the 20% wind penetration level. The same cost-
benefit analysis could also be done based on the real-time 
results from the post-stage analysis.  

The day-ahead cost savings from six representative days 
are summarized in Table VI. The yearly total cost saving is 
computed using the cost savings from the six representative 
days. In Table VI, “D219” represents representative day 219 
and similarly for the other representative days. 

 
TABLE VI. SUMMARY OF DAY-AHEAD COST SAVINGS ($K) 

 

D219 D225 D230 D232 D236 D243 6-Day 
Sum 

Yearly 
Sum 

103  110  124  122  122  102  684  41619  
 
As battery storage suffers from degradation effects, the 

impact of cycling on the life time of the battery should be 
taken into account. The expected daily and yearly discharging 
cycles are computed for the battery and summarized in Table 
VII. The daily expected discharging cycle is computed using 
(39). The maximum depth of discharge (DOD) of the battery 
is assumed to be 80%, since the battery has a minimum energy 
level of 30 MWh and a maximum energy capacity of 150 
MWh. As shown in (39), the daily expected discharging cycle 
is calculated on an aggregated base. It is assumed in the cost-
benefit analysis that the life time of the battery is sensitive 
only to the total number of equivalent full discharging cycles, 
i.e. the DOD of each discharging cycle has little to no effect 
on the life time of the battery. This is a reasonable assumption 
for some battery technologies [17], [34]. Since the initial SOC 
is required to be the same as the final SOC in the day-ahead 
UC, the number of daily equivalent full discharging cycles 
will be the same as the daily equivalent full charging cycles in 

each scenario. Note that the energy used for deployment of 
spinning and regulation reserves is not counted in (39). 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝜋𝜋𝑠𝑠 ∑
∑ 𝑃𝑃𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏

𝑂𝑂𝑂𝑂𝑂𝑂/𝜂𝜂𝑏𝑏
𝑂𝑂𝑂𝑂𝑂𝑂

𝐸𝐸𝑏𝑏
𝑀𝑀𝑀𝑀𝑀𝑀−𝐸𝐸𝑏𝑏

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠     (39) 

TABLE VII. EXPECTED DISCHARGING CYCLES FOR THE BATTERY 
 

D219 D225 D230 D232 D236 D243 6-Day 
Sum 

Yearly 
Sum 

2.1 3.0 2.9 3.0 2.3 2.8 16.2 988.2 
 
Assume the battery used in the study is a lithium-ion (Li-

ion) battery. The cycle life for the battery is obtained from the 
DOE/EPRI energy storage handbook [33]. In [33], such 
batteries are assumed to last 15 years with a daily cycle, i.e. 
the total number of cycles is assumed to be 365 × 15 = 5475 
cycles. Assuming the battery can be fully discharged at most 
5475 cycles, the expected life time (number of years) in our 
analysis can be calculated using the expected yearly 
discharging cycles obtained from Table VII. Hence, the 
expected life time for the battery is calculated as  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 5475
988.2

≈ 5.5 Years.   (40) 

This result indicates that the battery is expected to last for 
about five and half years for the duty cycle in our case study. 
Assume the yearly cost saving obtained by using the battery is 
the same for the five and half years and that the discount 
factor is 6% per year. The present value, PV, of the system 
cost saving over this period is computed as 

𝑃𝑃𝑃𝑃 = ∑ 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(1+𝑖𝑖𝑑𝑑)𝑡𝑡

 
𝑡𝑡 = 191,387,407($).   (41) 

A wide range of cost estimates exist for Li-ion batteries 
[33]-[35]. In [33]-[35], the capital costs for batteries are 
calculated with the assumption of a specific battery 
technology and a specific configuration of the battery (power 
rating and energy capacity). In the paper, we assumed a capital 
cost, CC, of 3,000 $/kW for the battery. This number is 
estimated based on the capital costs for Li-ion batteries with 
similar power ratings and energy capacities that reported in 
[33]-[35]. With a capital cost of 3,000 $/kW, the net present 
value, NPV, of the battery is calculated as shown in (42):  

𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑃𝑃𝑃𝑃 − 𝐶𝐶𝐶𝐶 = 191,387,407 − 150,000,000 =
41,387,407 ($)   (42) 

We also calculate the breakeven cost for the battery, i.e. the 
capital cost that would give a zero NPV. The breakeven cost is 
found to be 3,828 $/kW. The breakeven cost of the battery is 
plotted versus different values of discount factors in Fig. 3: it 
ranges from about 3,943 $/kW to 3,612 $/kW when the value 
of discount factor is selected in the range of 0.05 to 0.08.  

The results of the cost-benefit analysis indicate that battery 
storage is beneficial to this system when current capital cost 
estimates, the degradation effect and its impact on the lifetime 
of the battery, are considered. However, it should be noted that 
as the costs for batteries vary depending on the battery 
configuration and technology, the conclusion may not apply to 
all battery storage technologies. Moreover, the estimated 
benefits only apply to the specific test power system, which is 
small and has high fuel costs. Larger systems with lower fuel 
costs are likely to see lower benefits of energy storage. 
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However, with that being said, the study in this section 
provides an adequate analysis to demonstrate the benefits and 
the cost-effectiveness of battery storage in systems with 
renewable resources. As the cost of battery storage is expected 
to be further reduced in the next five to ten years [2], the 
benefits of battery storage will be more prominent in the 
future. 

 

 
Fig. 3. Battery breakeven costs versus discount factor used in the cost-benefit 
analysis. 

 

B.  Evaluation of the Proposed Flexible Operating Range 
To better utilize the flexibility of battery storage in systems 

with increased renewable resources, the flexible operating 
range approach is proposed. In this subsection, the 
performance of the proposed method is compared with the 
other three benchmark methods. The first benchmark 
compared is the fixed-schedule approach, presented in Section 
II. C. The second benchmark is referred to as the no-schedule 
approach. In the no-schedule approach, no predetermined 
schedule is provided for the battery. The dispatch of the 
battery in each time period is only based on the system 
condition in time period t and t+1. The decisions made in time 
period t do not take into account any forecast information 
beyond time period t+1. The third benchmark is referred to as 
the 3-hour look-ahead benchmark. In this benchmark, similar 
to the no-schedule benchmark, no schedule is provided for the 
battery. However, different from the no-schedule benchmark, 
the 3-hour look-ahead benchmark includes a look-ahead 
horizon of three hours, instead of the one hour modeled in the 
other benchmarks. A persistence wind power forecast is 
assumed, i.e. the wind generation in the look-ahead hours is 
the same as the wind generation in the current hour. For the 
no-schedule benchmark and the 3-hour look-ahead 
benchmark, the model described in Section II. B is used. 

The performance of the four approaches is evaluated using 
wind scenarios for six days in 2012. For each representative 
day, the day-ahead stochastic UC is solved and the hourly-
dispatch problem is solved with 150 different wind scenarios. 
The generator commitment schedules for slow units used in 
the three approaches are the same. The expected cost savings 
in percentage for the proposed approach to the benchmark 
methods are presented in Fig. 4 to Fig. 6 respectively.  

As shown in Fig. 4, compared to the fixed-schedule 
benchmark, the proposed approach can provide about 1% to 
3% cost savings for most of the cases. The cost savings tend to 
be larger at higher wind penetration levels than those for the 
15% penetration level. This is because as wind penetration 
level increases, the intermittency in wind generation increases 

in terms of MWs. Therefore, at higher wind levels, with the 
proposed approach, the battery can be used to compensate for 
the deviation in wind generation and provide more cost 
savings. In Fig. 4, there is only one case (D225, 15%) in 
which the performance of the proposed method is worse than 
the fixed-schedule case; and the cost difference is about 1%. 
The cause of the cost degradation in the case of (D225, 15%) 
is explained as follows. For day 225, at the day-ahead stage, 
the battery is scheduled to provide a large amount of spinning 
reserves in some time periods when wind generation suddenly 
decreases. As wind generation in the post-stage scenarios also 
has a large decrease in the same time periods as that in the 
day-ahead stage, no reserve violation occurs in the cases 
where the fixed-schedule approach is used; since the fixed-
schedule approach implements the schedule determined at the 
day-ahead stage and can hence “anticipate” the sudden drop in 
wind generation. However, for the proposed approach, as it 
cannot fully “anticipate” the occurrence of large wind 
generation deviations, the battery may have been over utilized 
during prior time periods and thus does not have enough 
capability to provide the required amount of spinning reserves 
in those time periods. To further evaluate the performance of 
the proposed approach, in Table VIII, the six-day cost savings 
of the proposed approach compared to the fixed-schedule 
approach for the 15% wind penetration level is presented. As 
shown in Table VIII, the proposed approach can provide a six-
day total cost saving of 34,273 dollars, or 1.1%. This result 
indicates that even though the proposed approach may be out-
performed by the fixed-schedule approach in some cases, the 
proposed approach is more effective than the fixed-schedule 
approach overall.  

Compared with the no-schedule method, the costs savings 
provided by the proposed method are higher than those of the 
fixed-schedule. This is in consistence with our intuition, since 
the no-schedule method does not account for future 
uncertainties when making decisions for the battery in each 
time period. The high cost saving shown in Fig. 5 is a result of 
the high security violations in the no-schedule case and the 
high penalty prices used in the simulation, since again, the 
decisions in the no-schedule benchmark are made based on 
only the current operating condition. In Fig. 6, the cost savings 
compared to the 3-hour look-ahead benchmark is presented. It 
can be seen from Fig. 6 that except for two cases, the proposed 
approach have better performance than the 3-hour look-ahead 
approach. Of course, the look-ahead approach would yield 
better results if a better forecast was used than persistence. But 
still, the result has demonstrated the effectiveness of the 
proposed approach in utilizing the flexibility of battery 
storage. In fact, the proposed approach could also be improved 
by utilizing a longer look-ahead horizon. 

In Fig. 7, the result for day 236, scenario 3 with 30% wind 
penetration level is presented. The dashed lines in Fig. 7 
represent the operating range determined by the proposed 
method, which is modeled as a pair of limits on the SOC of 
the battery. The red solid line (with square markers) shows the 
schedule obtained by the proposed approach. The blue solid 
line (with triangle markers) represents the schedule obtained 
by the fixed-schedule method. In Fig. 7, for the time periods in 
which the SOC of the battery is outside the limits, such as 
hour 20, 21 and 22, the SOC limits are relaxed by incurring 
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the penalty cost. For most of the time periods, the battery is 
operated within the range provided by the proposed method. 
As the flexible operating range is obtained using the day-
ahead schedules, it provides a policy for the battery of when to 
discharge and charge. As shown in Fig. 7, the battery is forced 
by the limits to increase its SOC level during hours 10 to 13, 
and to decrease its SOC level during hours 14 to 15. 
Compared with the fixed-schedule approach, the proposed 
method can provide an operating range for the battery in each 
time period rather than a fixed operating point. As renewable 
generation deviates from forecasts, the battery is allowed to be 
operated within the operating range, and even possibly exceed 
the range, to compensate for the uncertainties in renewable 
generation. By using the proposed approach, the flexibility of 
the battery storage can be better utilized to address the 
intermittency in renewable resources. 

 

 
Fig. 4. Cost savings in percentage of the proposed method to the fixed-
schedule method. 
 
TABLE VIII. SIX-DAY COST SAVINGS OF THE PROPOSED METHOD COMPARED 

TO THE FIXED-SCHEDULE METHOD FOR 15% WIND PENETRATION 
 

D219 D225 D230 D232 D236 D243 
6-Day 
Sum 
($) 

6-Day 
Sum 
(%) 

4,584 -8,000 12,024 11,054 4,277 10,333 34,273 1.1% 
 
 

 
Fig. 5. Cost savings in percentage of the proposed method to the no-schedule 
method. 

 

 
Fig. 6. Cost savings in percentage of the proposed method to the 3-hour look-
ahead method. 

 

 
Fig. 7. Illustration of the proposed flexible operating range approach (Day 
236, scenario 3, 30% wind level).  

 
In Fig. 8, the energy and ancillary services scheduled for 

the battery for day 236, scenario 3 with 30% wind level are 
presented. The blue solid bars in Fig. 8 represent the power 
output of the battery, where positive value indicates 
discharging and negative value indicates charging. From Fig. 
8, it can be seen that the battery is scheduled mainly to provide 
ancillary services, which is because of its fast-ramping 
capability. Also, it can be noted from Fig. 8 that the ancillary 
services provided by the battery are sometimes larger than its 
maximum power rating of 50 MW. This result occurs because 
the battery requires a short transition time between charging 
and discharging mode. In charging mode, a battery can stop 
charging and transition to discharging mode to provide up 
reserves. The maximum up reserve that the battery can 
provide in this case is 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝐼𝐼𝐼𝐼 + 𝑃𝑃𝑏𝑏𝑏𝑏

𝑂𝑂𝑢𝑢𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚 . This result suggests 
that the flexibility of battery storage will be more valuable 
when providing ancillary services. 

 
 

 
Fig. 8. Schedule for the battery using the proposed method (Day 236, scenario 
3, 30% wind level). 
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IV.  CONCLUSION 
With its energy shifting and fast-ramping capabilities, 

battery storage has a great potential to facilitate the integration 
of high levels of renewable resources. In this paper, a two-step 
framework is used to evaluate the benefits of battery storage in 
power system operation with renewable resources. In the day-
ahead scheduling stage, it is shown that battery storage can 
decrease the curtailment of wind generation, reduce load and 
reserve shortfalls as well as the commitment of thermal units, 
and lower the total system costs. Moreover, the cost-benefit 
analysis indicates that battery storage is a cost-effective 
solution. In the post-stage analysis, the challenge with 
operating a battery in real-time with limited look-ahead 
functionality is illustrated. The result in the post-stage analysis 
shows that using a fixed-schedule approach cannot make full 
use of the flexibility of the battery in real-time operation. To 
address this problem, we propose a flexible operating range 
approach for battery storage. The case study demonstrates that 
the proposed approach is more effective in operating battery 
storage in real-time dispatch compared to the fixed-schedule, 
no-schedule, and look-ahead benchmark methods. The 
proposed flexible operating range method is able to take 
advantage of the flexibility of energy storage to provide more 
cost savings compared with the other benchmark methods.  

Directions for future work include the investigation of a 
wider set of strategies for real-time battery storage operations, 
possibly based on the marginal value or opportunity cost of 
using the battery for a given SOC. Moreover, we plan to 
develop a more detailed representation of the electro-
chemistry characteristic in battery storage, e.g. to capture how 
power limits and losses may depend on the SOC, and also a 
more detailed representation of degradation and life-time 
impacts of the battery under different operational schemes.  
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